
CS 2770: Computer Vision

Grouping & Transformations

Prof. Adriana Kovashka
University of Pittsburgh

January 29, 2018

Plan for this lecture

• Group pixels into:
– Edges: Extract gradients and threshold

– Lines: Find which edge points are collinear or
belong to another shape

– Segments: Find which pixels form a consistent
region, e.g. via clustering

• Transform pixels:
– Find relationships between multiple views of the

same world point

– Both parts rely on finding geometric relationships
between pixels

Edge detection

• Goal: map image from 2d array of pixels to a set of curves
or line segments or contours.

• Why?

• Main idea: look for differences in intensity, i.e. find strong
gradients, then post-process

Figure from J. Shotton et al., PAMI 2007

Adapted from K. Grauman

What causes an edge?

Depth discontinuity:
object boundary

Cast shadows

Reflectance change:
appearance
information, texture

Adapted from K. Grauman

• An edge is a place of rapid change in the
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative
Source: L. Lazebnik

Characterizing edges

Now with a little noise…
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d


f

g

f * g

)(gf
dx

d


Source: S. Seitz

Derivative theorem of convolution
• Differentiation is convolution, and convolution is

associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
=)(

g
dx

d
f 

f

g
dx

d

Source: S. Seitz

Image
with edge

Derivative
of Gaussian

Edge = max
of derivative

Canny edge detector

• Filter image with derivative of Gaussian

• Find magnitude and orientation of gradient

• Threshold: Determine which local maxima from filter
output are actually edges

• Non-maximum suppression:

– Thin wide “ridges” down to single pixel width

• Linking and thresholding (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and the
low threshold to continue them

Adapted from K. Grauman, D. Lowe, L. Fei-Fei

input image (“Lena”)

Example

Derivative of Gaussian filter

x-direction y-direction

Source: L. Lazebnik

Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: D. Hoiem

Thresholding

• Choose a threshold value t

• Set any pixels less than t to 0 (off)

• Set any pixels greater than or equal to t to 1 (on)

Source: K. Grauman

The Canny edge detector

norm of the gradient (magnitude)

Source: K. Grauman

The Canny edge detector

thresholding

Source: K. Grauman

Another example: Gradient magnitudes

Source: K. Grauman

Thresholding gradient with a lower threshold

Source: K. Grauman

Thresholding gradient with a higher threshold

Source: K. Grauman

The Canny edge detector

thresholding

How to turn
these thick
regions of the
gradient into
curves?

See hidden
slides.

Source: K. Grauman

Related: Line detection (fitting)

• Why fit lines?

Many objects characterized by presence of straight lines

• Why aren’t we done just by running edge detection?

Kristen Grauman

• Noise in measured edge points,

orientations:

– e.g. edges not collinear where they

should be

– how to detect true underlying

parameters?

• Extra edge points (clutter):

– which points go with which line, if

any?

• Only some parts of each line

detected, and some parts are

missing:

– how to find a line that bridges

missing evidence?

Difficulty of line fitting

Adapted from Kristen Grauman

•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize

  2

2

11

1

2

1

1

1 yAp −=

















−
























=












−








=  =

nn

n

i ii

y

y

b

m

x

x

y
b

m
xE 

 =
−+=

n

i ii ybxmE
1

2)(

(xi, yi)

y=mx+b

Matlab: p = A \ y;
Adapted from Svetlana Lazebnik

Least squares line fitting

where line you found tells

you point is along y axis

where point really is

along y axis
You want to find a single line that

“explains” all of the points in your data,

but data may be noisy!

Kristen Grauman

Outliers affect least squares fit

Kristen Grauman

Outliers affect least squares fit

Dealing with outliers: Voting

• Voting is a general technique where we let the features

vote for all models that are compatible with it.

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

• Noise & clutter features?

– They will cast votes too, but typically their votes should be

inconsistent with the majority of “good” features.

• Two common techniques

– Hough transform

– RANSAC (hidden slides)

Adapted from Kristen Grauman

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

x

y

m

b

m0

b0

image space Hough (parameter) space

Steve Seitz

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer: the solutions of b = -x0m + y0

– This is a line in Hough space

– Given a pair of points (x,y), find all (m,b) such that y = mx + b

x0

y0

Adapted from Steve Seitz

Finding lines in an image: Hough space

What are the line parameters for the line that contains both

(x0, y0) and (x1, y1)?

• It is the intersection of the lines b = –x0m + y0 and

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space

x0

b = –x1m + y1

(x0, y0)

(x1, y1)

Steve Seitz

y0

Finding lines in an image: Hough space

How can we use this to find the most likely parameters (m,b)

for the most prominent line in the image space?

• Let each edge point in image space vote for a set of

possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with

the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space

Steve Seitz

0 5 10 15 20

m = 17.5

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2

2 1 0 1 3 3

b
Adapted from Silvio Savarese

Finding lines in an image: Hough space

• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

 = + sincos yx

Each point (x,y) will add a sinusoid in the (,) parameter space
Svetlana Lazebnik

• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

Each point (x,y) will add a sinusoid in the (,) parameter space
Svetlana Lazebnik

x

y

Hough space

 



 



Algorithm outline: Hough transform

• Initialize accumulator H
to all zeros

• For each edge point (x,y)
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ*, ρ*) where H(θ, ρ) is
a local maximum

• The detected line in the image is given by
ρ* = x cos θ* + y sin θ*

ρ

θ

Svetlana Lazebnik

Incorporating image gradients

• Recall: when we detect an

edge point, we also know its

gradient direction

• But this means that the line

is uniquely determined!

• Modified Hough transform:

For each edge point (x,y) in the image

θ = gradient orientation at (x,y)

ρ = x cos θ + y sin θ

H(θ, ρ) = H(θ, ρ) + 1

end

Svetlana Lazebnik

Derek Hoiem

Hough transform example

Impact of noise on Hough

Image space

edge coordinates

Votes

x

dy

Kristen Grauman

Impact of noise on Hough

Image space

edge coordinates

Votes

x

y d

What difficulty does this present for an implementation?
Kristen Grauman

Voting: practical tips

• Minimize irrelevant tokens first (reduce noise)

• Choose a good grid / discretization

– Too coarse: large votes obtained when too many different lines correspond to a single bucket

– Too fine: miss lines because points that are not exactly collinear cast votes for different buckets

• Vote for neighbors (smoothing in accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back which points voted for “winning” peaks,

keep tags on the votes

Too coarseToo fine ?

Kristen Grauman

Hough transform for circles

• A circle with radius r and center (a, b) can be

described as:

x = a + r cos(θ)

y = b + r sin(θ)

(a, b)

(x, y)

• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r
222)()(rbyax ii =−+−

Image space Hough space a

b

Kristen Grauman

Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r
222)()(rbyax ii =−+−

Image space Hough space

Intersection:

most votes

for center

occur here.

Kristen Grauman

Hough transform for circles

Hough transform for circles

For every edge pixel (x,y) :

For each possible radius value r:

For each possible gradient direction θ:

// or use estimated gradient at (x,y)

a = x – r cos(θ) // column

b = y – r sin(θ) // row

H[a,b,r] += 1

end

end

end
Modified from Kristen Grauman

θ

x

x = a + r cos(θ)

y = b + r sin(θ)

Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).

Kristen Grauman, images from Vivek Kwatra

Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Kristen Grauman, images from Vivek Kwatra

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).

Hough transform: pros and cons

Pros

• All points are processed independently, so can cope with

occlusion, gaps

• Some robustness to noise: noise points unlikely to

contribute consistently to any single bin

• Can detect multiple instances of a model in a single pass

Cons

• Complexity of search time for maxima increases

exponentially with the number of model parameters

– If 3 parameters and 10 choices for each, search is O(103)

• Quantization: can be tricky to pick a good grid size

Adapted from Kristen Grauman

Generalized Hough transform

• We want to find a template defined by its

reference point (center) and several distinct

types of landmark points in stable spatial

configuration

c

Template

Adapted from Svetlana Lazebnik

Triangle, circle, diamond:

some type of visual token,

e.g. feature or edge point

Plan for this lecture

• Group pixels into:
– Edges: Extract gradients and threshold

– Lines: Find which edge points are collinear or
belong to another shape

– Segments: Find which pixels form a consistent
region, e.g. via clustering

• Transform pixels:
– Find relationships between multiple views of the

same world point

– Both parts rely on finding geometric relationships
between pixels

Edges vs Segments

Figure adapted from J. Hays

• Edges: More low-level; don’t need to be closed

• Segments: Ideally one segment for each semantic
group/object; should include closed contours

intensity

p
ix

e
l

c
o

u
n

t

input image

black pixels
gray

pixels

white

pixels

• These intensities define the three groups.

• We could label every pixel in the image according to

which of these primary intensities it is.

• i.e., segment the image based on the intensity feature.

• What if the image isn’t quite so simple?

1 2
3

Image segmentation: toy example

Source: K. Grauman

input image
intensity

p
ix

e
l

c
o

u
n

t

• Now how to determine the three main intensities that

define our groups?

• We need to cluster.

Source: K. Grauman

0 190 255

• Goal: choose three “centers” as the representative

intensities, and label every pixel according to which of

these centers it is nearest to.

• Best cluster centers are those that minimize sum of

squared differences (SSD) between all points and their

nearest cluster center ci:

1 2
3

intensity

Source: K. Grauman

Clustering

• With this objective, it is a “chicken and egg” problem:

– If we knew the cluster centers, we could allocate

points to groups by assigning each to its closest center.

– If we knew the group memberships, we could get the

centers by computing the mean per group.

Source: K. Grauman

K-means clustering

• Basic idea: randomly initialize the k cluster centers, and

iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster

• For each point p, find the closest ci. Put p into cluster i

3. Given points in each cluster, solve for ci

• Set ci to be the mean of points in cluster i

4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution

• Can be a “local minimum” of objective:

Slide: Steve Seitz, image: Wikipedia

Source: A. Moore

Source: A. Moore

Source: A. Moore

Source: A. Moore

Source: A. Moore

K-means converges to a local minimum

Adapted from James Hays

How can I try to fix this problem?

K-means: pros and cons

Pros
• Simple, fast to compute

• Converges to local minimum of
within-cluster squared error

Cons/issues
• Setting k?

– One way: silhouette coefficient

• Sensitive to initial centers
– Use heuristics or output of another method

– Try different initializations

• Sensitive to outliers

• Detects spherical clusters

Adapted from K. Grauman

ALTERNATIVES?

Segmentation as clustering

Depending on what we choose as the feature space, we

can group pixels in different ways.

Grouping pixels based

on intensity similarity

Feature space: intensity value (1-d)

Source: K. Grauman

K=2

K=3

Adapted from K. Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we

can group pixels in different ways.

Grouping pixels based

on intensity similarity

Clusters based on intensity

similarity don’t have to be spatially

coherent.

Source: K. Grauman

Segmentation as clustering

X

Y

Intensity

Both regions are black, but if we

also include position (x,y), then

we could group the two into

distinct segments; way to encode

both similarity & proximity.Source: K. Grauman

Grouping pixels based

on intensity+position similarity

Depending on what we choose as the feature space, we

can group pixels in different ways.

Segmentation as clustering

Depending on what we choose as the feature space, we

can group pixels in different ways.

F24

Grouping pixels based

on texture similarity

F2

Feature space: filter bank responses (e.g., 24-d)

F1

…

Filter bank

of 24 filters

Source: K. Grauman

Summary

• Edges: threshold gradient magnitude

• Lines: edge points vote for parameters of

line, circle, etc. (works for general objects)

• Segments: use clustering (e.g. K-means)

to group pixels by intensity, texture, etc.

Plan for this lecture

• Group pixels into:
– Edges: Extract gradients and threshold

– Lines: Find which edge points are collinear or
belong to another shape

– Segments: Find which pixels form a consistent
region, e.g. via clustering

• Transform pixels:
– Find relationships between multiple views of the

same world point

– Both parts rely on finding geometric relationships
between pixels

Why multiple views?

• Structure and depth are inherently ambiguous from

single views.

• Multiple views help us to perceive 3d shape and

depth.

Kristen Grauman, images from Svetlana Lazebnik

Alignment problem

• We previously discussed how to match features

across images, of the same or different objects

• Now let’s focus on the case of “two images of the

same object”(e.g. xi and xi’)

• What transformation relates xi and xi’?

• In alignment, we will fit the parameters of some

transformation according to a set of matching

feature pairs (“correspondences”).

T

xi

xi'

Adapted from Kristen Grauman and Derek Hoiem

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/Kristen Grauman

Motivation: Image mosaics

?

• Compare content in local patches, find best matches.

• Scan xi’ with template formed from a point in xi, and compute

e.g. Euclidean distance between SIFT features of the patches

Adapted from Kristen Grauman

Min dist = match

First, what are the correspondences?

Second, what are the transformations?

Examples of transformations:

translate rotate change aspect ratio

squish/shear change perspective

Adapted from Alyosha Efros

Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?

• It is the same for any point p

• It can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)









=









y

x

y

x
M

'

'

Alyosha Efros

Scaling

Scaling a coordinate means multiplying each of its components by
a scalar

Uniform scaling means this scalar is the same for all components:

 2

Adapted from Alyosha Efros

(2, 1)

(4, 2)

Scaling

Non-uniform scaling: different scalars per component

X  2,

Y  0.5

Adapted from Alyosha Efros

(2, 1)
(4, 0.5)

Scaling

Scaling operation:

Or, in matrix form:

byy

axx

=

=

'

'

















=









y

x

qp

nm

y

x

'

'

scaling matrix S

Adapted from Alyosha Efros

















=









y

x

b

a

y

x

0

0

'

'

2D Linear transformations

Only linear 2D transformations can be represented with

a 2x2 matrix.

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror

















=









y

x

dc

ba

y

x

'

'

Alyosha Efros

2D Rotate around (0,0)? (see hidden slide)

yxy
yxx

*cos*sin'
*sin*cos'

+=
−=




















−
=









y

x

y

x

cossin

sincos

'

'

2D Shear?

yxshy

yshxx

y

x

+=

+=

*'

*'
















=









y

x

sh

sh

y

x

y

x

1

1

'

'

2D Scaling?

ysy

xsx

y

x

*'

*'

=

=
















=









y

x

s

s

y

x

y

x

0

0

'

'

Modified from Alyosha Efros Fig. from https://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/2dshear.htm

What transforms can we write w/ 2x2 matrix?

2D Mirror about Y axis?

yy
xx

=
−=

'
'












−
=







y
x

y
x

10
01

'
'

2D Mirror over (0,0)?

yy
xx

−=
−=

'
'













−

−
=







y
x

y
x

10
01

'
'

2D Translation?

y

x

tyy

txx

+=

+=

'

'
CAN’T DO!

Alyosha Efros

What transforms can we write w/ 2x2 matrix?

homogeneous image

coordinates

Converting from homogeneous coordinates

To convert to homogeneous coordinates:

Kristen Grauman

Homogeneous coordinates

















+

+

=

































=

















111

'

'

y

x

ty

tx

y

x

y

x

Translation

















+

+

=

































=

















11100

10

01

1

'

'

y

x

y

x

ty

tx

y

x

t

t

y

x

tx = 2

ty = 1

Homogeneous Coordinates

Adapted from Alyosha Efros

(2, 1)

(4, 2)

2D affine transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Maps lines to lines, parallel lines remain parallel

































=

















w

y

x

fed

cba

w

y

x

100'

'

'

Adapted from Alyosha Efros

Detour: Keypoint matching for search

Adapted from K. Grauman, B. Leibe

Af
Bf

A1

A2 A3

Tffd BA ),(

1. Find a set of

distinctive key-

points

2. Define a region

around each

keypoint (window)

3. Compute a local

descriptor from the

region

4. Match descriptors

Query
In database

Detour: solving for translation with outliers

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Derek Hoiem

Detour: solving for translation with outliers

A1

A2 A3
B1

B2 B3

Hough transform solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values

2. Each matched pair casts a vote for

consistent values

3. Find the parameters with the most votes

A4

A5 A6

B4

B6 B5

Problem: outliers, multiple objects

Adapted from Derek Hoiem

Projective transformations

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel




























=















w

y
x

ihg

fed
cba

w

y
x

'

'
'

Kristen Grauman

Obtain a wider angle view by combining multiple images.

im
a
g

e
 fro

m
 S

. S
e
itz

. . .

Kristen Grauman

Image mosaics: Goals

Image mosaics: Camera setup

Two images with camera rotation but no translation

Camera CenterAdapted from Derek Hoiem

(0, 0) (0, 0)

(50, 70) (50, 20)

mosaic plane

Image mosaics: Many 2D views, one 3D object

The mosaic has a natural interpretation in 3D
• The images are reprojected onto a common plane

• The mosaic is formed on this plane

• Mosaic is a synthetic wide-angle camera
Steve Seitz

How to stitch together panorama (mosaic)?

Basic Procedure

• Take a sequence of images from the same position

– Rotate the camera about its optical center

• Compute the homography (transformation)

between first and second image

• Transform the second image to overlap with

the first

• Blend the two together to create a mosaic

• (If there are more images, repeat)

Adapted from Steve Seitz

()11, yx ()11, yx 

To compute the homography given pairs of corresponding

points in the images, we need to set up an equation where

the parameters of H are the unknowns…

()22 , yx ()22 , yx

…

…

()nn yx , ()nn yx  ,

Kristen Grauman

Computing the homography

Computing the homography

• Assume we have four matched points:

How do we compute homography H?

















=

w

wy'

wx'

'p

















=

987

654

321

hhh

hhh

hhh

H



































=

9

8

7

6

5

4

3

2

1

h

h

h

h

h

h

h

h

h

h

Adapted from Derek Hoiem, Kristen Grauman

p’=Hp

0h =








−−−

−−−

'''1000

'''0001

yyyxyyx

xyxxxyx

A

































=

















1

y

x

ihg

fed

cba

w

wy'

wx'

















987

654

321

hhh

hhh

hhh

Derivation: http://www.cse.psu.edu/~rtc12/CSE486/lecture16.pdf

Can set scale factor h9 = 1.

So, there are 8 unknowns.

Need at least 8 eqs, but the more the better…

















=

1

y

x

p

DEMO

http://www.cse.psu.edu/~rtc12/CSE486/lecture16.pdf

How to stitch together panorama (mosaic)?

Basic Procedure

• Take a sequence of images from the same position

– Rotate the camera about its optical center

• Compute the homography (transformation)

between first and second image

• Transform the second image to overlap with

the first

• Blend the two together to create a mosaic

• (If there are more images, repeat)

Adapted from Steve Seitz




























=















1

y
x

w

wy'
wx'

H pp’







 

w
yw

w
xw

,

()yx = ,

()yx,

To apply a given homography H

• Compute p’ = Hp (regular matrix multiply)

• Convert p’ from homogeneous to image

coordinates

Modified from Kristen Grauman

Transforming the second image
Image 2 canvasImage 1

f(x,y) g(x’,y’)

Transforming the second image

Forward warping:

Send each pixel f(x,y) to its corresponding location

(x’,y’) = H(x,y) in the right image

x x’

H(x,y)

y y’

Modified from Alyosha Efros

Image 2 canvasImage 1

f(x,y) g(x’,y’)

Transforming the second image

x x’

H(x,y)

Q: what if pixel lands “between” two pixels?

y y’

A: distribute color among neighboring pixels (x’,y’)

Alyosha Efros

Forward warping:

Send each pixel f(x,y) to its corresponding location

(x’,y’) = H(x,y) in the right image

ALTERNATIVES?

Next: Stereo vision

• Homography: Same camera center, but camera
rotates

• Stereo vision: Camera center is not the same (we
have multiple cameras)

• Epipolar geometry
– Relates cameras from two positions/cameras

• Stereo depth estimation
– Recover depth from disparities between two images

Adapted from Derek Hoiem

Stereo photography and stereo viewers

Image from fisher-price.com

Take two pictures of the same subject from two slightly different

viewpoints and display so that each eye sees only one of the images.

Kristen Grauman

Invented by Sir Charles Wheatstone, 1838

Two cameras, simultaneous

views

Single moving camera and

static scene

Kristen Grauman

Depth from stereo for computers

f

x x’

Baseline

B

z

C C’

X

f

X

x

x'

Derek Hoiem

Depth from stereo
• Goal: recover depth by finding image coordinate x’

that corresponds to x, then measuring discrepancy

between x and x’

• Assume parallel optical axes, known camera parameters

(i.e., calibrated cameras). What is expression for Z?

Similar triangles (pl, P, pr) and

(Ol, P, Or):

Geometry for a simple stereo system

Z

T

fZ

xxT rl =
−

−+

lr xx

T
fZ

−
=

disparity

Adapted from Kristen Grauman

depth

Depth is inversely proportional to disparity.

Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

Kristen Grauman

• We have two images from different cameras.

• First, find corresponding points in two images

• How to do this efficiently?

• Second, estimate relative depth from correspondences

• Given p in left image, where can corresponding

point p’ be?

Stereo correspondence constraints

Kristen Grauman

Epipolar constraint

Geometry of two views constrains where the corresponding pixel for

some image point in the first view must occur in the second view.

• It must be on the line where (1) the plane connecting the world

point and optical centers, and (2) the image plane, intersect.

• Potential matches for p have to lie on the corresponding line l’.

• Potential matches for p’ have to lie on the corresponding line l.

Adapted from Kristen Grauman, Derek Hoiem

world point

• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
P

p p’

• Epipolar Plane – plane containing baseline

• Epipoles

= intersections of baseline with image planes

= projections of the other camera center

• Baseline – line connecting the two camera centers

Adapted from Derek Hoiem

Epipolar constraint

The epipolar constraint is useful because

it reduces the correspondence problem

to a 1D search along an epipolar line.

See hidden slides for details.

Kristen Grauman, image from Andrew Zisserman

Essential matrix

() 0= RXTX

() 0][T = RXX x

E is called the essential matrix, and it relates corresponding image

points between both cameras, given the rotation and translation.

Before we said: If we observe a point in one image, its position in other

image is constrained to lie on line defined by above. It turns out that:
• ETx is the epipolar line l’ through x’ in the second image, corresponding to x.

• Ex’ is the epipolar line l through x in the first image, corresponding to x’.

Let RE][T x=

0== EXXEXX
T

Adapted from Kristen Grauman, Derek Hoiem

Rigs related by:

Rotation: 3x3 matrix R

Translation: 3x1 vector T.

Basic stereo matching algorithm

• For each pixel in the first image
– Find corresponding epipolar scanline in the right image

– Search along epipolar line and pick the best match x’ (e.g. smallest
Euclidean distance between SIFT in patch)

– Compute disparity x-x’ and set depth(x) = f*T/(x-x’)

Adapted from Derek Hoiem

Results with window search
Data

Window-based matching Ground truth

Left image Right image

Predicted depth Ground truth

Derek Hoiem

Projective structure from motion

• Given: m images of n fixed 3D points

xij = Pi Xj , i = 1,… , m, j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D points
Xj from the mn corresponding 2D points xij

x1j

x2j

x3j

Xj

P1

P2

P3

Svetlana Lazebnik

Photo tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring

photo collections in 3D," SIGGRAPH 2006

http://phototour.cs.washington.edu/

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/

Sameer Agarwala, Noah Snavely, Ian Simon, Steven M. Seitz, Richard

Szeliski, "Building Rome in a Day," ICCV 2009

3D from multiple images

http://www.iansimon.org/papers/rome_paper.pdf

Summary of multiple views

• Write 2d transformations as matrix-vector multiplication

• Fitting transformations: Solve for unknown parameters given
corresponding points from two views – linear, affine,
projective (homography)

• Mosaics: Uses homography and image warping to merge
views taken from same center of projection

• Stereo depth estimation: Find corresponding points along
epipolar scanline, then measure disparity (as inverse to depth)

• Epipolar geometry: Matching point in second image is on a
line passing through its epipole; makes search for
correspondences quicker

Adapted from Kristen Grauman and Derek Hoiem

