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Plan for this lecture

• Alternative representations

– I. Graph networks (pp 3-22)

• Alternative learning mechanisms

– II. Self supervision (pp 23-63)

– III. Reinforcement learning (pp 64-101)

• Alternative tasks

– IV. Generation  (pp 102-190)

• V. Bias and ethics (pp 191-256)



Part I: Graph Networks

• Types of graph networks

– Graph convolutional networks

– Graph attention networks

• Applications

– Semi-supervised learning

– Visual question answering



Types of data typically handled with Deep Learning

Speech data

Natural language  

processing (NLP)

…

Grid games

Thomas Kipf



Graph-structured data
A lot of real-world data does not “live” on grids

Molecules

Social networks  

Citation networks

Communication networks  
Multi-agent systems

Protein interaction

networks

Road maps

Standard deep learning architectures  

like CNNs and RNNs don’t work here!

Knowledge graphs

Thomas Kipf



Graph Neural Networks (GNNs)

Main idea: Pass messages between pairs of nodes & agglomerate

The bigger picture:

… …

…

Input

Thomas Kipf

Hidden layer Hidden layer

ReLU

Output

ReLU

Notation: G =  (A,X )

• Adjacency matrix

• Feature matrix X

A RN⇥N

RN⇥F



Graph convolutional networks

Graph: Adjacency matrix: A
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Kipf and Welling, “Semi-supervised learning with deep generative models”, ICLR 2017 (slides by Thomas Kipf)



Recap: Convolutional neural networks (on grids)

(Animation by  

Vincent Dumoulin)

Single CNN layer  
with 3x3 filter:

…

Update for a single pixel:

• Transform messages individually

• Add everything up

Full update:

h i in RF

Thomas Kipf

are (hidden layer) activations of a pixel/node



Graph convolutional networks

… …

Input

Hidden layer

ReLU

Output

ReLU

…

Input: Feature matrix , preprocessed adjacency matrix

Hidden layer

Kipf and Welling, “Semi-supervised learning with deep generative models”, ICLR 2017 (slides by Thomas Kipf)



Graph convolutional networks (GCNs)
Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this  
undirected graph:

Calculate update  
for node in red:

Update  
rule:

: neighbor

indices
: norm. constant  

(fixed/trainable)

Scalability: subsample messages [Hamilton et al., NIPS 2017]

Thomas Kipf



Alternatives

How else can we propagate information over a graph?

How can we improve the propagation using ideas from RNNs?

From CNNs?



Graph neural networks with attention
Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Veličković et al. (ICLR 2018)

[Figure from Veličković et al. (ICLR 2018)]

Thomas Kipf



A brief history of graph neural nets

Original GNN  
Gori et al.  

(2005)

GG-NN
Li et al.  

(ICLR 2016)

Spectral  
Graph CNN  
Bruna et al.  
(ICLR 2015)

ChebNet  
Defferrard et al.  

(NIPS 2016)

GCN
Kipf & Welling  

(ICLR 2017)

“Spectral methods”

“Spatial methods”

amilton et al.  

NIPS 2017)

MoNet  
Monti et al.  

(CVPR 2017)

Neural MP
Gilmer et al.
(ICML 2017)

Relation Nets
GraphSAGESantoro et al.

(NIPS 2017) H
(

“DL on graph explosion”

Programs as Graphs
Allamanis e  

(ICLR 201

t al.
8)

NRI
ipf et al.K

(ICML 2018)
GAT

Thomas Kipf

Veličković et al.  

(ICLR 2018)

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

- Niepert et al. (ICML 2016)

- Battaglia et al. (NIPS 2016)

- Atwood & Towsley (NIPS 2016)

- Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNs)

…



What do learned representations look like?

f( ) =
[Zachary’s Karate Club]

Forward pass through untrained 3-layer GCN model

Thomas Kipf

Parameters initialized randomly
2-dim output per node

What else are graph representations good for?



Semi-supervised classification on graphs

Setting:

Some nodes are labeled (black circle)  
All other nodes are unlabeled

Task:

Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

set of labeled node

indices  label matrix

GCN output (after softmax)

Thomas Kipf



Application: Classification on citation networks

(Figure from: Bronstein, Bruna, LeCun,  

Szlam, Vandergheynst, 2016)

no input features

Input: Citation networks (nodes are papers, edges are citation links,  
optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, …)

Model: 2-layer GCN

Classification results (accuracy)

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

Thomas Kipf



Visual Question Answering (VQA)

Task: Given an image and a natural language open-ended question, 
generate a natural language answer.

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html


Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected

4096-dim

Embedding

Embedding

“How many horses are in this image?”

Neural Network 
Softmax

over top K answers

Image

Question  

1024-dim

Visual Question Answering (VQA)

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

LSTM

http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html


Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

Visual Question Answering (VQA)



Wu et al., “Ask Me Anything: Free-Form Visual Question Answering Based on Knowledge From External Sources”, CVPR 2016

Visual Question Answering (VQA)

http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_Ask_Me_Anything_CVPR_2016_paper.html


Reasoning for VQA

Narasimhan and Schwing, “Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering”, NeurIPS 2018



Graphs for advertisements

Ye, Zhang and Kovashka



Part II: Self-Supervised Learning

• Learn representations from context in raw data
• Language – predict nearby words [already covered]

– Word2Vec
– Transformers, BERT

• Vision – predict pixels from other pixels
– Predict nearby patches in an image
– Predict order of frames in a video
– Predict what you will see as you move
– Predict physics

Jitendra Malik: "Supervision is the opium of the AI researcher"
Alyosha Efros: "The AI revolution will not be supervised"

Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the 
cake, reinforcement learning is the cherry on the cake"



Motivation

• What’s the data we’ve learned from thus far? 

• Labeled static datasets

– Expensive to obtain

– Doesn’t match how humans learn

• Alternatives

– Unsupervised learning (no labels)

– Self-supervised learning (“fake”/emergent labels)

– Embodied/active learning (agents in environments)



Unsupervised Visual Representation 
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta

ICCV 2015



ImageNet + Deep Learning

Beagle

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- …

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning

Beagle

Do we even need semantic labels?
Pose?

Boundaries?Geometry?

Parts?
Materials?

Do we need this task?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

Deep
Net



Context Prediction for Images

A B

1 2 3

54

6 7 8
Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

Relative Position Task
8 possible locations

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



CNN CNN

Classifier

Patch Embedding

Input Nearest Neighbors

CNN Note: connects across instances!

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Architecture

Patch 2Patch 1

Fully connected

Max Pooling
LRN

Max Pooling
LRN

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Max Pooling
LRN

Max Pooling
LRN

Fully connected

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Softmax loss

Fully connected

Fully connected

Tied Weights

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Ours

What is learned?

Input ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



VOC 2007 Performance
(pretraining for R-CNN)

No PretrainingOursImageNet Labels

40.7

46.3

54.2

%
 A

ve
ra

ge
 P

re
ci

si
o

n

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



• Test on dataset B

• Option 1: pretrain (unsup) on dataset B

• Option 2: pretrain (sup) on dataset A



Shuffle and Learn: Unsupervised Learning 
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert 

ECCV 2016



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Learning image representations tied to 
ego-motion

Dinesh Jayaraman and Kristen Grauman

ICCV 2015



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:

self-generated motion + visual feedback



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Problem with today’s visual learning

Status quo: Learn from 
“disembodied” bag of 
labeled snapshots.

Our goal: Learn in the 
context of acting and moving
in the world.



Goal: Teach computer vision system the connection:

“how I move” ↔ “how my visual surroundings change”

Our idea: Ego-motion ↔ vision

+

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion ↔ vision: view prediction

After moving:

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion ↔ vision for recognition

Learning this connection requires:

➢ Depth, 3D geometry

➢ Semantics

➢ Context

Can be learned without manual labels!

Also key to 

recognition!

Our approach: unsupervised feature learning 

using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of 

transformations

𝐳 𝑔𝐱 ≈ 𝐳(𝐱)

Invariance discards information;

equivariance organizes it. 

Equivariant features : predictably responsive to 

some classes of transformations, through simple 

mappings (e.g., linear)

𝐳 𝑔𝐱 ≈ 𝑀𝑔𝐳(𝐱)

“equivariance map”

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Equivariant embedding 

organized by ego-motions

Pairs of frames related by 

similar ego-motion should 

be related by same 

feature transformation

left turn

right turn

forward

Learn

Approach idea: Ego-motion equivariance

time →

m
o

to
r 

s
ig

n
a

l

Training data

Unlabeled video + 

motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using 

egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

Right turn

=forward

=right turn

=left turn

y
a
w

 c
h

a
n

g
e

forward distance

𝑔

𝑔

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



∥ 𝑀𝑔𝐳𝛉(𝐱𝑖) − 𝐳𝛉(𝑔𝐱𝑖) ∥𝟐

Ego-motion equivariant feature learning

𝐱𝑖

𝑔𝐱𝑖

𝐳𝛉(𝐱𝑖)

𝐳𝛉(𝑔𝐱𝑖)

𝑀𝑔

Desired: for all motions 𝑔 and all images 𝐱,

𝐳𝛉 𝑔𝐱 ≈ 𝑀𝑔𝐳𝛉(𝐱)

𝛉

𝛉

Given:

𝛉 𝐳𝛉(𝐱𝑘)𝐱𝑘 𝑊 softmax loss 𝐿𝐶(𝐱𝑘 , y𝑘)

Unsupervised training

Supervised training

𝐳𝛉(𝑔𝐱𝑖)

𝐳𝛉(𝐱𝑖) 𝑀𝑔

Feature space

class y𝑘 𝛉, 𝑀𝑔 and 𝑊 jointly trained

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion training pairs Neural network training Equivariant embedding

Scene and object recognition

A
P

P
R

O
A

C
H

R
E

S
U

L
T

S Football field?

Pagoda?

Airport?

Cathedral?

Army base?

Next-best view selection

cup frying pan

Summary

𝑀𝑔𝛉

𝛉

𝛉 𝑊 𝐿𝐶

𝐿𝐸

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 

(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



KITTI⟶ SUN

Do ego-motion equivariant features improve recognition?

397 classes

re
c
o

g
n

it
io

n
 a

c
c
u

ra
c
y
 (

%
)

Results: Recognition

6 labeled training 

examples per class

Up to 30% accuracy increase 

over state of the art!

0.25

0.70

1.02

1.21

1.58

invariance

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual 
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,    
Yong-Lae Park, and Abhinav Gupta 

ECCV 2016



Embodied representations

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Grasping

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pose/viewpoint invariance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Part III: Reinforcement Learning

• Basics: actions, states, rewards, MDP

• Different techniques (Q learning, policy 
gradients, actor-critic, etc.)

• Example applications



Agent

Environment

Action a
t

State st Reward rt  

Next state s

Lecture 14 - 66

Reinforcement Learning

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

t+1

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Cart-Pole Problem

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Atari Games

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Go

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Agent

Environment

Action a
t

State st Reward rt  

Next state s

How can we mathematically formalize the RL problem?

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

t+1

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the  

world

Defined by:

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R( . | st, at)

- Environment samples next state st+1 ~ P( . | st, at)

- Agent receives reward rt and next state st+1

- A policy u is a function from S to A that specifies what action to take in  

each state

- Objective: find policy u* that maximizes cumulative discounted reward:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

★

★

actions = {

1. right

2. left

3. up

4. down

}

Objective: reach one of terminal states (greyed out) in  

least number of actions

Set a negative “reward”  

for each transition

(e.g. r = -1)

states

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Random Policy Optimal Policy

★

★

★

★

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?  

Maximize the expected sum of rewards!

Formally: with

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Definitions: Value function and Q-value function

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy  

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from  

taking action a in state s and then following the policy:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Bellman equation

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Q* satisfies the following Bellman equation:

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,  

then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy u* corresponds to taking the best action in any state as specified by Q*

The optimal Q-value function Q* is the maximum expected cumulative reward achievable  

from a given (state, action) pair:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Solving for the optimal policy:
Q-learning

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



:
neural network  

with weights

Q-network Architecture

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d

output (if 4 actions),  

corresponding to Q(s
t
,  

a
1
), Q(s

t
, a

2
), Q(s

t
, a

3
),  

Q(s
t
,a

4
)

Number of actions between 4-18  

depending on Atari game

A single feedforward pass  

to compute Q-values for all  

actions from the current  

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Initialize state  

(starting game  

screen pixels) at the  

beginning of each  

episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

For each timestep t  

of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson 
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

With small probability,  

select a random  

action (explore),  

otherwise select  

greedy action from  

current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Take the action (a
t
),  

and observe the  

reward rt and next  

state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Store transition in

replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Experience Replay:

Sample a random  

minibatch of transitions  

from replay memory  

and perform a gradient  

descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard  

to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of  

policies?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

Policy Gradients

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



REINFORCE Algorithm (orig. Williams 1992)

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Gradient estimator:

Interpretation:

- If r(r) is high, push up the probabilities of the actions seen

- If r(r) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were  

good. But in expectation, it averages out!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

Andrej Karpathy



Policy Gradients

• Objective:

• xi = state

• yi = sampled action

• Ai = “advantage” e.g. +1/-1 for win/lose in 
simplest version, or discounted, or 
improvement over “baseline”

∑i Ai log p(yi∣xi)

Adapted from Andrej Karpathy



Policy Gradients vs Q-Learning

• Policy gradients suffers from high variance and 
instability; might want to make gradients smaller (e.g. 
relative to a baseline)

• Policy gradients can handle continuous action spaces 
(Gaussian policy)

• Estimating exact value of state-action pairs vs choosing 
what actions to take (value not important)

• Step-by-step (did I correctly estimate the reward at this 
time) vs delayed feedback (run policy and wait until 
game terminates)



Actor-Critic Algorithm

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We can combine Policy Gradients and Q-learning  by training both an 

actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor  

how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values  

of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Remark: we can define by the advantage function how much an  

action was better than expected

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



RL for object detection

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015



RL for object detection

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015



RL for navigation

Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning”, ICRA 2017



RL for navigation

Yang et al., “Visual Semantic Navigation using Scene Priors”, ICLR 2019



RL for question-answering

Das et al., “Embodied Question Answering”, CVPR 2018



RL for question-answering

Das et al., “Embodied Question Answering”, CVPR 2018



Part IV: Generation

• Motivation and taxonomy of methods

• Variational Autoencoders (VAEs)

• Generative Adversarial Networks (GANs)

• Applications and variants of GANs

• Dealing with sparse data, progressive training



Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Lecture 13 -

Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Generative Models

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Lecture 13 -

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x)

- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly 

defining it

Generative Models

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models can be used to enhance training datasets with 

diverse synthetic data

- Generative models of time-series data can be used for simulation

Lecture 13 -

Why Generative Models?

Adapted from Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density
Markov Chain

Variational Markov Chain

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

Change of variables models  

(nonlinear ICA)

GSN

GAN

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Lecture 13 -

Taxonomy of Generative Models

Serena Young



PixelRNN and PixelCNN

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 9, 2019Lecture 11 - 21

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung



Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d  

distributions:

Likelihood of  

image x

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
9

Probability of i’th pixel value  

given all previous pixels

Will need to define  

ordering of “previous  

pixels”

Complex distribution over pixel  

values => Express using a neural  

network!Then maximize likelihood of training data

Fully visible belief network

Serena Young



Generate image pixels starting from corner

Dependency on previous pixels modeled  

using an RNN (LSTM)

Lecture 11 -

PixelRNN

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung
11
0

[van der Oord et al. 2016]

Drawback: sequential generation is slow!

Serena Young



Still generate image pixels starting from  

corner

Dependency on previous pixels now  

modeled using a CNN over context region

Training: maximize likelihood of training  

images

Figurecopyrightvan der Oord etal., 2016. Reproduced withpermission.

Softmax loss at each pixel

Lecture 11 -
Training is faster than PixelRNN (can parallelize convolutions since context region  

values known from training images)

Generation must still proceed sequentially => still slow

PixelCNN
[van der Oord et al. 2016]

Serena Young



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - May 9, 2019Lecture 11 - 34

Variational  Autoencoders (VAEs)

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung



So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 11
3

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Serena Young



Some background: Autoencoders

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation  

from unlabeled training data

Originally: Linear +  

nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

z usually smaller than x

(dimensionality reduction)

Q: Why dimensionality  

reduction?

A: Want features to  

capture meaningful  

factors of variation in  

data

Lecture 11 -

Serena Young



Some background: Autoencoders

Decoder

Features

Encoder

Input data

How to learn this feature representation?
Train such that features can be used to reconstruct original data  

“Autoencoding” - encoding itself
Originally: Linear +

Reconstructed  

input data

nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN (upconv)

Lecture 11 -

Serena Young



Some background:Autoencoders

Input data

Reconstructed  

input data

Featu

Reconstructed data

Encoder: 4-layer conv

Decoder: 4-layer upconv

Input data

L2 Loss function:

Decoder

res

Encoder

Train such that features  

can be used to  

reconstruct original data

Lecture 11 -

Doesn’t use labels!

Serena Young



Some background: Autoencoders

Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune  

encoder  

jointly with  

classifier

Loss function  

(Softmax, etc)

Encoder can be  

used to initialize a  

supervised model

plane

Lecture 11 -

11
7

dog deer

bird

truck

Train for final task  

(sometimes with  

small data)

Serena Young



Some background: Autoencoders

Features

Encoder

Input data

Decoder

Lecture 11 -

May 9, 201911
8

Reconstructed  

input data

Autoencoders can reconstruct

data, and can learn features to

initialize a supervised model

Features capture factors of  

variation in training data. Can we  

generate new images from an  

autoencoder?

Serena Young



Sample from  

true prior

Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data is generated from underlying unobserved (latent)  

representation z

Sample from  

true conditional

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 201911
9

Intuition (remember from autoencoders!):  

x is an image, z is latent factors used to  

generate x: attributes, orientation, etc.

Serena Young



Sample from  

true prior

Variational Autoencoders

Sample from  

true conditional

We want to estimate the true parameters  

of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.  

Gaussian.

Conditional p(x|z) is complex (generates  

image) => represent with neural network

Decoder  

network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 12
0

Serena Young



Sample from  

true prior

Variational Autoencoders

Sample from  

true conditional

We want to estimate the true parameters  

of this generative model.

How to train the model?

Learn model parameters  to maximize 

likelihood of training data

Now with latent z

Decoder  

network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

Fei-Fei Li & Justin Johnson & Serena Yeung 12
1

Adapted from Serena Young



Sample from  

true prior

Variational Autoencoders

Sample from  

true conditional

We want to estimate the true parameters  

of this generative model.

How to train the model?

Learn model parameters  to maximize 

likelihood of training data

Q: What is the problem with this?  

Intractable!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 12
2

Decoder  

network

Serena Young



Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 12
3

Decoder neural networkIntractable to compute  

p(x|z) for every z!

Posterior density also intractable:

Intractable data likelihood

• Solution: In addition to decoder network modeling pθ(x|z), define additional  encoder 
network qɸ(z|x) that approximates pθ(z|x)

• This allows us to derive a lower bound on the data likelihood that is  tractable, which we can
optimize – omitted, see hidden slides

Adapted from Serena Young



Variational Autoencoders

Mean and (diagonal) covariance of z | x Mean and (diagonal) covariance of x | z

Encoder network Decoder network

(parameters ɸ) (parameters θ)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 12
7

Serena Young

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic



Variational Autoencoders

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Encoder and decoder networks also called  

“recognition”/“inference” and “generation” networks

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 12
8

Serena Young



Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the  

likelihood lower bound

Make approximate  

posterior distribution  

close to prior

Encoder network

Maximize
likelihood of  

original input  

being  

reconstructed

For every minibatch of input  

data: compute this forward  

pass, and then backprop!

Lecture 11 -

May 9, 2019

Serena Young



Decoder network

Sample x|z from

Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z2

Lecture 11 -

VAEs: Generating Data

Serena Young



Vary z1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z
=> independent  

latent variables

Different  

dimensions of z  

encode  

interpretable factors  

of variation

Also good feature representation that  

can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019

96

VAEs: Generating Data

Serena Young



32x32 CIFAR-10

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 13
2

Labeled Faces in the Wild

Figurescopyright (L)Dirk Kingmaetal. 2016; (R) Anders Larsenetal. 2017. Reproduced withpermission.

VAEs: Generating Data

Serena Young



Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 13
3

Probabilistic spin to traditional autoencoders => allows generating data

Defines an intractable density => derive and optimize a lower bound

Pros:

- Principled approach to generative models

- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as  

PixelRNN/PixelCNN

- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Variational Autoencoders

Adapted from Serena Young



So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead  

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution  

through 2-player game

Lecture 11 - 134

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Lecture 13 -

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct  

way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to  

training distribution.

Q: What can we use to

represent this complex

transformation?

Generative Adversarial Networks

Serena Young



Problem: Want to sample from complex, high-dimensional training distribution. No direct  

way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to  

training distribution.

Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

zInput: Random noise

Generator  

Network

Output: Sample from  

training distribution

Lecture 13 -

Q: What can we use to

represent this complex

transformation?

A: A neural network!

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Generative Adversarial Networks

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Lecture 13 -

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

zRandom noise

Generator Network

Discriminator Network

Fake Images  

(from generator)

Real Images  

(from training set)

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Real or Fake

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Lecture 13 -

Training GANs: Two-player game

Serena Young



Input noise  
Z

Differentiable  
function G

x sampled  
from model

Differentiable  
function D

D tries to  
output 0

D tries to  
output 1

Differentiable  
function D

x sampled  
from data

Adversarial Networks Framework

Ian Goodfellow

Discriminator 
Real vs. Fake

Generator
𝑥 ~ 𝐺(𝑧)



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Lecture 13 -

Training GANs: Two-player game

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Discriminator output  

for real data x

Discriminator output for  

generated fake data G(z)

Lecture 13 -

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and  

D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1  

(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Lecture 13 -

Training GANs: Two-player game

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective  

does not work well!

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

When sample is likely  

fake, want to learn  

from it to improve  

generator. But  

gradient in this region  

is relatively flat!

Gradient signal  

dominated by region  

where sample is  

already good

11

0
Lecture 13 -

Training GANs: Two-player game

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different  

objective

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Instead of minimizing likelihood of discriminator being correct, now  

maximize likelihood of discriminator being wrong.

Same objective of fooling discriminator, but now higher gradient  

signal for bad samples => works much better! Standard in practice.

High gradient signal

Low gradient signal

Lecture 13 -

Training GANs: Two-player game

Serena Young



Putting it together: GAN training algorithm

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Lecture 13 -

Training GANs: Two-player game

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

z

Generator Network

Discriminator Network

Fake Images  

(from generator)

Random noise

Real Images  

(from training set)

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Real or Fake

After training, use generator network to  

generate new images

Lecture 13 -

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Serena Young



GAN training is challenging

• Vanishing gradient – when discriminator is 
very good

• Mode collapse – too little diversity in the 
samples generated

• Lack of convergence because hard to reach 
Nash equilibrium

• Loss metric doesn’t always correspond to 
image quality; Frechet Inception Distance 
(FID) is a decent choice



Alternative loss functions

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490


Tips and tricks

• Use batchnorm, ReLU

• Regularize norm of gradients

• Use one of the new loss functions

• Add noise to inputs or labels 

• Append image similarity to avoid mode collapse

• Use labels when available (CGAN)

• …

https://github.com/soumith/talks/blob/master/2017-ICCV_Venice/How_To_Train_a_GAN.pdf
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b



(Goodfello
w 2017)

Celebrities Who Never Existed

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018



(Elgammal et al., 2017)

Creative Adversarial Networks

Ian Goodfellow



Conditional GANs

https://medium.com/@jonathan_hui/gan-cgan-infogan-using-labels-to-improve-gan-8ba4de5f9c3d



[Goodfellow et al. 2014]

real or fake?

Discriminator

x G(x)

D

Generator

G

𝐺: generate fake samples that can fool 𝐷
𝐷: classify fake samples vs. real images

GANs

Jun-Yan Zhu



Conditional GANs

Adapted from Jun-Yan Zhu

x G(x)

real or fake pair ?

G

D



Edges → Images

Input Output Input Output Input Output

Edges from [Xie & Tu, 2015]

Pix2pix / CycleGAN



Sketches → Images

Input Output Input Output Input Output

Trained on Edges → Images

Data from [Eitz, Hays, Alexa, 2012]

Pix2pix / CycleGAN



#edges2cats [Christopher Hesse]

Ivy Tasi @ivymyt

@gods_tail

@matthematician

https://affinelayer.com/pixsrv/

Vitaly Vidmirov @vvid

Pix2pix / CycleGAN



………

Paired Unpaired

Jun-Yan Zhu



… Discriminator DY: 𝐿𝐺𝐴𝑁 𝐺 𝑥 , 𝑦
Real zebras vs. generated zebras

……
Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Discriminator DX: 𝐿𝐺𝐴𝑁 𝐹 𝑦 , 𝑥
Real horses vs. generated horses

Discriminator DY: 𝐿𝐺𝐴𝑁 𝐺 𝑥 , 𝑦
Real zebras vs. generated zebras

……

Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Forward cycle loss: F G x − x
1

G(x) F(G x )x

Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Large cycle loss
Forward cycle loss: F G x − x

1
G(x) F(G x )x

Small cycle loss

Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

Helps cope with mode collapse

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Training Details: Objective

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Cezanne Ukiyo-eMonetInput Van Gogh

Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



StarGAN

Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018



SinGAN

Shaham et al., “SinGAN: Learning a Generative Model from a Single Natural Image”, ICCV 2019



Generating with little data for ads

• Faces are persuasive and carry meaning/sentiment

• We learn to generate faces appropriate for each ad 
category

• Because our data is so diverse yet limited in count, 
standard approaches that directly model pixel 
distributions don’t work well

Beauty Clothing Safety SodaCars

Human 
Rights Self EsteemChocolate

Domestic 
Violence

Thomas and Kovashka, BMVC 2018



Generating with little data for ads

• Instead we model the distribution over attributes for 
each category (e.g. domestic violence ads contain 
“black eye”, beauty contains “red lips”)

• Generate an image with the attributes of an ad class

• Model attributes w/ help from external large dataset

Thomas and Kovashka, BMVC 2018
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150

Facial Expressions (10-D)Facial Attributes (40-D)Latent (100-D)

Latentcaptures non-
semantic appearance 

properties (colors, etc.)

Externally Enforced Semantics

Facial attributes: <Attractive, Baggy eyes, Big 
lips, Bushy eyebrows, Eyeglasses, Gray hair, 
Makeup, Male, Pale skin, Rosy cheeks, etc.>

Facial expressions: <Anger, Contempt, 
Disgust, Fear, Happy, Neutral, Sad, Surprise> 

+ Valence and Arousal scores



Generating with little data for ads
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FaceTransform

Reconstruction Beauty Clothing D.V. Safety SodaAlcohol
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Thomas and Kovashka, BMVC 2018



Stagewise generation

Singh et al., “FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery”, CVPR 2019

https://arxiv.org/abs/1811.11155


Stagewise generation

Johnson et al., “Image Generation from Scene Graphs”, CVPR 2018

https://arxiv.org/abs/1804.01622
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Part V: Ethics (Politics, Privacy, Bias)

• Politics and deep fakes
– Examples from DARPA
– Detection methods

• Privacy 
– GANs for anonymity in the cloud
– What can be reconstructed

• Security
– Adversarial perturbations

• Bias 
– What models show
– How to cope

• AI for the people



“Deepfakes”

https://www.technologyreview.com/s/611726/the-defense-department-has-produced-the-first-tools-for-catching-deepfakes/
https://www.niemanlab.org/2018/11/how-the-wall-street-journal-is-preparing-its-journalists-to-detect-deepfakes/



You can be anyone you want…

Karras et al., “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019, https://arxiv.org/pdf/1812.04948.pdf



Detection methods

Rossler et al.. “FaceForensics++: Learning to Detect Manipulated Facial Images”, ICCV 2019



Detection methods

“We describe a forensic technique that models facial expressions and 

movements that typify an individual’s speaking pattern. Although not 

visually apparent, these correlations are often violated by the nature of 

how deep-fake videos are created and can, therefore, be used for 

authentication.

Agarwal et al., “Protecting World Leaders Against Deep Fakes”, CVPR Workshops, 2019 
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GANs for Privacy (Action Detection)

Ren et al., “Learning to Anonymize Faces for Privacy Preserving Action Detection”, ECCV 2018



Adversarial Attacks

https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/


Adversarial Attacks

https://www.theverge.com/2019/4/23/18512472/fool-ai-surveillance-adversarial-example-yolov2-person-detection

https://www.theverge.com/2019/4/23/18512472/fool-ai-surveillance-adversarial-example-yolov2-person-detection


Adversarial Attacks

Tom Goldstein https://www.cs.umd.edu/~tomg/projects/invisible/

https://www.cs.umd.edu/~tomg/projects/invisible/


Adversarial Attacks

http://news.mit.edu/2019/object-recognition-dataset-stumped-worlds-best-computer-vision-models-1210

http://news.mit.edu/2019/object-recognition-dataset-stumped-worlds-best-computer-vision-models-1210


Bias in the Vision and Language  

of

Artificial Intelligence
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What do you see?

● Bananas

● Stickers

● Dole Bananas

● Bananas at a store

● Bananas on shelves

● Bunches of bananas

● Bananas with stickers on them

● Bunches of bananas with stickers on  

them on shelves in a store

...We don’t tend to say

Yellow Bananas

Margaret Mitchell



What do you see?

Green Bananas

Unripe Bananas

Margaret Mitchell



What do you see?

Ripe Bananas

Bananas with spots

Bananas good for banana  

bread

Margaret Mitchell



What do you see?

Yellow Bananas

Yellow is prototypical for  

bananas

Margaret Mitchell



PrototypeTheory

One purpose of categorization is to reduce the infinite differences 

among  stimuli to behaviourally and cognitively usable proportions

There may be some central, prototypical notions of items that arise from stored  

typical properties for an object category (Rosch, 1975)

May also store exemplars (Wu & Barsalou, 2009)

Banana

Unripe Bananas,  
CavendishBananas

Bananas
“Basic Level”

Fruit

Margaret Mitchell



A man and his son are in a terrible  

accident and are rushed to the hospital  

in critical care.

The doctor looks at the boy and  

exclaims "I can't operate on this boy,  

he's my son!"

How could this be?

Margaret Mitchell
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he's my son!"

How could this be?
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Margaret Mitchell



The majority of test subjects  

overlooked the possibility that the  

doctor is a she - including men,  

women, and self-described feminists.

Wapman & Belle, Boston University

Margaret Mitchell

https://www.bu.edu/today/2014/bu-research-riddle-reveals-the-depth-of-gender-bias/


Human Reporting Bias

The frequency with which people write 
about  actions, outcomes, or properties is not 

a  reflection of real-world frequencies 
or the  degree to which a property is 

characteristic of a  class of individuals

Margaret Mitchell



Bias in Language

Bolukbasi et al., “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings”, NIPS 2016



Bias in Language

http://wordbias.umiacs.umd.edu/

http://wordbias.umiacs.umd.edu/


Bias in Vision

Burns et al., “Women also Snowboard: Overcoming Bias in Captioning Models”, ECCV 2018



Bias in Vision

Wang et al., “Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations”, ICCV 2019



Margaret Mitchell



Biases inData

Margaret Mitchell



CREDIT

© 2013–2016 Michael Yoshitaka Erlewine and Hadas Kotek

Biases in Data
Selection Bias: Selection does not reflect a random sample

Margaret Mitchell

http://turktools.net/crowdsourcing/


Out-group homogeneity bias: Tendency to see outgroup  

members as more alike than ingroup members

Biases inData

Margaret Mitchell



It's possible that you have an  

appropriate amount of data for  

every group you can think of but  

that some groups are  

represented less positively than  

others.

Biases in Data → Biased Data Representation

Margaret Mitchell



Annotations in your  

dataset will reflect the  

worldviews of your  

annotators.

https://ai.googleblog.com/2018/09/introducing-inclusive-images-competition.html

Biases in Data → Biased Labels

Margaret Mitchell

https://ai.googleblog.com/2018/09/introducing-inclusive-images-competition.html


Predicting Future Criminal Behavior

Margaret Mitchell



Predicting Policing

● Algorithms identify  

potential crime  

hot-spots

● Based on where  

crime is previously  

reported, not where it  

is known to have  

occurred

● Predicts future  

events from past
CREDIT

Smithsonian. Artificial Intelligence Is Now Used to Predict Crime. But Is It Biased? 2018

Margaret Mitchell

https://www.smithsonianmag.com/innovation/artificial-intelligence-is-now-used-predict-crime-is-it-biased-180968337/


Predicting Sentencing

● Prater (who is white) rated low risk after shoplifting, despite two armed  

robberies; one attempted armed robbery.

● Borden (who is black) rated high risk after she and a friend took (but  

returned before police arrived) a bike and scooter sitting outside.

● Two years later, Borden has not been charged with any new crimes. Prater  

serving 8-year prison term for grand theft.

CREDIT

ProPublica. Northpointe: Risk in Criminal Sentencing. 2016.

Margaret Mitchell

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Predicting Criminality

Israeli startup, Faception

“Faception is first-to-technology and first-to-market with proprietary  

computer vision and machine learning technology for profiling people  

and revealing their personality based only on their facial image.”

Offering specialized engines for recognizing “High IQ”, “White-Collar Offender”,  

“Pedophile”, and “Terrorist” from a face image.

Main clients are in homeland security and public safety.

Margaret Mitchell

http://www.faception.com/


“Automated Inference on Criminality using Face Images” Wu and Zhang, 2016.  

arXiv

1,856 closely cropped images of faces;  

Includes “wanted suspect” ID pictures  

from specific regions.

“[…] angle θ from nose tip to two  

mouth corners is on average 19.6%  

smaller for criminals than for

non-criminals ...”

θ θ

Predicting Criminality

See our longer piece on Medium, “Physiognomy’s New Clothes”

Margaret Mitchell

https://arxiv.org/abs/1611.04135
https://medium.com/%40blaisea/physiognomys-new-clothes-f2d4b59fdd6a


It’s up to us to influence how AI  

evolves.

Margaret Mitchell



Short-term Longer-term

Get paper award, 15 minutes of  

fame for thing

Get paper published,  

product launched

Find local optimum  

given task, data, etc

Today

Positive outcomes for  

humans and their  

environment.

Margaret Mitchell
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AI mustincorporate  

more of the  

versatility, nuance,  

and depth of the  

human intellect.
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AI shouldaugment  

human skills, not  

replace them.

AI mustincorporate  

more of the  

versatility, nuance,  

and depth of the  

human intellect.

human

Fei-Fei Li



The developmentof  

AI should beguided  

by a concern for its  

impact on human  

society.

AI shouldaugment  

human skills, not  

replace them.

AI mustincorporate  

more of the  

versatility, nuance,  

and depth of the  

human intellect.

Fei-Fei Li
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Dog

German  

Shepherd

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li & L. Fei-Fei. CVPR, 2009.

Fei-Fei Li



What happened?

The Deep Learning Revolution

From academic backwater to center of attention in 5 years

Fei-Fei Li



Hello, hurt! !

I am hurt

The limits of chatbot conversation

Fei-Fei Li



Fei-Fei Li



Man

Couch

Dog

Fei-Fei Li



Dog’s Owner  

(Angry)

Couch  

(Torn Up)
Dog  

(Guilty)

Frustrated  

with dog

Responsible  

for damage

Upset  

About

damage
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Context
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Awareness

Prior  

Knowledge
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Curiosity-based Learning

Mrowca,Haber,Fei-Fei&Yamins,CogSci, 2018

• A baby’s learning is exploratory,  

curiosity-driven, multi-modal,  

active and social.

• Can we model this process and  

apply it in machines?

Fei-Fei Li



“Thinking slow”  

Commonsense knowledge  

and reasoning

• Reasoning requires combining  

previously acquired knowledge to  

address new tasks

• Can a neural network reason more  

like a human?

He served chicken.

Not like serving a  

tennis ball

He probably  

cooked it first!

The trophy wouldn’t fit in the  

suitcase because it was too big.

The trophy? The suitcase?

Hudson and Manning,2018

Fei-Fei Li
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AI should augment humanskills, not  

replace them.

Fei-Fei Li



~50%
current work activities can be  
theoretically automated now

100%
current work activities can be  

potentially enhanced by intelligent  

technology

Fei-Fei Li



Enhancing human care with intelligent systems

Fei-Fei Li



Hospital-Acquired Infections

99,000 Deaths
Annually

Unmonitored Elderly Fall Injuries

$36.4 Billion
Annually

A. Houser, W. Fox-Grage & K. Ujvari, AARP Public Policy Institute, 2012) Airtek  Indoor  Air Solutions.

2014. Calfee.

Annual Review of  

Medicine 2012

Fei-Fei Li



A. Haque, A. Singh, A. Alahi, S. Yeung, M. Guo, A. Luo, J. Jopling, L. Downing, W. Beninati, T, Platchek, A. Milstein & L. Fei-Fei, Under review

A. Haque, E. Peng, A. Luo, A. Alahi,S. Yeung & L. Fei-Fei, ECCV, 2016

From: Inconsistent hand hygiene
To: Intelligent monitors placed  

throughout hospitals

Fei-Fei Li



A. Luo, T. Hsieh, R. Rege, A. Mehra,G. Pusiol, L. Downing, A. Milstein & L. Fei-Fei. In preparation.

From: Ineffective wearables, lack  
of human caretakers

To: Intelligent monitors placed  
throughout senior living homes

Fei-Fei Li



Giving human specialists more time

Fei-Fei Li



Lowers costs

Improves safety and outcomes

Reduces burden on human caregivers

Fei-Fei Li



More time for human specialists to do what they do best

Z. Li, C. Wang, M. Han, Y. Xue, W. Wei, Li-J. Li, L. Fei-Fei, CVPR, 2018

An algorithm for  

automating simple  

radiology analysis

Fei-Fei Li


