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Plan for this lecture

 Recurrent neural networks
— Basics
— Training (backprop through time, vanishing gradient)
— Recurrent networks with gates (GRU, LSTM)
* Applications in NLP and vision
— Image/video captioning
— Neural machine translation (beam search, attention)
* Transformers
— Self-attention
— BERT
— Cross-modal transformers for VQA and VCR



Recurrent neural networks



Some pre-RNN captioning results

This is a picture of one sky,

one road and one sheep. Here we see one féad,
The gray sky is over the one sky and one bicycle.
gray road. The gray sheep The road is near the blue

sky, and near the colorful
bicycle. The colorful
bicycle is within the blue
sky.

IS by the gray road.

This is a f to
dogs. The first dog is near

Kulkarni et al., CVPR 2011 the Second furry dog



Results with Recurrent Neural Networks
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“‘construction worker in orange “two young girls are playing with v"boy is doing backflip on
guitar.” safety vest is working on road.” lego toy.” wakeboard.”

Karpathy and Fei-Fei, CVPR 2015



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ vanilla neural networks

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. image captioning
image -> sequence of words

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. sentiment classification
sequence of words -> sentiment

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

[\ e.g. machine translation
seq of words -> seq of words

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

y

e.g. video classification on frame level

Andrej Karpathy



Recurrent Neural Network

-

Andrej Karpathy



Recurrent Neural Network

usually want to
output a prediction
at some time steps

Adapted from Andrej Karpathy



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy|= fW(ht—h xt)

new state / old state input vector at
some time step

some function
with parameters W

Andrej Karpathy




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fw (ht—h xt)

Notice: the same function and the same set «
of parameters are used at every time step.

Andrej Karpathy



(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la wt)

|
¢> h, = tanh(Wpph, 1 + Wopxy)

X Yt — Whyht

Andrej Karpathy



Example

Character-level y
language model

example

Vocabulary:

[h,e,l,0] X

Example training
sequence:
“hello”

Andrej Karpathy



Example

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence: input layer
“hello”

S [eloioi=

input chars: ¢

Andrej Karpathy

o |loo-ao
= |5 ee
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Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Andrej Karpathy

Example

hi = tanh(Wprhi—1 + Wapat)

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
“h"

A4

\

0.1

-0.5
-0.3

W_hh| -

= |loa0co0O




Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Example

target chars:

output layer

hidden layer

input layer

input chars: ¢

“n
e

1.0
2.2

-3.0

4.1

|

0.3

-0.1

0.9

S, [Feiearenisss .

A4

\

W_hh| -

What do we still need to specify, for this to work?

What kind of loss can we formulate?

Andrej Karpathy



Training a Recurrent Neural Network

e Get a big corpus of text which is a sequence of words =™ ... 2™
* Feed into RNN; compute output distribution g(f> for every step t.
* i.e. predict probability dist of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution rg(t), and true next word y® (one-hot); V is vocabulary

JO®O) = CE@®,§0) =— 3 y®log g = —log g

LTt41
weV

e Average this to get overall loss for entire training set:

Ja

T

1 1
= 13500 = 23— log g
thlj (6) = 7 >_—log i),

t=1

Adapted from Abigail See



The vanishing/exploding gradient problem

 The error at a time step ideally can tell a previous time step
from many steps away to change during backprop
* Multiply the same matrix at each time step during backprop

Vi1 Vi Vi1
ht—l T ht T ht+1 T
® [ o
o W w e
o [ o
o O o

x
B
x
X
x
—
R

Richard Socher



The vanishing gradient problem

* Total erroris the sum of each error at time stepst
OF _ N~ O
oW = oW

e Chainrule:

8Et Z aEt ayt aht ahk

 More chain rule: .

oh; Oh,;

th k41 8hj_1

* Derivative of vector wrt vector is a Jacobian matrix of partial
derivatives; norm of this matrix can become very small or very
large quickly [Bengio et al 1994, Pascanu et al. 2013], leading
to vanishing/exploding gradient

Adapted from Richard Socher



What uses of language models from
everyday life can you think of?



Now In more detall...



Language Modeling

e Language Modeling is the task of predicting what word comes

next. books
/ laptops
the students opened their /
\\ exams
minds
 More formally: given a sequence of words (1), () ... ),

compute the probability distribution of the next word z(+1) ;
t+1 t 1
Pzt 2O )
where (1) can be any word in the vocabulary V' = {w, ..., w|v|}

e A system that does this is called a Language Model.

Abigail See



n-gram Language Models

* First we make a simplifying assumption: z{t+1) depends only on the
preceding n-1 words.

n-1words
r A \
Pzt D)e® W) = p(ettD|g® glt-nt2) (assumption)

b of a n-
prob of a n-gram \ P(w(t+1), iB(t), o ’w(t—n+2))

(definition of
orob of a (n-1)-gram o P(x®), ... z{t—"n+2)) conditional prob)

* Question: How do we get these n-gram and (n-1)-gram probabilities?
* Answer: By counting them in some large corpus of text!

- Count(a:(t‘H), w(t), o ,w(t—n+2)) (statistical
N count(xz®), ... xt—nt2)) approximation)

Abigail See



Sparsity Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w” never
occurred in data? Then w
has probability 0!

(Partial) Solution: Add small &

to the count forevery w € V.
This is called smoothing.

\ 4

count(students opened their w)

P(w|students opened their) =

count(students opened their)

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any w!

(Partial) Solution: Just condition

on “opened their” instead.
This is called backoff.

\ 4

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Abigail See



A fixed-window neural Language Model

books
laptops
output distribution
y = softmax(Uh + by) € RIV!
a N 200
U
nidden faver (000000000000
h=f(We+ b;) —
%4
concatenated word embeddings
). (2). (3. -(4) (0000 0000 0000 0000)|
6:[6 € €e e ] A A 7Y 7\
words / one-hot vectors the students  opened their
w(l)7 ;,3(2)7 53(3)7 7 (4) (1) 2(2) 7(3) (4

Abigail See



A fixed-window neural Language Model

Improvements over n-gram LM: books

* No sparsity problem
 Don’t need to store all observed
n-grams

laptops

QA
N
o
o

Remaining problems:
* Fixed window is too small U
* Enlarging window enlarges W
 Window can never be large [............]

enough! )
o (M and 22 are multiplied by 17,%

completely different weights in W'.

No symmetry in how the inputs are [oooo 0000 0000 oooo]
processed. A A A A

We need a neural
architecture that can the students  opened their
process any length input o) z(2) () @

Abigail See



Recurrent Neural Networks (RNN)

A family of neural architectures

outputs (1)
(optional) { Y

h(1)

hidden states <

g(2)

h(2)

33(3)

h3)

h(4)

V

N

8
e
|
SN—r

input sequence
(any length) {

Abigail See
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Core idea: Apply the

same weights W
repeatedly

——{ 0000

8
—~
o
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A RNN Language Model

output distribution

§® = softmax (Uh(t) + b2) c R

hidden states
h® =g (Whh(t‘l) +W.e® 4+ b1>

h(0) is the initial hidden state

word embeddings
et — Eap®)

words / one-hot vectors
) ¢ RIVI

Abigail See

y@ = P(x®)|the students opened their)

books
laptops
'
: —%
U
h©)_ h(})—~ h(2) h3) h(4)
O] @ O O @
Q Wh\. W, [0) Wh\. Wh\.
. rd . rd . r g . rd .
J J e e e
A N o -
W, W, W, W,
¢ o) (0] (@
1 (2)] © 3) © (4) ©
Dol ¢“lo| ol ¢leo
@] @) @) @)
e Tz o Iz

the
(D)

students  opened their
7 (2) 2 (3) (%)

Note: this input sequence could be much

/

longer, but this slide doesn’t have space!




y@ = P(x®)|the students opened their)

A RNN Language Model

many steps back

Abigail See

books
laptops
RNN Advantages: !
e Can process any length
input « m
« Computation for step t °
can (in theory) use U
information from many hO)__ A _ h(2) B (3) B
steps baFk ’ ® ® P P P
* Model size doesn’t | W, [@0| W, |@| W, (@] Wr |@
increase for longer input @ 1@ 1@ 1@ 1@
* Same weights applied on L _t @ (0] @
. . A N i
every tme_step, sq there is W. W. W. W,
symmetry in how inputs f—a 1 i L
are processed. O o O
P w| @] 0| ole| e
e & e e
@) @) o o
RNN Disadvantages: o @) O Q
* Recurrent computation is
slow i T;E T];J E T]';J
In practice, difficult to the students  opened their
access information from z) x(2) () ()



Recall: Training a RNN Language Model

e Get a big corpus of text which is a sequence of words =™ ... 2™
* Feed into RNN-LM; compute output distribution ;,;,(t) for every step t.
* i.e. predict probability dist of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution (*), and the true next word () (one-hot for g(t+1)):

JO®O) = CEW®,59) = — 3 40 log g = —log 5.
weV

e Average this to get overall loss for entire training set:

] = 1.
=23 700) = = 3 —log g
L t=1 S T t=1 s

Abigail See



Training a RNN Language Model

= negative log prob
of “students”

Loss > | T () J@(6) J3)(9) J(0)
T N N N
) 52 5O e
prob dists " n "
U U U U
h©)__ h) h(Z’)__\ h3) h(‘f)__
o o @ O @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
€le| “le| “le| ¢ e
o ) @) o
Te & o s
Corpus =———— the students  opened their exams
(1) 7 (2) 2(3) 2 (4)

Abigail See



Training a RNN Language Model

= negative log prob
of “opened”

Loss PARI() J2)(9) J®(6) J@(9)
/I\ \ N N
Predicted o) 52 5O G0
prob dists " n "
U U U U
h(02—~ h) h(Z’)__\ h3) h(‘f)__
@ e @ @ @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
© ) @) o
T T2 Tz s
Corpus =———— the students  opened their exams
(1) 7 (2) 2(3) (1)

Abigail See



Training a RNN Language Model

= negative log prob
of “their”

Loss PARI() J2)(9) J®(6) J@(9)
/]\ N N N
Predicted o) 52 5O G0
prob dists " " "
U U U U
h©)__ h) h(Z’)__\ h3) h(‘f)__
o @ @ O @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
© () O o
T T2 Tz s
Corpus =———— the students  opened their exams
(1) 7 (2) 2(3) 2 (4)

Abigail See



Training a RNN Language Model

= negative log prob
of “exams”

Loss PARI() J2)(9) J®(6) J@(9)
/I\ N N \
Predicted o) 52 5O G0
prob dists " n "
U U U U
h(02—~ h) h(Z’)__\ h3) h(‘f)__
@ e @ @ @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
© ) @) o
T T2 Tz s
Corpus =———— the students  opened their exams
(1) 7 (2) 2(3) (1)

Abigail See



Training a RNN Language Model

Loss » TG + J@0) + JO@G) + JDE) +.. = JO) ==
T( )+ TDE) + TOE) + IO 0) =7
Predicted ) 52 5@ 5
prob dists " " .
U U U U
h©) h() h(2) h3) A1)
© @ 0] O O
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 1@ 1@ 1@ 1@ -
© ® @ O O
I N >
We We We We
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
© o @) o
Te Tz & s
Corpus =———— the students  opened their exams

2D 22 2(3) ey
Abigail See



Training a RNN Language Model

 However: Computing loss and gradients across entire corpus
D .. 2 istoo expensive!

T
1
= (t)
JO) == 0O
t=1
* In practice, consider (1), ... z(T)as a sentence (or a document)

e Recall: Stochastic Gradient Descent allows us to compute loss
and gradients for small chunk of data, and update.

 Compute loss .j(9) for a sentence (actually a batch of
sentences), compute gradients and update weights. Repeat.

Abigail See



Backpropagation for RNNs

J® (6)
R AU RO R h(ti
© © © (@ ©
e W, Wi |l@| Wy, || Wrh |@| Wh |@| Wi
é rd > rd rd o
@ ® @ 0] )
O e (o (o e

Question: What’s the derivative of j(*)(9) w.rt. the repeated weight matrix W}, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
w.rt. each time it appears”

o.J(®) t 97

oWy~ — OW,,

Answer:

(%)

Why?

Abigail See



Multivariable Chain Rule

« Given a multivariable function f(z, y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

_O0f dz  Of dy
\d_t (w(t)ﬁy(t)z ~ B dt 5 By dt

N
Derivative of composition function

One final output f(x(¢), y(t))

RN

1) y(t)

One input

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Abigail See


https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs: Proof sketch

« Given a multivariable function f(z, y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

_O0f dz  Of dy
\d_t (m(t)ay(t)z ~ B dt 5 By dt

-
Derivative of composition function

In our example: Apply the multivariable chain rule:
T (6) -1
/\ o.J®) i o.J®) 8Wh|(z‘)
Wh|(l) Wh|(2) s Wh|(t) aWh =il 8Wh (i aWh
Q
%, . (t)
e \S 0J
Tuals % coue _ Z
W = Whla
h

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Abigail See


https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

JB ()
h(9) h(t—3) h(t—2) h(t—1) h(t)
0 0
o!| Wi Wi |o| Wi lg| W |Q] Wi |9| Wi
o< * —lo[ e >: > S - >
© © Ll ) @)

Answer: Backpropagate over
timesteps i=t,...,0, summing
gradients as you go.

This algorithm is called
“backpropagation through time”

o.J(®) t 97
oWy, Z

Question: How do we

o calculate this?
Abigail See



Vanishing gradient intuition

J4)(9)
N
h(1) h(2) h3) h(4)
O &) O O
O 1@ | @ | @
O | @ | @ @
O e O @

Abigail See




Vanishing gradient intuition

J4(6)

Abigail See




Vanishing gradient intuition

J4(6)

h(D) h(2) h(3)
0 0 0
O w L |e W @
0 l® O
0 O 0

o.J&) Oh(2) o.J4)
oD~ 9rD " RO

chain rule!

Abigail See




Vanishing gradient intuition

J(6)

R h2 K
O 0 O
O W __|e w [ |e
O @ O
O O O

0JW oh? OhB3)  HJ@

= X

ohM 9 oh@ " Oh®

chain rule!

Abigail See




Vanishing gradient intuition

J4 ()
A
htD_ h(2)_ ) _ h1
(0] @ (0] 0]
0 w_|e W __|e w e
@ 1@ 1@ @
@ @ @ @
o.J&) B Oh(2) y oh3) oh® oJ4
oh(l) — Hh) a2 R Gh@
chain rule!

Abigail See



Vanishing gradient intuition
JW(0)

0J@ dh(? 9@
oh® — |on® * on®

Vanishing gradient problem:
When these are small, the

gradient signal gets smaller
and smaller as it
backpropagates further

What happens if these are small?

Abigail See



Vanishing gradient proof sketch
¢ Recall: h) =g (Whh(t—l) + Wz + b1)

Oh®

* Therefore: 7

= diag ((7' (Whh(t“l) + W,oz® + bl)) %% (chain rule)

« Consider the gradient of the loss J®(6) on step i, with respect
to the hidden state A(4) on some previous step j.

JD (@)  aJ(0) Oh® (chain rule)
onG) —  9h) H _Oh(t-1)
i1<t<Li
_9J9() (value of pr® )

W’Ei—j) H diag (0' (Whh(t_l) + W,oz® + bl))

T J<t<i

If W, is small, then this term gets
vanishingly small as i and j get further apart

0 dR(—1)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.

Abigail See


http://proceedings.mlr.press/v28/pascanu13.pdf

Vanishing gradient proof sketch
e Consider matrix L2 norms:

0J @ (6) 0J® (6
— 1 2 <
or® || = || ar®

P il TT [ains (o (Wi + Wea® +,))|

71<t<i

e Pascanu et al showed that that if the largest eigenvalue of W, is

less than 1, then the gradient H@;;;@H will shrink exponentially

* Here the bound is 1 because we have sigmoid nonlinearity

* There’s a similar proof relating a largest eigenvalue >1 to
exploding gradients

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlir.press/v28/pascanul3.pdf

Abigail See


http://proceedings.mlr.press/v28/pascanu13.pdf

Why is vanishing gradient a problem?
J3(6) J@(6)

Gradient signal from faraway is lost because it’'s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-term effects.

Abigail See



Effect of vanishing gradient on RNN-LM

* LM task: When she tried to print her tickets, she found that the
printer was out of toner. She went to the stationery store to buy
more toner. It was very overpriced. After installing the toner into
the printer, she finally printed her

* To learn from this training example, the RNN-LM needs to
model the dependency between “tickets” on the 7thstep and
the target word “tickets” at the end.

e But if gradient is small, the model can’t learn this dependency

* So the model is unable to predict similar long-distance
dependencies at test time

Abigail See



Effect of vanishing gradient on RNN-LM

IS
* LM task: The writer of the books -~

are

* Correct answer: The writer of the books is planning a sequel

T

e Syntactic recency: The writer of the books is (correct)
"N
* Sequential recency: The writer of the books are (incorrect)

e Due to vanishing gradient, RNN-LMs are better at learning from
sequential recency than syntactic recency, so they make this
type of error more often than we’d like [Linzen et al 2016]

“Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016.
Abigail See


https://arxiv.org/pdf/1611.01368.pdf

Why is exploding gradient a problem?

* If the gradient becomes too big, then the SGD update step
becomes too big:
learning rate

grew — eold . FO?V@J(@)

J

gradient

This can cause bad updates: we take too large a step and reach
a bad parameter configuration (with large loss)

In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

Abigail See



Gradient clipping: solution for exploding gradient

e Gradient clipping: if the norm of the gradient is greater than
some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
g« 55
if ||g|| > threshold then

A threshold A
¢, Breshold
g el 8

end if

e Intuition: take a step in the same direction, but a smaller step

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.

Abigail See


http://proceedings.mlr.press/v28/pascanu13.pdf

RNNs with Gates



How to fix vanishing gradient problem?

 The main problem is that it’s too difficult for the RNN to learn to
preserve information over many timesteps.

* Inavanilla RNN, the hidden state is constantly being rewritten

Br® — & (Whh“—l) +W,z® )

 How about a RNN with separate memory?

Richard Socher



Gated Recurrent Units (GRUs)

* More complex hidden unit computation in
recurrence!

* Introduced by Cho et al. 2014

e Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs

Richard Socher



Gated Recurrent Units (GRUs)

e Standard RNN computes hidden layer at next time step
directly: hy = f (W(hh)ht—l n W(hm)xt)

* GRU first computes an update gate (another layer)
based on current input word vector and hidden state

Zt = O (W(z)xt + U(z)ht_l)

 Compute reset gate similarly but with different weights

'y = O (W(T)CUt —+ U(T)ht_l)

Richard Socher



Gated Recurrent Units (GRUs)

« Update gate t=0 (W(Z)a:t + U(z)ht_l)
* Reset gate =0 (W@")a:-t + U("")ht_l)

* New memory content: h; = tanh (Wx; +ri0Uhs_q)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

* Final memory at time step combines current and
previous time steps: he =z 0 he_1 + (1 — 2) o by

Richard Socher



Gated Recurrent Units (GRUs)

Zt — O (W(Z)th + U(z)ht_l)
e " (r) (r)
Final memory . T =0 (W Ty +U ht—l)

;Lt = tanh (WZEt +1r: 0 Uht_l)

~

Memory (reset) hy = zg 0 hy—q1 + (1 — Zt) o hy

Update gate

Reset gate

Input:

Richard Socher



Gated Recurrent Units (GRUs)

* |fresetrisclosetoO, ignore w=0 (W(Z):ct + U(z)ht_l)
previous hidden state: Allows  r, =o¢ (W(T)a:'t + U(”ht_l)
model to drop information that  ; _ ..\ (W, + v, 0 Uky_y)

is irrelevant in the future 3
ht :Ztoht—l+(1_zt)0ht

* If update zis close to 1, can copy information through
many time steps, i.e. copy paste state: Less vanishing
gradient!

* Units with short-term dependencies often have reset
gates (r) very active; ones with long-term
dependencies have active update gates (z)

Adapted from Richard Socher



Long-short-term-memories (LSTMs)
* Proposed by Hochreiter and Schmidhuber in 1997
* We can make the units even more complex

* Allow each time step to modify

* Input gate (current cell matters) it=0 (W“)xt + U(i)ht—l)

*  Forget (gate 0, forget past) fi=o0 (W(f)xt + U(f)ht_l)

*  Output (how much cell is exposed) o; = o (W(O)xt + U(O)ht_l)

*  New memory cell ¢; = tanh (W(C)azt + U(C)ht—l)
* Final memory cell: ¢t = froci_1+1i0¢

* Final hidden state: ht = oy o tanh(c;)

Adapted from Richard Socher



Long-short-term-memories (LSTMs)

i, =0 (W(i)a:t + U(“ht_l)

]
|—>@<—\'<-‘ fi=0 (W(f):rt + U(f)ht—l)
c

Ot — 0 (W(O)ﬂjt + U(O)ht_l)

é 5t = tanh (W(C)Zli't + U(C)ht_l)
<— IN

ct = froci_1+ 1006

-»9/ > OUT

h: = ot o tanh(c;)

Intuition: memory cells can keep information intact, unless inputs makes them
forget it or overwrite it with new input

Cell can decide to output this information or just store it

Richard Socher, figure from wildml.com



Review on your own: Gated Recurrent Units (GRU)

* Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.

« On each timestep t we have input z(¥) and hidden state h(*) (no cell state).

Update gate: controls what parts of
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

\u(t) _ ., (Wu RED 4 UL 2® 4 bu)

SN F— (thu—l) +U.2® + br)

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

/vil(t) = tanh (Wh (r(t) o h(t_l)) + Uhm(t) + bh)
Rt — (1— u_(t)) o h(=1) 4 () o )

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

How does this solve vanishing gradient?
GRU makes it easier to retain info long-term

(e.g. by setting update gate to 0)

"Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Abigail See



https://arxiv.org/pdf/1406.1078v3.pdf

Review on your own: Long Short-Term Memory (LSTM)

We have a sequence of inputs 2(*), and we will compute a sequence of hidden states h®
and cell states ¢(*). On timestep t:

Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \

f(t) —[o
Input gate: controls what parts of the
new cell content are written to cell \

i) —

(WihY + U™ + by)
- (Wih(t‘l) + Uiz® + bz-)
(

Output gate: controls what parts of
cell are output to hidden state ~ o(t) —=|lo

Woh(™D + Uye® + b,

New cell content: this is the new
content to be written to the cell \
Cell state: erase (“forget”) some (

e ~(t) — (t—1) (t)
content from last cell state, and write c'” = tanh (Wch + Ucw + bc

(“input”) some new cell content

Y
All these are vectors of same length n

c® = 1) 5 ot=1) | () 5 5®

Hidden state: read (“output”)some | | R®) — 5(®) 5 tanh c(t) I
content from the cell \

Gates are applied using
element-wise product

Abigail See




Review on your own: Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

Write some new cell content @
Forget some \ T

[
cell content \\, \/\ ¢ | C
Ci-1 ->_® () > t
i
; t N — | Output some cell content
Compute the Tt ¢ to the hidden state
forget gate >0 | [0 | [tanh]

Compute the @ Compute the ( Compute the
input gate new cell content output gate

O—P>—>—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Abigail See


http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM vs GRU

* Researchers have proposed many gated RNN variants, but LSTM
and GRU are the most widely-used

* The biggest difference is that GRU is quicker to compute and has
fewer parameters

* There is no conclusive evidence that one consistently performs
better than the other

 LSTMis a good default choice (especially if your data has
particularly long dependencies, or you have lots of training data)

e Rule of thumb: start with LSTM, but switch to GRU if you want
something more efficient

Abigail See



LSTMs: real-world success

* In2013-2015, LSTMs started achieving state-of-the-art results

 Successful tasks include: handwriting recognition, speech
recognition, machine translation, parsing, image captioning

* LSTM became the dominant approach

« Now (2019), other approaches (e.g. Transformers) have become
more dominant for certain tasks.

* For example in WMT (a MT conference + competition):
* In WMT 2016, the summary report contains "RNN” 44 times

* In WMT 2018, the report contains “RNN” S times and
“Transformer” 63 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,

Abigail See


http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Is vanishing/exploding gradient just a RNN problem?

* No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.

* Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates
* Thus lower layers are learnt very slowly (hard to train)

* Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

X

For example:

A 4

* Residual connections aka “ResNet” WElghtiayer
: _ F(x) relu N
e Also known as skip-connections weight laver X
identity

e The identity connection

preserves information by default
Figure 2. Residual learning: a building block.

* This makes deep networks much
easier to train

"Deep Residual Learning for Image Recognition", He et al, 2015.

Abigail See


https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

* No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.

* Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates
* Thus lower layers are learnt very slowly (hard to train)

* Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

For example:
e Dense connections aka “DenseNet”

e Directly connect everything to everything!

Figure 1: A 5-layer dense block with a growth rate of &k = 4.
Each layer takes all preceding feature-maps as input.

”Densely Connected Convolutional Networks", Huang et al, 2017.

Abigail See


https://arxiv.org/pdf/1608.06993.pdf

Bidirectional RNNs: motivation

Task: Sentiment Classification

representation of the word “terribly” in the

. We can regard this hidden state as a
pOSItIVE

N
context of this sentence. We call this a
contextual representation.

@)

Sentence encoding o
@)
O

the movie was terribly exciting !

Abigail See

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)




I . This contextual representation of “terribly”
Bld | rECtlonaI RN NS has both left and right context!

Concatenated
hidden states
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movie was terribly  exciting
Abigail See



Bidirectional RNNs

On timestep t: This is a general notation to mean “compute
one forward step of the RNN” — it could be a
vanilla, LSTM or GRU computation.

Forward RNN ﬁ(t) — RNNFW( h,>(t_1)7 m(t)) Generally, these

two RNNs have
Backward RNN %(t) — RNNBW(%(H'D, ac(t)) separate weights

Concatenated hidden states | (%) |= [}f(t); <h (t)]

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Abigail See



Multi-layer RNNs

RNN layer 3

RNN layer 2

RNN layer 1

Abigail See

The hidden states from RNN layer i
are the inputs to RNN layer j+1
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Evaluating Language Models

 The standard evaluation metric for Language Models is perplexity.

1/T
1
perplexity = H ( (2D ] @) :1:(1))> \n:}l&?;?l:fexobrgs
N J

N
Inverse probability of corpus, according to Language Model

* This is equal to the exponential of the cross-entropy loss .J(6):

T 1/T T
=11 ( ®) > — P (% D —log yi?H) = exp(J(0))

t=1 ywt+1 t=1

Lower perplexity is better!

Abigail See



Recap thus far

Language Model: A system that predicts the next word

Recurrent Neural Network: A family of neural networks that:

* Take sequential input of any length
* Apply the same weights on each step
* Can optionally produce output on each step

Vanishing gradient problem: what it is, why it happens, and
why it’s bad for RNNs

LSTMs and GRUs: more complicated RNNs that use gates to
control information flow; they are more resilient to vanishing
gradients

Abigail See



Plan for this lecture

 Recurrent neural networks
— Basics
— Training (backprop through time, vanishing gradient)
— Recurrent networks with gates (GRU, LSTM)
* Applications in NLP and vision
— Image/video captioning
— Neural machine translation (beam search, attention)
* Transformers
— Self-attention
— BERT
— Cross-modal transformers for VQA and VCR



Applications



Why should we care about Language Modeling?

* Language Modeling is a benchmark task that helps us
measure our progress on understanding language

* Language Modeling is a subcomponent of many NLP tasks,
especially those involving generating text or
estimating the probability of text:

* Predictive typing

e Speech recognition

* Handwriting recognition

* Spelling/grammar correction
* Authorship identification

* Machine translation

* Summarization

* Dialogue

* etc.

Abigail See



Generating text with a RNN Language Model

You can use a RNN Language Model to generate text by repeated sampling.
Sampled output is next step’s input.

favorite season is spring
N N N N
sample sample sample sample
g g2 g3 g@
A A A A
U U U U
hO)__ h(| B2 B(3) B (4)
@ @ @ @ @
@ Wi (0| W, [@| Wh || Wh |@| W,
@ 1@ 1@ 1@ 1@ :
@ ._J @ @] @
— 7 . /)
W, W, W, W,
8 o (0] o
(1) 2)| © 3) @ (1) ©
ele|l “le| “le| € le
o O O O
\ Y, Y, /
E E E E
my favorite season is spring

Abigail See



Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style. >

* RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source:

Abigail See


https://medium.com/%40samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

* RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source:

Abigail See


https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

e RNN-LM trained on paint color names:

Ghasty Pink 231 137 165 Sand Dan 201 172 143
B Power Gray 151 124 112 I Grade Bat 48 94 83
Navel Tan 199 173 140 Light Of Blast 175 150 147
Bock Coe White 221 215 236 I Grass Bat 176 99 108
Horble Gray 178 181 196 Sindis Poop 204 205 194
I Homestar Brown 133 104 85 Dope 219 209 179
I snader Brown 144 106 74 I Testing 156 101 106
Golder Craam 237 217 177 Stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132
Burf Pink 223 173 179 Stanky Bean 197 162 171
Rose Hork 230 215 198 Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next)

Source:
Abigail See


http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Generating poetry with RNNs

Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.

Andrej Karpathy



Generating poetry with RNNs

) ) tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at first: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1ng

j’ train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

More info: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Andrej Karpathy


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generating poetry with RNNs

PANDARUS: VIOLA:

Alas, I think he shall be come approached and the day Why, Salisbury must find his flesh and thought

When little srain would be attain'd into being never fed, That which I am not aps, not a man and in fire,

And who is but a chain and subjects of his death, To show the reining of the raven and the wars

I should not sleep. To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

Second Senator: When I was heaven of presence and our fleets,

They are away this miseries, produced upon my soul, We spare with hours, but cut thy council I am great,

Breaking and strongly should be buried, when I perish Murdered and by thy master's ready there

The earth and thoughts of many states. My power to give thee but so much as hell:

Some service in the noble bondman here,
DUKE VINCENTIO: Would show him to her wine.
Well, your wit is in the care of side and that.

KING LEAR:
Second Lord: 0, if you were a feeble sight, the courtesy of your law,
They would be ruled after this chamber, and Your sight and several breath, will wear the gods

my fair nues begun out of the fact, to be conveyed, With his heads, and my hands are wonder'd at the deeds,

Whose noble souls I'll have the heart of the wars. So drop upon your lordship's head, and your opinion

Shall be against your honour.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Andrej Karpathy



Generating textbooks with RNNs

open source textbook on algebraic geometry

2 The Stacks Project

home about tagsexplained taglookup browse

Browse chapters

Part Chapter

Preliminaries
1. Introduction
2. Conventions
3. Set Theory
4. Categories
5. Topology
6. Sheaves on Spaces
7. Sites and Sheaves
8. Stacks

9. Fields

10. Commutative Algebra
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. Preliminaries

. Schemes

. Topics in Scheme Theory
. Algebraic Spaces

. Topics in Geometry

. Deformation Theory

. Algebraic Stacks
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Statistics

The Stacks project now consists of

o 455910 lines of code
o 14221 tags (56 inactive tags)
o 2366 sections

Andrej Karpathy

Latex source




Generating textbooks with RNNs

For @, . where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U=|JU:xs, U

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z.2’, 5" € S’ such that Ox .+ = O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z'/S")
and we win.

To prove study we see that F|y is a covering of X, and T; is an object of Fx g for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M® =TI* Qspec(r) Os,s — iz F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7% . (Sch/S) fpps

and

V =T(S.0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim |X| (by the formal open covering X and a single map Proj X(A) =
Spec(B) over U compatible with the complex

Set(A) =T'(X,0x.04)-

When in this case of to show that Q — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T' is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, _,, Ui be the scheme X over
S at the schemes X; — X and U = lim; X;. 0O

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;g. Set T =
Ji1 CTI},. Since I™ C I™ are nonzero over iy < p is a subset of Jn0© Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox+) = Ox(D)

where K is an F-algebra where d,,,; is a scheme over S. (]

Andrej Karpathy




Generating textbooks with RNNs

Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = 0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xgq. we
have

Ox(F) = {morphy xo, (G, F)}
where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7?. O
Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open

covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complez.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X Y'Y 3¥Y Y xxe ¥ o X.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and z € G the diagram

S— >

1

gor,

Ox-

AN

=q —
=a ——a X

Spec(Ky) Morsets  d(Oxy,,. G)

is a limit. Then G is a finite type and assume S is a flat and F and @G is a finite
type f.. This is of finite type diagrams, and
e the composition of G is a regular sequence,
e Oy is a sheaf of rings.
[m]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. a

Proof. This is clear that G is a finite presentation, sce Lemmas 77,
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz— Fz -U(Ox,) — O_(."O‘\-A(O?Q")
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. a

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

Andrej Karpathy




Generating code with RNNs

static void do_command(struct seq file *m, void *v)

{
J:.nt column = 32 << (cmd[2] & 0x80); Generated
if (state)
cmd = (int)(int state ~ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
Lo in in a in c c ags C Code
seq = 1;

for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000fff£f££f£f8) & 0x000000f) << B8;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}

19y 3 - 9~ » - "] ~ - " v . 1) 3
Free our Ser pages ) umera i1r a das

subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");

Andrej Karpathy



Image Captioning

“straw” “hat” END

START “straw” “hat”

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy



Image Captioning

Recurrent Neural Network

Convolutional Neural Network

Andrej Karpathy



Image Captioning

testimage

Andrej Karpathy



image <

conv-64
conv-64

~ maxpool
conv-128

~ conv-128

‘ maxpool '

testimage

-~ conv-256
 conv-256
f maxpool

~ conv-512
conv-512

~ maxpool

Andrej Karpathy



image <

conv-64
conv-64

~ maxpool
conv-128

~ conv-128

‘ maxpool '

testimage

-~ conv-256
 conv-256
f maxpool

~ conv-512
conv-512

~ maxpool

Andrej Karpathy



Image Captioning

testimage

conv-128

~ conv-128
maxpool

__conv-256
. conv-256
‘ maxpool

 conv-512

~ conv-512

 conv-512

| conv-512

. maxpool

. FC-4096 X0

S —————— <START>

<START>

Andrej Karpathy



Image Captioning

test image

~_maxpool

' conv-128

~ conv-128
 maxpool

__ conv-256 yO

‘_ conv-256

__maxpool T before:
h =tanh(W,, * x + W,, * h)

_ conv-512
. conv-512

~maxpool hO

Wih

. conv-512

_ conv-512

~ maxpool

T now:
h=tanh(W,, * X+ W,,, *h + W,, *1m)

 FC-4096 @
T I U 967 <START>

Im

<START>

Andrej Karpathy



' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

yO

hO

x0

<START>

<START>

straw

sample!

testimage



Image Captioning

testimage

' conv-128

~ conv-128
maxpool

| conv-256 yO yl

. conv-256

= 1

 conv-512

~ conv-512

hO | hl

. conv-512
| conv-512 T T
~_maxpool

_ FC-4096 o

‘ FC m— 67 <START> straw

<START>

Andrej Karpathy



' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

Y yl
hO hl
x0
<START> straw hat

<START>

testimage

sample!



Image Captioning

testimage

' conv-128

~conv-128
maxpool

| conv-256 yO y1 y2
. conv-256

— 1]

 conv-512

~ conv-512

hO —| hl —=| h2

. conv-512
| conv-512 T T T
~_maxpool

_ FC-4096 "

‘ = == 67 <START> straw hat

<START>

Andrej Karpathy



Image Captioning

| image | <

conv-64 _
__conv-64

maxpool

~ conv-128
__conv-128
__conv-256
. conv-256
‘maxpool
__conv-512
~conv-512
maxpool
[ conv-512
. conv-512
" maxgool

~ FC-4096
~ FC-4096

Adapted from Andrej Karpathy

testimage

Caption generated:
“straw hat”

\ sample

<END> token
=> finish.

Y yl y2
hO —=| hl h2
x0
<START> straw hat

<START>




"a young boy is holding a 7
baseball bat.’

Andrej Karpathy

Image Captioning

P »'::- ] ',\-.j:;‘

“construction worker in orange
safety vest is working on road.’

"a cat is sitting on a couch with a
remote control.”

“two young girls are playing with
lego toy."

"a woman holding a teddy bear in
front of a mirror.”

"'boy is doing backflip on
wakeboard.”

"a horse is standing in the middle
of a road.”



English
Sentence

_.
0D -

—_—

Video Captioning

RNN RNN French
encoder —Q0O0— decoder Sentence
Encode Q00— 4oonh, —= Sent
coae decoder entence
Encode GO0 govoder [ SeM
ncoae decoder entence
Key Insight:

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]
[Vinyals et al. CVPR’15]

[Venugopalan et. al.
NAACL’15] (this work)

Generate feature representation of the video and “decode” it to a sentence

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



Video Captioning

Inputvldeo Convolutional Net Recurrent Net Output
MoHEIN\\ —)  —| LSTM LSTM A

l J,

MHEN\\H—— —> LSTM I]_LSTM boy

- |
—‘>|| LSTM — LSTM — is
[ = P
}
4 v
[N

Mean across
all frames

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



Video Captioning

FGM: A person is dancing with the person on the stage. FGM: A person is cutting a potato in the kitchen.
YT: A group of men are riding the forest. YT: A man is slicing a tomato.

I+V: A group of people are dancing. [+V: A man s slicing a carrot.

GT: Many men and women are dancing in the street. GT: A man is slicing carrots.

FGM: A persn is walking with a person inthe forest.

FGM: A person is riding a horse on the stage.
YT: A monkey is walking. P g g

] ) YT: A group of playing are playing in the ball.
1+V: A bearis eating a tree. I+V: A basketball player is playing.

GT: Two bear cubs are digging into dirt and plant matter )
GT: Dwayne wade does a fancy layup in an allstar game.
atthe base of a tree.

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



English
Sentence

o

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

Video Captioning

RNN
encoder

Encode

—Q00O—

Encode

—Q0O0—

RNN
encoder

RNN
decoder

—

RNN
decoder

RNN
decoder

RNN
decoder

French
Sentence

— Sentence

—> Sentence

—> Sentence

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]
[Vinyals et al. CVPR’15]

[Venugopalan et. al.
NAACL'15]

[Venugopalan et. al. ICCV’
15] (this work)



Video Captioning

E E r r S2VT Overview
CN
Now decode it to a sentence!

o] Cismw s [s| s fus]

| , .
Encoding stage A man is talking

\ J
|

Decoding stage

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015



Neural Machine Translation?

« Neural Machine Translation (NMT) is away to doMachine
Translation with asingle neural network

« The neural network architecture is called sequence-to-sequence
(aka segZseq) and it involves two RNNs.

Abigail See



Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. p A
Provides initial hidden state

A\

NN J9p02ag

h hit ith a ie <END>
for Decoder RNN. | me Wi P
®© © @®©
N\ L gl; g,[
% S © S
nd o) o] 0 o) o) o) o)
5 e| .|® ol |.|o N[ NN
S e “|® el |’|® ’lo o |0
S o) O [ O o O o
- .
il a m’  entarté <SIART> he hit
1§ v J
Source sentence (input) Decoder RNNis a Language Model that generates
target sentence, conditioned on encoding.
Encoder RNN produces
an encoding of the
source sentence.

Abigail See



Greedy decoding

« \We saw how to generate (or “decode”) the target sentence by
taking argmax on each step of the decoder

he hit me with a pie <END>
® ® : ® ' ® (qv] ® ®
= - & - = e -
(@) (@)] (@) (@)] [@)) (@)] (@)]
< i @ Gl<®: ©lk: © @ [x
0] (0] 0] O (@) o O
Ol N 0] O | O @] O @]
(@) 0] “10 "1 O @] O O
0] 0] o O 0] 0] @]
<START> he hit me with a pie

« Thisis greedy decoding (take most probable word on eachstep)
* Problems with this method?

Abigail See



Problems with greedy decoding

« Greedy decoding has no way to undo decisions!
 Input: il am’entarté (he hit me with apie)
- —>he_
- —>hehit___
- -hehita____ (whoops! no going back now...)

« Howto fixthis?

Abigail See



Exhaustive search decoding

« Ideally we want to find a (length T) translation y that maximizes
P(y|.’L’) - P(y1|$) P(yZI(yla $) P(y3|y1) Y2, '/L') ceey P(?/T|3/1, « o ayT—lax)

T
— HP(yt|y19 SR ayt—lax)
t=1

« We could try computing all possible sequences 'y

- This means that on each step t of the decoder, we’re tracking VT
possible partial translations, where V is vocabulary size

« This O(VT) complexity is far too expensive!

Abigail See



Beam search decoding

Core idea: On each step of decoder, keep track of the k
most probable partial translations (hypotheses)
« kis the beam size (in practice around 5 to 10)

A hypothesis ¥1, - - -, ¥t has a score which is its log probability:

t
score(y1,...,y:) = log Pom(y1, - - -, yt|x) = Zlog Broa(yilyss« -« s Yi—1,2)

=1
- Scores are all negative, and higher score is better
« We search for high-scoring hypotheses, tracking top k on each step

Beam search is not guaranteed to find optimal solution
But much more efficient than exhaustive search!

Abigail See



Beam search decoding: example

Beam size =k =2. Blue numbers = score(y,

<START>

Calculate prob
dist of nextword

Abigail See

.....

ye) = Y _log Pom(uilya, - - -, 9io1, @)

i=1



Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1, )

i=1

-0.7 =log P,(he|<START>)
he

/

‘ <START>

\

I
-0.9 =log P \(II<START>)

Taketop k words
and compute scores

Abigail See



Beam search decoding: example

Beam size =k =2. Blue numbers = score(y1,...,y:) = > _log Pom(¥ilys, - .-

i=1

-1.7 =log P,(hitikSTART> he) +-0.7

he <
struck
/ -2.9 =log P (struck|<START>he) + -0.7
<START>
\ -1.6 =log P, (was|<START>1) +-0.9

was
| <
got

-1.8 =log P \(got]l<START>1) +-0.9

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See

,yz'—l,iﬂ)



Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1, )

i=1

-1.7

he <
struck
/ 29

16
\ was
| <

got

-1.8

Of these k2 hypotheses,
just keep k with highest scores

Abigail See




Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1, )

i=1

-2.8 =log P ,(al<START>he hit) +-1.7

-1.7

a
-0.7 hlt <
he < me
/’ struck -2.5 =log P, (melSTART> he hit) +-1.7
-2.9
<START> -2.9 =log P ,(hit}<START> | was) +-1.6

\ 16 hit
was <
I < struck
got

-3.8 =log P (struck|<START> | was) +-1.6

-1.8

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See




Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1, )

i=1

-2.8

-1.7 3
-0.7 hit <
he < me
/ struck By
-2.9

<START> -2.9

\ 16 hit
was <
I < struck
got

-3.8

-1.8

Of these k2 hypotheses,
just keep k with highest scores

Abigail See




Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wilys, - - -, yi1, )

i=1

4.0

tart

28 K _
ie

17 R P
-0.7 hlt < -3.4
he < me 33
/ struck By with

29

<START> -2.9 on

\ 16 hit 35
was <
I < struck
got

-3.8

-1.8

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See




Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > _log Pua(yilys

i=1

7'-"yi—17$)

4.0
tart
28 K _

e

1.7 3 24

he 5 me 3.3

/ struc Py with
-2.9

<START> -2.9 on

\ 16 hit 35
was

I struck
0.9 got -3.8
-1.8
Of these k2 hypotheses,

Abigail See

just keep k with highest scores




Beam search decoding: example

Beam size =k =2. Blue numbers = score(yi, ...

-1.7

7yt> = ZlogPLM(yl|y17 s ’yi—lax)

i=1

he <
struck

/=

\ -1.6
was

-1.8

Abigail See

-4.0 -4.8

tart in
-2.8 : )

pie > with

a

3.4 4.5
me 3.3 3.7
-2.5 with > a
2.9 on one
hit 35 -4.3

struck

-3.8

For each of the k hypotheses, find
top k next words and calculate scores




Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1, )

i=1

-4.0 -4.8

tart in
-2.8 ) :
’r . K pie with
0.7 hit < -3.4 -4.5
he < me

\ 4

” -3.3 -3.7
/ struc By with . -
-2.9
<START> 2.9 on one

\ L6 hit 35 43
wes K
I < struck
got

-3.8

-1.8

Of these k2 hypotheses,
just keep k with highest scores

Abigail See




Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1, )

i=1

-4.0 -4.8

\ 4

tart in
-2.8
17 K pie with 43
. 3 .

07 it < 34 45 pie
he < me 3.3 3.7 tart
struck

A 4

/ -2.5 with a -4.6
-2.9

<START> -2.9 on one 5.0

\ 16 hit -35 4.3 pie
was <

I < struck tart
got

-3.8 -5.3

-1.8

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See



Beam search decoding: example

Beam size =k =2. Blue numbers = score(y,

g o 0.

yt) = ZlOgPLM(yz|ZJl, wicwse 7yi—17x)

i=1

4.0 48
tart in
28 :
17 K pie | with 4.3
07 - 2 34 45 pie
: hit ' :
he 5 me 3.3 3.7 tart
/ struc 25 with R a 16
29
<START> 2.9 on one -5.0
\ 16 hit -35 4.3 pie
was
I struck tart
09 got 38 5.3
1.8

Abigail See

This is the top-scoring hypothesis!




Beam search decoding: example

Beam size =k =2. Blue numbers = score(yi, ...

7yt) = ZlogPLM(yl|y17 s ’yi—lax)

i=1

-4.0 -4.8
tart In
-2.8 :
7 K pie o with 4.3
07 - 2 34 45 pie
: hit ' '
he me 3.3 3.7 tart
/ struck oY with . - e
-2.9
<START> -2.9 on one -5.0
\ 16 hit 35 4.3 pie
was
I struck tart
00 got 38 5.3
-1.8

Abigail See

Backtrack to obtain the full hypothesis




Beam search decoding: finishingup

We have our list of completed hypotheses.
How to select top one with highest score?

Each hypothesis ¥1,---,Yt on our list has a score

t
score(y1,...,y:) = log Pom(y1, - - -, yt|x) = Zlog Broa(yilyss« -« s Yi—1,2)

1=1

« Problem with this: longer hypotheses have lower scores

« Eix: Normalize by length. Use this to select top one instead:

t
1
LS tog Pl 311,7)

1=1

Abigail See



How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

« BLEU compares the machine-written translation to one or
several human-written translation(s), and computes a
similarity score based on:

» n-gram precision (usually for 1, 2, 3 and 4-grams)

 Plus a penalty for too-short system translations

« BLEU is useful but imperfect
- There are many valid ways to translate a sentence
» S0 a good translation can get a poor BLEU score
because it has low n-gram overlap with the human
translation ®

Source: ” BLEU:aMethod for Automatic Evaluation of Machine Translation", Papineni et al, 2002.
Abigail See



MT progress overtime
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

m Phrase-based SMT m Syntax-based SMT m NeuralMT

25

=

20

15

10

2013 2014 2015 2016

Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09 sennrich.pdf

Abigail See


http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research
activity in 2014 to the leading standard method in 2016

« 2014: First seq2seq paper published

« 2016: Google Translate switches from SMT to NMT

* This is amazing!
« SMT systems, built by hundreds of engineers over many

years, outperformed by NMT systems trained by a
nandful of engineers in a few months

Abigail See



So is Machine Translationsolved?

* Nope!
- Many difficulties remain:
 Out-of-vocabulary words
- Domain mismatch between train and test data
- Maintaining context over longer text
» Low-resource language pairs

Further reading: “Has Al surpassed humans at translation? Not even close!”
https://www.skynettoday.com/editorials/state_of nmt

Abigail See


https://www.skynettoday.com/editorials/state_of_nmt

So is Machine Translationsolved?

* Nope!

« Using common sense is still hard
English~ b o) & Spanish~ IEI CD)
paper jam . Mermelada de papel

Feedback

Abigail See



So is Machine Translationsolved?

* Nope!
* NMT picks up biases In training data
Malay - detected ~ @J Pl English~ IEI ‘D
Dia bekerja sebagai jururawat. She works as a nurse.
Dia bekerja sebagai pengaturcara. = He works as a programmer.
Didn’t specify gender

Source: https://hackernoon.com/bias-sexist-or-this-is-the-wayv-it-should-be-celf7c8c683¢c
Abigail See



NMT research continues

NMT is the flagship task for NLP Deep Learning

« NMT research has pioneered many of the recent
innovations of NLP Deep Learning

« |In 2019: NMT research continues to thrive

- Researchers have found many, many improvements to
the “vanilla® seqg2seq NMT system

» But one improvement is so integral that it is the new

ATTENTION

Abigail See



Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
Target sentence (output)

Z —
o 0] @ (0] e O o @) @) o o o
5 o |o| Jo||. |o® Jol .o ol .ol .o o| o
g, (0] (0] @ |°|1O® 101 “|O ol “10| °“|o o @)
S o) O o) @ o 0 0 0 o) 0 0
< A

il a m’ entarté <SIART> he hit me with a pie

\ J

v
Source sentence (input)

Problems with this architecture?

Abigail See

NNY 19pP03a(d



Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A
source sentence. f : A

Information bottleneck!

Z —
o 0] @ 0] e O o @) @) o (@ o
E . ~ | . )I . ~ . ~ O ~ O o N O L O O O
g, (0] (0] @ |°|1O® 101 “|O ol “10| °“|o o @)
S o) O o) @ o 0 0 0 o) 0 0
c N

il a m’ entarté <SIART> he hit me with a pie

\ J
Y

Source sentence (input)

Abigail See

NNY 19pP03a(d



Attention

 Attention provides asolution to the bottleneck problem.

« Coreidea: on each step of the decoder, use direct connection to
the encoder to focus on a particular part of the source seguence

* First we will show via diagram (no equations), then we will show
with equations

Abigail See



Sequence-to-sequence with attention

dot product

Encoder Attention

@
Q
(0]
Q
m’ entarté <START>

(N J
Y

Source sentence (input)

Y — 0000

Abigail See

H_J

NN 19P03a(d



Sequence-to-sequence with attention

dot product

S

E’ @

o

<

@ ° el (o] (o]

B S ol .Jo| Jo| .[eo

Qrr e @ e ®

L (0] (0] (0] 0]
il a m’ entarté <START>
4 J

Y

Source sentence (input)
Abigail See

H_J

NN 19P03a(d



Sequence-to-sequence with attention

dot product

c

S8 ‘

g 3

I

o) ° ° o] (o]

B S ol .Jo| Jo| .[eo

S e[ e ) )

L (0] (0] (0] (0]
il a m’ entarté <START>
L J

Y

Source sentence (input)
Abigail See

H_J

NN 19P03a(d



Sequence-to-sequence with attention

dot product

S

E’ @

5 5

<

o o [ (6)

B35 ol .|o| o

8 0d e| 10 (0]

L e (& e
il a m’ entarté <START>
1\ )

Y

Source sentence (input)
Abigail See

NN 19P03a(d



Sequence-to-sequence with attention

Attention
distribution
I_H

Attention
scores

Encoder
RNN
K_H

Abigail See

Onthis decoder timestep, we're

mostly focusing on the first
/ encoder hidden state ("he”)

Take softmax to turn the scores
into a probability distribution

L

—> 0000

Y — 0000

entarté

J

Source sentence (input)

<START>

NN 19P03a(d



Sequence-to-sequence with attention

Attention Usethe attention distribution to take a
output weighted sum of the encoder hidden
.5 é states.
k= The attention output mostly contains
< % Information from the hidden statesthat
received high attention.
<
@ o}
ERRHE
i o
il a m’ entarté <START>
. )
Y

Source sentence (input)
Abigail See

NN 19P03a(d



Sequence-to-sequence with attention

Attention he
output

-
e
.e®
-
. 0
-t O
.t
e
o

Attention
distribution
f_H
I

I
I
1
>

Attention
scores

@ ) o ) o) o
B < ol .ol fo| .|o o
S o[ —le el e >l o
N e o o T o
il a m’ entarté <START>
L J
Y

Source sentence (input)
Abigail See

Concatenate attention output
with decoder hidden state, then
use to compute y; asbefore

NN 19P03a(d



Sequence-to-sequence with attention

Attention
distribution

Attention
scores
I_H

Encoder
RNN

Abigail See

Attention hit
output T
................. yz
) |
3 / T -
o : . . ? |
| | )I 5 O 0]
ol —le@ o (e i |
o A j | | |
| a m’  entarté <SIART> he
| )
v

Source sentence (input)

/

Sometimes we take the
attention output fromthe
previous step, and also
feed it into the decoder
(along with the usual
decoder input).

NN 19P03a(d



Attention: in equations

«  We have encoder hidden states hq,...,hy € R”?
« Ontimestep t, we have decoder hiddenstate s; € R”"
. \We get the attention scores e’ for this step:

el =[s'hy,...,s] hy] € RY

« We take softmax to get the attention distribution ot for this step (thisisa
probability distribution and sumsto 1)

o' = softmax(e’) € RY

- Weuse o' to take aweighted sum of the encoder hidden states to get the

attention output a; N
a; — Z Oézhz = Rh
=1

 Finally we concatenate the attention output a; with the decoderhidden
state s: and proceed asin the non-attention seg2segmodel

las; s;] € R?P
Abigail See



Attention is great

Attention significantly improves NMT performance
« It's very useful to allow decoder to focus on certain parts of the source

Attention solves the bottleneck problem

- Attention allows decoder to look directly at source; bypass bottleneck
Attention helps with vanishing gradientproblem

* Provides shortcut to faraway states

Attention provides some interpretability
* Byinspecting attention distribution, we cansee

what the decoder was focusingon f.E E S . &
» We get (soft) alignment for freel! a
- Thisis cool because we never explicitly trained i

an alignment system entarté

« The network just learned alignment by itself

Abigail See



Attention is ageneral Deep Learning technique

- We've seen that attention is a great way to improve the
sequence-to-segquence model for Machine Translation.

- However: You can use attention in many architectures (not
just seg2seq) and many tasks (not just MT)

 More general definition of attention:

» Given a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of
the values, dependent on the query.

« We sometimes say that the guery attends to the values.

« For example, in the seqg2seq + attention model, each decoder
hidden state (query) attends to all the encoder hidden states
(values).

Abigail See



Plan for this lecture

 Recurrent neural networks
— Basics
— Training (backprop through time, vanishing gradient)
— Recurrent networks with gates (GRU, LSTM)
* Applications in NLP and vision
— Image/video captioning
— Neural machine translation (beam search, attention)
* Transformers
— Self-attention
— BERT
— Cross-modal transformers for VQA and VCR



Transformers
(meaning representation through
context, representation learning,

unsupervised learning)



How do we represent the meaning of aword?

Definition: meaning (Webster dictionary)
« the idea that is represented by a word, phrase, etc.

« the idea that a person wants to express by using
words, signs, etc.

* the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

[signifier (symbol) < signified (idea or thing)}

= denotational semantics

Christopher Manning



How do we have usable meaning in a computer?

Common solution: Use e.g. WordNet, a thesaurus containing lists
of synonym sets and hypernyms (“is a” relationships).

e.g. synonym sets containing “good’’:

from nltk.corpus import wordnet aswn
poses = { 'n":'noun’, 'v':'verb', 's":'adj (s)', 'a":'adj’, 'r':'adv'}
for synset in wn.synsets("good"):
print("{}: {}".format(poses[synset.pos()],
" "join([l.name() for | insynset.lemmas()])))

noun: good

noun: good, goodness
noun: good, goodness

noun: commodity, trade_good, good
adj: good

adj (sat): full, good adj:

good

adj (sat): estimable, good, honorable, respectable adj (sat):

beneficial, good
adj (sat): good
adj (sat): good, just, upright

adverb: well, good
adverb: thoroughly, soundly, good

Christopher Manning

e.g. hypernyms of “panda”:

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01") hyper =
lambda s: s.hypernyms()
list(panda.closure(hyper))

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01")]



Problems with resources like WordNet

Great as a resource but missing nuance

- e.g. “proficient” is listed as a synonym for “good”.
This is only correct in some contexts.

* Missing new meanings of words
 e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

* Impossible to keep up-to-date!
« Subjective
* Requires human labor to create and adapt

« Can’t compute accurate word similarity

Christopher Manning



Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel - a localist representation

Means one 1, the rest Os

Words can be represented by one-hot vectors:

motel=[000000000010000]
hotel=[000000010000000]

Vector dimension = number of words in vocab (e.g. 500,000)

Christopher Manning



Problem with words as discretesymbols

Example: in web search, if user searches for “Seattle motel”, we
would like to match documents containing “Seattle hotel”.

But:
motel=[000000000010000]
hotel=[000000010000000]
These two vectors are orthogonal.
There is no natural notion of similarity for one-hot vectors!

Solution:

« Could try to rely on WordNet’s list of synonyms to get similarity?
- But it is well-known to fail badly: incompleteness, etc.

« Instead: learn to encode similarity in the vectors themselves

Christopher Manning



Representing words by their context

 Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

*  “You shall know a word by the company it keeps” (J. R. Firth 1957)

* One of the most successful ideas of modern statistical NLP!

 When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window).

« Use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge. ..
...Indlia has just given its banking system a shot in the arm...

N\ /

These context words will represent banking

Christopher Manning



Word vectors

We will build a dense vector for each word, chosen so that it is
similar to vectors of words that appear in similar contexts

4 N
0.286

0.792
-0.177

-0.107
banking = 0.109

-0.542
0.349

K 0.271 )

Note: word vectors are sometimes called word embeddings or
word representations. They are a distributed representation.

Christopher Manning



Word meaning as a neural word vector - visualization

need help

COCIiI'(I)e
(0286 )

0.792 qive keep
-0.177 make get
-0.107 meet - continue
_ 0.109 |
expect 0549 —— want
) think

0.349 say remain
0.271 are

be

_ 0.487 Yy, Wer@as

take

become

being

been

ha
%has
have

Christopher Manning



3. Word2vec: Overview

Word2vec (Mikolov et al. 2013) is a framework for learning
word vectors

|dea:

We have a large corpus of text
Every word in a fixed vocabulary is represented by a vector

Go through each position t in the text, which has a center word
¢ and context (“outside’) words o

Use the similarity of the word vectors for c and o to calculate
the probability of o given c (or vice versa)

Keep adjusting the word vectors to maximize this probability

Christopher Manning



Word2Vec Overview

 Example windows and process for computing P(WHJ-/Wt)

problems  turning banking crises  as

l Y o Y ’
outside contextwords center word outside contextwords
in window of size?2 at positiont in window of size2

Christopher Manning



Word2Vec Overview

 Example windows and process for computing P(WHJ-/Wt)

crises as

problems  turning

\ Y J L Y J \ ]

|
outside contextwords centerword outside contextwords
in window of size2 at positiont in window of size2

Christopher Manning



Word2vec: objective function

For each positiont=1, ..., T, predict context words within a
window of fixed size m, given center word w,.

1—[ P(WHj | we; 9)

t=1 —-m<j<m

Jj#0
6 is all variables

to be optimized
l sometimes called cost or /oss function

Likelihood = L(8) =

1=

The objective function is the (average) negative log
likelihood:

1
](9)———10gL(9)——TZ Z log P(weyj | we; 8)

—-ms<j<m
J#0

Minimizing objective function < Maximizing predictive
accuracy

Christopher Manning



Word2vec: objective function

We want to minimize the objective function:

T
1 1
J©) =—=logL(®) === > > logP(wes; |we; 0)

t=1-m<j<m
Jj#0

Question: How to calculate P(w,,;/w,, 6)?

Answer: We will use two vectors per word w:

v ,» when w is a center word

u,, when w is a context word

Then for a center word ¢ and a context word o:
exp(Up V)

P(o|c) =
( | ) Zwevexp(uafvc)

Christopher Manning



Word2vec: prediction function

Exponentiation makes anything positive
l Do product compares similarity of o and c.

LY = YUY
exp.-—""" 2i=1 UiV

l
Larger dot product = larger probabhility

ZWEV exp(uwvc)
Normalize over entire vocabulary

to give probability distribution

P(olc) =

 This is an example of the softmax function R"->R"

exp(x;)
ST exp(xy)

 The softmax function maps arbitrary values to a probability
distribution p.
+ “max” because amplifies probability of largest x
- “soft” because still assigns some probability to smaller x;
« Frequently used in Deep Learning

softmax(x;) =

Christopher Manning



Peters et al. (2018): ELMo: Embeddings from Language
Models

Deep contextualized word representations. NAACL 2018.
https://arxiv.org/abs/1802.05365

- Breakout version of word token vectors or
contextual word vectors

« Learn word token vectors using long contexts not context
windows (here, whole sentence, could be longer)

- Learn a deep Bi-NLM and use all its layers in prediction

Christopher Manning



Peters et al. (2018): ELMo: Embeddings from Language
Models

« Train a bidirectional LM
- Aim at performant but not overly large LM:
» Use 2 bILSTM layers
» Use character CNN to build initial word representation

» User 4096 dim hidden/cell LSTM states with 512
dim projections to next input

- Use a residual connection

 Tie parameters of token input and output (softmax) and
tie these between forward and backward LMs

Adapted from Christopher Manning



ELMo used in a sequencetagger

CRF - . " oncatenation
B-LOC <= E-LOC ~— Seqqence Pre-trained bi-LM ) Eeur:nett
f i tagging |
D Embedding
Dense - o

Backward LM

Sequence
representation
Token
’q—__b ’ b' RNN representation
ﬂ New York is located ...
- L7
bi-RNN (R,)

Concat LM
embedding

<} <
—— Forward LM

AN AN
Cha/r M= [ I Token
CNN/ Token Token representation
RNN embeddingC] representation
N N New York is located ...
New York IS located

_>
hk:,l — [hk,l; tk 1; hLM]

Christopher Manning, figure from , paper at


https://tsenghungchen.github.io/posts/elmo/
https://arxiv.org/pdf/1802.05365.pdf

ELMo results: Great for alltasks

INCREASE
TASK PREVIOUS SOTA OUR LI (ABSOLUTE/
BASELINE BASELINE RELATIVE)
SQuAD | Liu et al. (2017) 84.4 | 81.1 85.8 4.7/24.9%
SNLI Chen et al. (2017) 88.6 || 88.0 88.7 + 0.17 0.7/5.8%
SRL He et al. (2017) 81.7 || 81.4 84.6 3.21 172%
Coref Lee et al. (2017) 67.2 || 67.2 70.4 3.2/9.8%
NER Peters et al. (2017) 91.93 + 0.19 || 90.15 9222 +£0.10 2.06/21%
SST-5 McCann et al. (2017) 53.7 || 514 54.7 £ 0.5 3.3/6.8%

Christopher Manning




ELMo: Weighting of layers

« The two biLSTM NLM layers have differentiated
uses/meanings

- Lower layer is better for lower-level syntax, etc.
 Part-of-speech tagging, syntactic dependencies, NER

- Higher layer is better for higher-level semantics
« Sentiment, Semantic role labeling, question answering, SNLI

Christopher Manning



Let’s scale it up!

ULMfit

Jan 2018
Training: 1
GPU day

Christopher Manning

GPT

June 2018
Training

240 GPU days

BERT

Oct 2018
Training

256 TPU days

~320-560
GPU days

@ OpenAI Google Al

GPT-2
Feb 2019

Training
~2048 TPU v3
days according to

©

OpenAl



GPT-2 language model cherry-picked output

SYSTEM In a shocking finding, scientist discovered a herd of unicorns
PROMPT living in a remote, previously unexplored valley, in the Andes
(HUMAN- Mountains. Even more surprising to the researchers was the fact

WRITTEN) that the unicorns spoke perfect English.

The scientist named the population, after their distinctive horn,
Ovid’s Unicorn. These four-horned, silver-white unicorns were

MODEL previously unknown to science.

COMPLETION .

(MACHINE- Nc_)w, after almost two centuries, the mystery of what sparked
WRITTEN, this odd phenomenon is finally solved.

10 TRIES) Dr. Jorge Pérez, an evolutionary biologist from the University of

La Paz, and several companions, were exploring the Andes
Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be
a natural fountain, surrounded by two peaks of rock and silver
SNOW.

Pérez and the others then ventured further into the valley. ...

Christopher Manning



M E I RONEWS... BUT NOT AS YOU KNOW IT

NEWS SPORT ENTERTAINMENT SOAPS MORE = TRENDING Q

UK WORLD WEIRD TECH

Elon Musk’s OpenAl builds artificial
intelligence so powerful it must be kept
locked up for the good of humanity

3 Jasper Hamill Friday 15 Feb 2019 10:06 am

o 272 R
f W - < o 9 Elon Musk @ i )
X { Follow |
N \—/

@elonmusk
Elon Musk’s scientists have announced the creation of a P
terrifying artificial intelligence that’s so smart they refused to

g 5 Replying to @georgezachary
release it to the public.

To clarify, I’'ve not been involved closely with
OpenAl's GPT-2 is designed to write just like a human and is an 5
impressive leap forward capable of penning chillingly convincing text. OpenAI fOI’ over a yeal’ & dOn t have mgmt or

It was ‘trained’ by analysing eight million web pages and is capable of board OVGI’SIg ht
writing large tracts based upon a ‘prompt’ written by a real person. 8:19 PM - 16 Feb 2019

But the machine mind will not be released in its fully-fledged form : : = = ]
500 Retweets 14,573 Likes | ( s
because of the risk of it being used for ‘malicious purposes’ such as ' W& & g‘ (\ @ @

generating fake news, impersonating people online, automating the O 229 1 500 ) 15K =
production of spam or churning out ‘abusive or faked content to post g T ¥
on social media’.

OpenAl wrote: ‘Due to our concerns about malicious applications of
the technology, we are not releasing the trained model.

Christopher M



The Motivation for Transformers

- We want parallelization but RNNs are inherently
sequential

« Despite GRUs and LSTMs, RNNs still need attention
mechanism to deal with long range dependencies — path
length between states grows with sequence otherwise

- But if attention gives us access to any state... maybe we
can just use attention and don’t need the RNN?

Adapted from Christopher Manning



Transformer
Overview

Attention is all you need. 2017. Aswani,

Shazeer, Parmar, Uszkoreit, Jones,

Gomez, Kaiser, Polosukhin

* Non-recurrent sequence-to-

sequence encoder-decoder model

« Task: machine translation
with parallel corpus

 Predict each translated word

« Final cost/error function is
standard cross-entropy error
on top of a softmax classifier

Output

This and related figures from paper 1

Christopher Manning
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https://arxiv.org/pdf/1706.03762.pdf

Dot-Product Attention (Extending our previous def.)

 Inputs: aquery q and a set of key-value (k-v) pairs toan output
* Query, keys, values, and output are all vectors

« Output is weighted sum of values,where

« Weight of each value is computed by an inner product of query
and corresponding key

» Queries and keys have same dimensionality d, value haved,

B(I'ki
Alg, K,V) =)

V;
etk
;. 2je

Christopher Manning



Dot-Product Attention - Matrix notation

« When we have multiple queries ¢, we stack them in a matrix Q:

GQ'ki

Al K, V) =) ——v
. 2ie

+ Becomes: A(Q,K,V)= 50ftmax(QKT)V
[[Q] xdy] X [dk x[K][] x [[K] xd,]

=[1Q[ xd.]

softmax — ‘ ‘ ‘ ‘
row-wise

Christopher Manning



Scaled Dot-Product Attention

* Problem: As d, gets large, the variance of QKT increases -
some values inside the softmax get large = the softmax
gets very peaked - hence its gradient gets smaller.

 Solution: Scale by length 4
of query/key vectors: MatMul
T

Oy [ softmax ]

AQ,K,V) = softmaic( \/d_
A
Mask (opt.)

« The input word vectors are
the queries, keys and values
 In other words: the word vectors
select each other MatMul

Adapted from Christopher Manning



Multi-head attention

* Problem with simple self-attention:
« Only one way for words to interact with one-another

« Solution: Multi-head attention
* First map Q, K, V into h=8 many lower

dimensional spaces via W matrices A

Linear
« Then apply attention, then concatenate
outputs and pipe through linear layer et
; Scaled Dot-Product u&h
Attention
MultiHead(Q, K, V) = Concat(heady, ..., heady, )W ©° ) t! ) tl ) $l
where head; = Attention(QWiQ, KWE vw)) |nex L] Linear u Linear L]

ol

Christopher Manning, see page 5:


https://arxiv.org/pdf/1706.03762.pdf

Complete Encoder

 For encoder, at each block,
we use the same Q, K and V

from the previous layer

« Blocks are repeated 6 times
(in vertical stack)

Christopher Manning
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in layer 5
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Attention visualization: Implicit anaphora resolution

application
should

The
Law
will
never
be
perfect
but

its

be

just
this

is

what
we

are
missing
in

my
opinion
<EQOS>
<pad>

The
should
be

just
this

is

what
we

are

my
opinion
<EQS>
<pad>

application
missing

In 5t layer. Isolated attentions from just the word ‘its’ forattention heads 5 and 6.

Note that the attentions are very sharp for this word.
Christopher Manning



Parallel attention heads

Ashish Vaswani



Transformer Decoder

2 sublayer changes in decoder
« Masked decoder self-attention

on previously generated outputs:

- Encoder-Decoder Attention,
where queries come from
previous decoder layer and
keys and values come from
output of encoder

R ey | TRt | (R |

Blocks repeated 6 times also
Christopher Manning
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BERT: Devlin, Chang, Lee, Toutanova (2018)

BERT (Bidirectional Encoder Representations from
Transformers):

Pre-training of Deep Bidirectional Transformers for
Language Understanding

Based on slides from Jacob Devlin

Christopher Manning



BERT: Devlin, Chang, Lee, Toutanova (2018)

« Mask out k% of the input words, and then predict the
masked words

- They always use k = 15%
store gallon

T T
the man went to the [MASK] to buy a [MASK] of milk

 Too little masking: Too expensive to train
« Too much masking: Not enough context

Christopher Manning



Additional task: Next sentence prediction

« To learn relationships between sentences, predict
whether Sentence B is actual sentence that proceeds
Sentence A, or a random sentence

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

Adapted from Christopher Manning



BERT sentence pair encoding

/ Ve /
Input [CLS] W my dog is | cute W [SEP] he ‘ likes M play W ##ing W [SEP]
Token
Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe likes Eplay ##ing E[SEP]
-+ L L -+ -+ + -+ L =+ =+ -+
Segment
Embeddings EA EA EA EA EA EA EB EB EB EB EB
-+ L . =+ =+ =+ -+ . =+ =+ =+
Position
Embeddings Eo E1 Ez E3 E4 Es E6 E7 Es E9 E10

Token embeddings are word pieces
Learned segmented embedding represents each sentence

Positional embedding

Adapted from Christopher Manning




BERT model architecture and training

« Transformer encoder (as before)
« Self-attention = no locality bias
- Long-distance context has “equal opportunity”
« Single multiplication per layer = efficiency on GPU/TPU

« Train on Wikipedia + BookCorpus
« Train 2 model sizes:

- BERT-Base: 12-layer, 768-hidden, 12-head

- BERT-Large: 24-layer, 1024-hidden, 16-head
« Trained on 4x4 or 8x8 TPU slice for 4 days

Christopher Manning



BERT model fine tuning

« Simply learn a classifier built on the top layer for each
task that you fine tune for

KSP Mask LM Mag LM \ /@ MAD Start/End Spam
= -

a0
o ) e J 7 - L)) e )] -
s s = "o ...
BERT - NP .‘ .. .-h .. ’ BERT
EI | EN || E[SEP] || E1' I | EM‘ | |El°l51 ” E‘l | | EN || E[SEPI || E1' l | EMI |
ﬁ =l J L J L _ﬁ [ L [ = L
[Tzk ][ [SEP) ][TDH] m m Tok1 | .. (TMN][ [SEP) ][foﬂ ] m

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Christopher Manning



SQuUAD 2.0 leaderboard, 2019-02-07

Rank Model EM F1
Human Performance 86.831 89.452
Stanford University

(Rajpurkar & Jia et al. '18)

1 BERT + MMFT + ADA (ensemble) 85.082 87.615
Microsoft Research Asia

Z BERT + Synthetic Self-Training 84.292 86.967
(ensemble)

Google Al Language
https:/github.com/google-
research/bert

3 BERT finetune baseline (ensemble) 83.536 86.096
Anonymous

4 Lunet + Verifier + BERT (ensemble) 83.469 86.043
Layer 6 Al NLP Team

4 PAML+BERT (ensemble model) 83.457 86.122
PINGAN Gammalab

5 Lunet + Verifier + BERT (single 82.995 86.035
model)

Layer 6 Al NLP Team
Christopher Manning



Cross-modal transformers

Embed

_Wo Wi W Wi Wy Wy

L-k x k «

r~ . . ] r——=-=--
<CLS> Man shopping for fruit  __ <SEP> Embed|—:~{ TRM

Figure 1: Our VILBERT model consists of two parallel streams for visual (green) and linguistic
(purple) processing that interact through novel co-attentional transformer layers. This structure allows
for variable depths for each modality and enables sparse interaction through co-attention. Dashed
boxes with multiplier subscripts denote repeated blocks of layers.

Lu et al., “ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks”, NeurIPS 2019



Cross-modal transformers

g RolFeat  Nex o Nxx
4 g i T \ y
H =g i i : Vision
i O+ Self }-(OH_FF_J-O+—H{Cross HOH el HOH_FF FO-+——F  Outpur
= ;] |
Pos Feat Object-Relationship Encoder | Cross.-
>< & Modality
| i Output
possnsaneanen sy - Word Emb NIX _________________________________ i E i
Awoman - :
! riding a bike Eé P ¥ Language
iwithadoginai E; ° Self ]_Qr[ FF ] ; P @Qﬁ Self ]_Qr[ FF ] Q : E? Output
basket. i ; a2

Language Encoder

Figure 1: The LXMERT model for learning vision-and-language cross-modality representations.

Cross-Modality Encoder

‘Self” and

‘Cross’ are abbreviations for self-attention sub-layers and cross-attention sub-layers, respectively. ‘FF’ denotes

a feed-forward sub-layer.

Tan and Bansal, “LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers”, EMNLP 2019



Cross-modal transformers

(image Embedder ) UNITER Model (Text Embedder )
e - : Tra nsiormer : i : ; w Loi o
LN L E = : i i - = i E ! _LN‘_]
.@. (3 )=
LS 'y 'y A 4 'y 'Y “ V Emb @‘ En;]b
oo e | B 5 (e
\ 4 man with his dog on a couch -\ g

dog [ ¢] y

UNITER ] UNITER ] UNITER ]
. 7 —= 'y ‘ ‘ A 'y ‘?‘ — 'Y A A 4 4 . ?‘—-- '} 'Y 1) .A 'y
@ man with his MAsk] - @ man with his dog - @ [CLS] the bus s

Masked Language Modeling (MLM)  Masked Region Modeling (MRM) Image-Text Matching (ITM)

Figure 1: Overview of the proposed UNITER model (best viewed in color), consisting of an Image Embedder,
a Text Embedder and a multi-layer self-attention Transformer, learned through three pre-training tasks.

Chen et al., “UNITER: Learning UNiversal Image-TExt Representations”, arxiv 2019



Visual Commonsense Reasoning Leaderboard

Why is [person4afll] pointing at Rank Model Q->A QA->R Q->AR
[person1§l?
2) He is teling [PeFSoRARE] that [person @] ordered the Human Performance 91.0 93.0 85.0
pancakes. - N -
——— University of Washington
©) He is feeling accusatory towards [person1§]l. .
d) He is giving [person1§]] directions. (Ze"ers etal. "1 8}
Rationale: | think so because... = UNITER-large (ensemble) 79.8 83.4 66.8
¢ a) [person1f§]] has the pancakes in front of him - e M5 D365 Al
n b) [persondjll] is taking everyone's order and asked for SEpiEITIE 2L 20
L e e s R ] | S
more objects » Ewp(;eszsn;r;%a]':;ilz‘i;gscgh:c pancakes both she and /abs/1 909.11740
o) [persondfi is delivering food to the table, and she might
not know whose order is whose.
2 UNITER-large (single model) 77.3 80.8 62.8
MS D365 Al
September 23, 2019
https://arxiv.org
/abs/1909.11740
3 ViILBERT (ensemble of 10 76.4 78.0 59.8
models)
Georgia Tech & Facebook Al
Research
https://arxiv.org
/abs/1908.02265
4 VL-BERT (single model) 75.8 784 59.7
MSRA & USTC
September 23,2019
https://arxiv.org
/abs/1908.08530
5 VILBERT (ensemble of 5 75.7 77.5 58.8

models)

Georgia Tech & Facebook Al
Research

https://arxiv.org
/abs/1908.02265
https://visualcommonsense.com/leaderboard/



https://visualcommonsense.com/leaderboard/

Additional resource

« Learning about transformers on your own?
- Key recommended resource:

« The Annotated Transformer by Sasha Rush

» An Jupyter Notebook using PyTorch that explains
everything!

Christopher Manning


http://nlp.seas.harvard.edu/2018/04/03/attention.html

Recap

« Language modeling is an effective form of unsupervised
pretraining for many different supervised tasks

« Attention captures relationships effectively, helps with
vanishing gradients

« Attention is cheap to compute and allows better
parallelization during training

« Language/sequence models can be extended to settings
beyond NLP

* You will know the meaning of a concept/word/image by the
company it keeps



