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Plan for this lecture

• Motivation and taxonomy of methods

• Variational Autoencoders (VAEs)

• Generative Adversarial Networks (GANs)

– Applications and variants of GANs

• Diffusion models

– Example results and variants of diffusion models



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Lecture 13 -

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x)

- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly 

defining it

Generative Models

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models can be used to enhance training datasets with 

diverse synthetic data

- Generative models of time-series data can be used for simulation 

Lecture 13 -

Why Generative Models?

Adapted from Serena Young
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density
Markov Chain

Variational Markov Chain

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

Change of variables models  

(nonlinear ICA)

GSN

GAN

Variational Autoencoder Boltzmann Machine

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Lecture 13 -

Taxonomy of Generative Models

Serena Young



Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d  

distributions:

Likelihood of  

image x

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 6

Probability of i’th pixel value  

given all previous pixels

Will need to define  

ordering of “previous  

pixels”

Complex distribution over pixel  

values => Express using a neural  

network!

Then maximize likelihood of training data

Fully visible belief network

Serena Young



Generate image pixels starting from corner

Dependency on previous pixels modeled  

using an RNN (LSTM)

Lecture 11 -

PixelRNN

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 7

Drawback: sequential generation is slow!

Serena Young

[van der Oord et al. 2016]



Still generate image pixels starting from corner

Dependency on previous pixels now modeled 

using a CNN over context region

Training: maximize likelihood of training images

Figurecopyrightvan der Oord etal., 2016.

Softmax loss at each pixel

Lecture 11 -

Training is faster than PixelRNN (can parallelize convolutions since context region  

values known from training images)

Generation must still proceed sequentially => still slow

PixelCNN
[van der Oord et al. 2016]

Serena Young



Autoencoders

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation  

from unlabeled training data

Originally: Linear +  

nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

z usually smaller than x

(dimensionality reduction)

Q: Why dimensionality  

reduction?

A: Want features to  

capture meaningful  

factors of variation in  

data

Lecture 11 -

Serena Young



Autoencoders

Decoder

Features

Encoder

Input data

How to learn this feature representation?
Train such that features can be used to reconstruct original data  

“Autoencoding” - encoding itself

Reconstructed  

input data

Originally: Linear +

nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN (upconv)

Lecture 11 -

Serena Young



Input data

Reconstructed  

input data

Featu

Reconstructed data

Encoder: 4-layer conv

Decoder: 4-layer upconv

Input data

L2 Loss function:

Decoder

res

Encoder

Train such that features  

can be used to  

reconstruct original data

Lecture 11 -

Doesn’t use labels!

Serena Young

Autoencoders



Autoencoders

Encoder

Input data

Features

Classifier

Predicted Label

Fine-tune  

encoder  

jointly with  

classifier

Loss function  

(Softmax, etc)

Encoder can be  

used to initialize a  

supervised model

plane

Lecture 11 -

12

dog deer

bird

truck

Train for final task  

(sometimes with  

small data)

Serena Young



Autoencoders

Features

Encoder

Input data

Decoder

Lecture 11 -

May 9, 201913

Reconstructed  

input data

Features capture factors of  

variation in training data. Can we  

generate new images from an  

autoencoder?

Adapted from Serena Young



Sample from 

prior

Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data is generated from underlying unobserved (latent)  

representation z

Sample from 

conditional

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 201914

Intuition:  x is an image, z is latent 

factors used to  generate x: attributes, 

orientation, etc.

Adapted from Serena Young



Sample from 

prior

Variational Autoencoders

Sample from 

conditional

We want to estimate the true parameters  

of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.  

Gaussian.

Conditional p(x|z) is complex (generates  

image) => represent with neural network
Decoder  

network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 201915

Adapted from Serena Young



Variational Autoencoders
We want to estimate the true parameters  

of this generative model.

How to train the model?

Learn model parameters  to maximize 

likelihood of training data

Now with latent z

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

Fei-Fei Li & Justin Johnson & Serena Yeung 16

Adapted from Serena Young

Sample from 

prior

Sample from 

conditional

Decoder  

network

Q: What is the problem with this?  

Intractable!



Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 17

Decoder neural networkIntractable to compute  

p(x|z) for every z!

Posterior density also intractable:

Intractable data likelihood

• Solution: In addition to decoder network modeling pθ(x|z), define additional 
encoder network qɸ(z|x) that approximates pθ(z|x)

• This allows us to derive a lower bound on the data likelihood that is tractable, which 
we can optimize – overviewed briefly on next few slides (feel free to skip when reviewing) 

Adapted from Serena Young



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

This KL term (between  

Gaussians for encoder and z

pθ(z|x) intractable (saw  

earlier), can’t compute this KL
Decoder network gives pθ(x|z), can  

compute estimate of this term through

We want to  

maximize the  

data  

likelihood

term :( But we know KL  

divergence always >= 0.
prior) has nice closed-form  

solution!
sampling. (Sampling differentiable  

through reparam. trick, see paper.)

Lecture 11 -

Serena Young



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Tractable lower bound which we can take  

gradient of and optimize! (pθ(x|z) differentiable,

We want to  

maximize the  

data  

likelihood

KL term differentiable)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 -

May 9, 201919

Serena Young



Variational Autoencoders
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

Reconstruct  

the input data

Make approximate  

posterior distribution  

close to prior

Training: Maximize lower boundVariational lower bound (“ELBO”)

Lecture 11 -

20

Serena Young



Takeaway: Variational Lower Bound

https://jaketae.github.io/study/elbo/ 

ELBO =

x = data    q = encoder (data to noise)
h = hidden representation  p = decoder (noise to data) 

https://jaketae.github.io/study/elbo/


Variational Autoencoders

             Mean and covariance of z | x            Mean and covariance of x | z

Encoder network Decoder network

(parameters ɸ) (parameters θ)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 22

Adapted from Serena Young

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic



Variational Autoencoders

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Encoder network

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Decoder network

(parameters ɸ) (parameters θ)

Sample z from Sample x|z from

Encoder and decoder networks also called  

“recognition”/“inference” and “generation” networks

Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 23

Serena Young



Decoder network

Sample z from

Sample x|z from

Input Data

Variational Autoencoders

Putting it all together: maximizing the  

likelihood lower bound

Make approximate  

posterior distribution  

close to prior

Encoder network

Maximize

likelihood of  

original input  

being  

reconstructed

For every minibatch of input  

data: compute this forward  

pass, and then backprop!

Lecture 11 -

May 9, 2019

Serena Young



Decoder network

Sample x|z from

Sample z from prior 

Use decoder network Data manifold for 2-d z

Vary z1

Sample z from

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z2

Lecture 11 -

VAEs: Generating Data

Adapted from Serena Young



Vary z1

Vary z
2

Degree of smile

Head pose

Diagonal prior on z
=> independent  

latent variables

Different  

dimensions of z  

encode  

interpretable factors  

of variation

Also good feature representation that  

can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Lecture 11 -

May 9, 2019

96

VAEs: Generating Data

Serena Young



32x32 CIFAR-10

Lecture 11 -

May 9, 201927Labeled Faces in the Wild

Figurescopyright (L)Dirk Kingmaetal. 2016; (R) Anders Larsenetal. 2017. Reproduced withpermission.

VAEs: Generating Data

Serena Young



Generating with little data for ads

• Faces are persuasive and carry meaning/sentiment

• We learn to generate faces appropriate for each ad 
category

• Because our data is so diverse yet limited in count, 
standard approaches that directly model pixel 
distributions don’t work well

Beauty Clothing Safety SodaCars

Human 
Rights Self EsteemChocolate

Domestic 
Violence

Thomas and Kovashka, BMVC 2018 https://people.cs.pitt.edu/~kovashka/thomas_kovashka_bmvc2018.pdf 

https://people.cs.pitt.edu/~kovashka/thomas_kovashka_bmvc2018.pdf


Generating with little data for ads

• Instead we model the distribution over attributes for 
each category (e.g. domestic violence ads contain 
“black eye”, beauty contains “red lips”)

• Generate an image with the attributes of an ad class

• Model attributes w/ help from external large dataset

Thomas and Kovashka, BMVC 2018

128x128x3

In
p

u
t

32x32x16

16x16x32

8x8x64

4x4x128

2x2x256
512

64x64x8

N

150
1024

4x4x128

8x8x64

16x16x32

32x32x16

64x64x8

128x128x3

O
u

tp
u

t

Encoder Sampling Decoder

𝟏𝟎𝟎 (𝝈) 

𝟏𝟎𝟎 (𝝁) 

E
m

b
ed

d
in

g

150

Facial Expressions (10-D)Facial Attributes (40-D)Latent (100-D)

Latent captures non-
semantic appearance 

properties (colors, etc.)

Externally Enforced Semantics

Facial attributes: <Attractive, Baggy eyes, Big 
lips, Bushy eyebrows, Eyeglasses, Gray hair, 
Makeup, Male, Pale skin, Rosy cheeks, etc.>

Facial expressions: <Anger, Contempt, 
Disgust, Fear, Happy, Neutral, Sad, Surprise> 

+ Valence and Arousal scores



Generating with little data for ads
Original

FaceTransform

Reconstruction Beauty Clothing D.V. Safety SodaAlcohol
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Faces in left- and right-leaning media

• To illustrate the visual variability between left/right, 
we modify photos to be more left/right-leaning 

• We model left/right using distributions over 
attributes (predicted using separate dataset, no extra 
annotations, Thomas & Kovashka BMVC 2018)

• Map attributes to pixels using large face dataset

Thomas and Kovashka, NeurIPS 2019



Lecture 11 -

May 9, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 32

Probabilistic spin to traditional autoencoders => allows generating data

Defines an intractable density => derive and optimize a lower bound

Pros:

- Principled approach to generative models

- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as  

PixelRNN/PixelCNN

- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Variational Autoencoders

Adapted from Serena Young



So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead  

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution  

through 2-player game

Lecture 11 - 33

Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Lecture 13 -

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct  

way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to  

training distribution.

Q: What can we use to

represent this complex

transformation?

Generative Adversarial Networks

Serena Young



Problem: Want to sample from complex, high-dimensional training distribution. No direct  

way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to  

training distribution.

Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

zInput: Random noise

Generator  

Network

Output: Sample from  

training distribution

Lecture 13 -

Q: What can we use to

represent this complex

transformation?

A: A neural network!

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Generative Adversarial Networks

Serena Young
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Lecture 13 -

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Serena Young
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zRandom noise

Generator Network

Discriminator Network

Fake Images  

(from generator)

Real Images  

(from training set)

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Real or Fake

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Lecture 13 -

Training GANs: Two-player game

Serena Young



Input noise  
Z

Differentiable  
function G

x sampled  
from model

Differentiable  
function D

D tries to  
output 0

D tries to  
output 1

Differentiable  
function D

x sampled  
from data

Adversarial Networks Framework

Ian Goodfellow

Discriminator 
Real vs. Fake

Generator
𝑥 ~ 𝐺(𝑧)
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Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Lecture 13 -

Training GANs: Two-player game

Serena Young
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Discriminator output  

for real data x

Discriminator output for  

generated fake data G(z)

Lecture 13 -

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and  

D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1  

(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Serena Young
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Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Lecture 13 -

Training GANs: Two-player game

Serena Young
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Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective  

does not work well!

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

When sample is likely  

fake, want to learn  

from it to improve  

generator. But  

gradient in this region  

is relatively flat!

Gradient signal  

dominated by region  

where sample is  

already good

Training GANs: Two-player game

Adapted from Serena Young



Fei-Fei Li & Justin Johnson & 

SerenaYeung
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Minimax objective function:

Alternate between:

1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different  

objective

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Instead of minimizing likelihood of discriminator 

being correct, now  maximize likelihood of 

discriminator being wrong.

Same objective of fooling discriminator, but now 

higher gradient  signal for bad samples => works 

much better! Standard in practice.

High gradient signal Low gradient signal

Training GANs: Two-player game

Adapted from Serena Young



Putting it together: GAN training algorithm

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Fei-Fei Li & Justin Johnson & 

SerenaYeung
May 18, 2017

Lecture 13 -

Training GANs: Two-player game

Serena Young
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SerenaYeung
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z

Generator Network

Discriminator Network

Fake Images  

(from generator)

Random noise

Real Images  

(from training set)

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Real or Fake

After training, use generator network to  

generate new images

Lecture 13 -

Ian Goodfellow et al., “Generative  
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Serena Young



Alternative loss functions

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490 

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490


GAN training is challenging

• Vanishing gradient – when discriminator is very good

• Mode collapse – too little diversity in the samples 
generated

• Lack of convergence because hard to reach Nash 
equilibrium

• Loss metric doesn’t always correspond to image 
quality; Frechet Inception Distance (FID) is a decent 
choice



Tips and tricks

• Use batchnorm, ReLU

• Regularize norm of gradients

• Use one of the new loss functions

• Add noise to inputs or labels 

• Append image similarity to avoid mode collapse

• Use labels, extra info when available (CGAN)

• …

https://github.com/soumith/talks/blob/master/2017-ICCV_Venice/How_To_Train_a_GAN.pdf
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b



Conditional GANs

https://medium.com/@jonathan_hui/gan-cgan-infogan-using-labels-to-improve-gan-8ba4de5f9c3d



[Goodfellow et al. 2014]

real or fake?

Discriminator

x G(x)

D

Generator

G

𝐺: generate fake samples that can fool 𝐷
𝐷: classify fake samples vs. real images

GANs

Jun-Yan Zhu



Conditional GANs

Adapted from Jun-Yan Zhu

x G(x)

real or fake pair ?

G

D



Edges → Images

Input Output Input Output Input Output

Edges from [Xie & Tu, 2015]

Pix2pix / CycleGAN



Sketches → Images

Input Output Input Output Input Output

Trained on Edges → Images

Data from [Eitz, Hays, Alexa, 2012]

Pix2pix / CycleGAN



#edges2cats [Christopher Hesse]

Ivy Tasi @ivymyt

@gods_tail

@matthematician

https://affinelayer.com/pixsrv/

Vitaly Vidmirov @vvid

Pix2pix / CycleGAN



………

Paired Unpaired

Jun-Yan Zhu



… Discriminator DY: 𝐿𝐺𝐴𝑁 𝐺 𝑥 , 𝑦
Real zebras vs. generated zebras

……
Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Discriminator DX: 𝐿𝐺𝐴𝑁 𝐹 𝑦 , 𝑥
Real horses vs. generated horses

Discriminator DY: 𝐿𝐺𝐴𝑁 𝐺 𝑥 , 𝑦
Real zebras vs. generated zebras

……

Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Forward cycle loss: F G x − x
1

G(x) F(G x )x

Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Large cycle loss
Forward cycle loss: F G x − x

1
G(x) F(G x )x

Small cycle loss

Cycle Consistency

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

Helps cope with mode collapse

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Training Details: Objective

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html


Cezanne Ukiyo-eMonetInput Van Gogh

Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



(Goodfello
w 2017)

Celebrities Who Never Existed

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018



(Elgammal et al., 2017)

Creative Adversarial Networks

Ian Goodfellow



StarGAN

Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018



SinGAN

Shaham et al., “SinGAN: Learning a Generative Model from a Single Natural Image”, ICCV 2019



Stagewise generation

Singh et al., “FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery”, CVPR 2019

https://arxiv.org/abs/1811.11155


Stagewise generation

Johnson et al., “Image Generation from Scene Graphs”, CVPR 2018

https://arxiv.org/abs/1804.01622
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Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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• Generative Adversarial Neural Network (GAN) 

• Difficult to optimize

• Variational Autoencoder (VAE) 

• Efficient comparing to GAN, but synthesis quality is moderate

• Denoising diffusion probabilistic models (DPPM) achieve state-of-the-art 

image synthesis results

• Costly in training and inference

• Latent diffusion models (LDM) – CVPR 2022

Diffusion models - Motivation

Adapted from Haolin Zhang
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• Denoising Diffusion Probabilistic Model (DDPM)

• Diffusion/forward process 𝑞(𝑥𝑡|𝑥𝑡−1)
• Denoising/reverse process 𝑝(𝑥𝑡−1|𝑥𝑡)
• Both processes are Markov Chain process: predictions can be made regarding future 

outcomes based solely on its present state

Denoising Diffusion Probabilistic Model (DDPM)

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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Denoising Diffusion Probabilistic Model (DDPM)

88

• Based on Markov Chain process:

𝑞 𝑥𝑡 𝑥𝑡−1 = N(𝑥𝑡: 1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡Ι), 𝛽𝑡  → hyperparameter

• Model the diffusion/forward process

• Define:

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞 𝑥𝑡 𝑥𝑡−1

• Based on the above 

definitions, 𝑞(𝑥𝑡) at arbitrary 

timestep  𝑡 can be derived 

purely by 𝛽𝑡 and 𝑥0

Ref: Ho, Jonathan, Ajay Jain, and Pieter Abbeel. "Denoising diffusion probabilistic 

models." Advances in neural information processing systems 33 (2020): 6840-6851.

CVPR 2022 Tutorial: Denoising Diffusion-based Generative Modeling: Foundations 

and Applications. https://cvpr2022-tutorial-diffusion-models.github.io/

 
Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
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𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞 𝑥𝑡 𝑥𝑡−1𝑞 𝑥𝑡 𝑥𝑡−1 = N(𝑥𝑡: 1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡Ι)

• Based on the above definitions, 𝑞(𝑥𝑡) at arbitrary timestep  𝑡 can be derived purely by 𝛽𝑡 and 𝑥0

• Define: 𝛼𝑡 = 1 − 𝛽𝑡, and 𝛼𝑡 = ς𝑖=1
𝑇 𝛼𝑖

𝑥𝑡 = 𝛼𝑡𝑥𝑡−1 + 1 − 𝛼𝑡𝜖, 𝜖 is sampled from N(0, Ι) 

= 𝛼𝑡𝛼𝑡−1𝑥𝑡−2 + 1 − 𝛼𝑡 𝜖 + 𝛼𝑡 1 − 𝛼𝑡−1 𝜖, 

• By addition property of gaussian 

distributions which states for two 

gaussian distributions

1 − 𝛼𝑡 𝜖 + 𝛼𝑡 1 − 𝛼𝑡−1 𝜖 can be sampled 

from 𝑁(0, 1 − 𝛼𝑡𝛼𝑡−1 I) 

= 𝛼𝑡𝛼𝑡−1𝑥𝑡−2 + 1 − 𝛼𝑡𝛼𝑡−1 𝜖

 
= 𝛼𝑡𝑥0 + 1 − 𝛼𝑡 𝜖

 

Thus, given 𝛽𝑡, and 𝑥0, the diffused sample at any arbitrary time 

step can be modeled by the above equation

1.Reparameterization 

2.Write in form of 𝑥𝑡−2  

3.Simplify through 

addition property 

4.Repeat till x0

Denoising Diffusion Probabilistic Model (DDPM)

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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• Reverse denoising process

• After diffusion process at time step 𝑻, 𝒑 𝒙𝑻 = 𝐍(𝒙𝑻; 𝟎, 𝑰)

𝑝𝜃(𝑥0:𝑇) = 𝑝 𝑥𝑇  ς𝑡=1
𝑇 𝑝𝜃 𝑥𝑡−1 𝑥𝑡

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = N(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , ∑𝜃 𝑥𝑡, 𝑡 )

Noise

Markov process

Authors propose to untrain ∑𝜃 𝑥𝑡, 𝑡  by setting ∑𝜃 𝑥𝑡 , 𝑡 = 𝜎𝑡
2, where 𝜎𝑡

2 = 𝛽𝑡

Denoising Diffusion Probabilistic Model (DDPM)

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf


Recall: Variational Lower Bound

https://jaketae.github.io/study/elbo/ 

ELBO =

x = data    q = encoder (data to noise)
h = hidden representation  p = decoder (noise to data) 

x0 = data
x1:xT = hidden representation

https://jaketae.github.io/study/elbo/
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𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = N(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , 𝜎𝑡
2𝐼)

𝑝𝜃(𝑥0:𝑇) = 𝑝 𝑥𝑇  ς𝑡=1
𝑇 𝑝𝜃 𝑥𝑡−1 𝑥𝑡

• Training objective: maximizing the log-likelihood of the sample generated (at the 

end of the reverse process) belonging to the original data distribution.

A variational upper bound can be formed 

Neural Network prediction to maximize the log-

likelihood of the sample generated

Simplified to 

Denoising Diffusion Probabilistic Model (DDPM)

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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Loss formulation and simplification - step 1

93

Derivation:

Adapted from Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

Simplified to 

[Bayes’ rule]

[Terms in sum
cancel out]

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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Purely based on 𝛽𝑡 (hyper parameter) Normal distribution

Final loss is then simplified to:

The posterior distribution is derived as:

Loss formulation and simplification - step 2

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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With

𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = N(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , 𝜎𝑡
2𝐼)

From diffusion process, we know 𝑥𝑡 = 𝛼𝑡𝑥0 + 1 − 𝛼𝑡 𝜖 (from a previous slide)

 

 
𝐿𝑡−1 = 𝔼𝑞

1

2𝜎2 ෤𝜇𝑡 𝑥𝑡,
𝑥𝑡 − 1 − 𝛼𝑡 𝜖

𝛼𝑡

− 𝜇𝜃(𝑥𝑡, 𝑡)

2

+ 𝐶

𝑝~N(𝜇0, 𝜎0), 𝑞~N(𝜇1, 𝜎1), 

Loss formulation and simplification - step 3

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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𝐿𝑡−1 = 𝔼𝑞

1

2𝜎2
෤𝜇𝑡 𝑥𝑡 ,

𝑥𝑡 − 1 − 𝛼𝑡 𝜖

𝛼𝑡

− 𝜇𝜃(𝑥𝑡, 𝑡)

2

Can be learned by neural 

network given (𝑥𝑡 , 𝑡) 

𝑥𝑡

𝜖𝜃 predicted by NN

Loss formulation and simplification - step 4

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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Denoising Diffusion Model – Putting it all together

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/, https://arxiv.org/pdf/2006.11239.pdf 

https://cvpr2022-tutorial-diffusion-models.github.io/
https://arxiv.org/pdf/2006.11239.pdf
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• Problem with DDPM
• Both diffusion and reverse denoising process operate at pixel space --> extremely 

computation expensive
• Can we optimize it by diffuse and denoise in latent space? 

• Method
• Autoencoder which learns a space that is perceptually equivalent to the image space
• Perceptual Compression: removes imperceptible high frequency details
• Semantic Compression: conceptual composition of the image

Rombach et al. "High-Resolution Image Synthesis with Latent Diffusion Models." CVPR 2022.

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/


99 

• Perceptual image compression --- Autoencoder

• Input: image 𝑥 ∈ ℝ𝐻×𝑊×3

• Encoder 𝜀 encodes input 𝑥 to 𝑧 = 𝜀 𝑥  

∈ ℝℎ×𝑤×3

• Decoder 𝐷 reconstructs the images 

from the latent ෤𝑥 = 𝐷(𝑧)

• The encoder is set to down sample 

the image by a factor of 𝑓 =
𝐻

ℎ
=

𝑊

𝑤
 

Regularizing Loss

Loss for training the autoencoder is formulated as:
Patch-based 

Discriminator

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Diffusion model training and loss formulation

For denoising diffusion probabilistic model (DDPM)

Pixel Space

For latent diffusion model (LDM)

Latent Space from the trained Autoencoder

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Conditioning mechanism
• Flexible image generator by augmenting UNet with cross attention mechanism

• To condition the generator on 𝑦 from 

various modalities, an encoder 𝜏𝜃 is first 

applied to project 𝑦 to the intermediate 

representation 𝜏𝜃(𝑦)

• The representation is then mapped to 

the UNet through cross-attention 

mechanism which:

Denoising UNet
The loss for conditional LDM is thus 

formulated as:

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Image generation

• State-of-the-art 

performance on 

CelebA-HQ dataset 

FID metrics

• Comparable 

performances on 

other datasets

• Generally better 

precision and 

recall→ better mode 

coverage

Rombach et al. "High-Resolution Image Synthesis with Latent Diffusion Models." CVPR 2022.

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Image generation (Qualitative Results)

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Conditional LDM on text to image generation

• 1.45B parameter KL-

regularized LDM conditioned on 

language prompts on LAION-

400M 

• Employ Bert tokenizer and set 

𝜏𝜃(𝑦) as transformer 

• Evaluate on MS-COCO 

validation dataset
• Achieves comparable text to image synthesis 

results with significantly less parameters

Architecture of 

transformer 

block for cross-

attention 

conditioning

Not T time 

steps, but T 

transformer 

blocks in 

UNet

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Image super resolution ---- condition on low resolution image by 
direct concatenation 

• By concatenating spatially aligned 

conditioning information to the input of 

𝜖𝜃, LDMs can serve as efficient 

general image-to-image translation 

model

• Trained on ImageNet. Create low 

resolution by first down-sampling 4× 

through bicubic interpolation

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Image super resolution ---- condition on low resolution image by 
concatenation 

• Regression model 

performs better in PSNR 

and SSIM because these 

metrics favor blurriness 

rather than incorrect  high 

frequency details

• Human evaluation show 

generally better LDM 

performance over pixel-

based DM

Rombach et al. "High-Resolution Image Synthesis with Latent Diffusion 

Models." CVPR 2022.

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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• Image inpainting

• LDM achieves better or 

comparable performances 

Latent Diffusion Model

Haolin Zhang, https://cvpr2022-tutorial-diffusion-models.github.io/

https://cvpr2022-tutorial-diffusion-models.github.io/
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Teddy bears mixing sparkling 
chemicals as mad scientists

An astronaut riding a horse in a 
photorealistic style

A bowl of soup as a planet in the 
universe

DALLE 2 (Text-to-Image)

Aryan Jain, https://openai.com/dall-e-2/

https://openai.com/dall-e-2/
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A cute corgi lives in a house made of 
sushi

A majestic oil painting of a raccoon 

Queen wearing red French royal 

gown. 

A robot couple fine-dining with the 

Eiffel Tower in the background

Imagen (Text-to-Image)

Aryan Jain, https://imagen.research.google/

https://imagen.research.google/
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A young couple walking in heavy 
rain

Horse drinking waterAn artist’s brush painting on a 
canvas close up

Make-A-Video (Text-to-Video)

Aryan Jain, https://makeavideo.studio/
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A confused grizzly bear in a calculus 
class

A golden retriever eating ice cream 
on a beautiful tropical beach at 

sunset, high resolution

A panda playing on a swing set

Make-A-Video (Text-to-Video)

Aryan Jain, https://makeavideo.studio/
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Imagen Video (Text-to-Video)

Aryan Jain, https://imagen.research.google/video/

https://imagen.research.google/video/
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a fox holding a video game controller a lobster playing the saxophone

a corgi wearing a beret and holding a baguette, standing 
up on two hind legs

a human skeleton drinking a glass of red wine

DreamFusion (Text-to-3D)

Aryan Jain, https://dreamfusion3d.github.io/gallery.html

https://dreamfusion3d.github.io/gallery.html
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Diffuser (Trajectory Planning)

Aryan Jain, https://diffusion-planning.github.io/

https://diffusion-planning.github.io/
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GLIGEN: Open-Set Grounded Text-to-Image 
Generation

Yong Jae Lee, https://huggingface.co/spaces/gligen/demo, https://gligen.github.io/ 

https://huggingface.co/spaces/gligen/demo
https://gligen.github.io/


GLIGEN: Open-Set Grounded Text-to-Image 

Generation

Yong Jae Lee, https://huggingface.co/spaces/gligen/demo, https://gligen.github.io/ 

Talk by Yong Jae Lee on April 12, 2pm, Sennott Square 5317

https://huggingface.co/spaces/gligen/demo
https://gligen.github.io/
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