CS 1678/2078: Intro to Deep Learning
Reinforcement Learning

Prof. Adriana Kovashka
University of Pittsburgh
April 8, 2024

Plan for this lecture

e Basics: actions, states, rewards, MDP

* Different techniques (Q learning, policy
gradients, actor-critic, etc.)

 Example applications

Reinforcement Learning

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

—
M —F >

F77 77777777 777777777 7777777777

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Go

A BCDEFGH)] KLMNUOPOQRST

19 19

18 /R 18

17 () 17

16 i 16

15 ‘.qi(}_(/ 15

i: ‘ i: Objective: Win the game!

12 12

- hd ., State: Position of all pieces

9 s Action: Where to put the next piece down
; i > Reward: 1 if win at the end of the game, 0 otherwise
6 & £] 6

5 & 5

4 HC ﬁ 4

3 3

2 2

1 1

A BCDEFGH)] KLMNUOPOQRST

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

How can we mathematically formalize
the RL problem?

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by: (S, A, R, P,~)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LEFAE 0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Markov Decision Process

- At time step t=0, environment samples initial state s, ~ p(s,)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r,~ R(. | s,, &)

- Environment samples next state s,,, ~ P(. | s, a,)

- Agent receives reward r,and next state s, ,

- Anpolicy u is a function from S to A that specifies what action to take in
each state

- Objective: find policy u* that maximizes cumulative discounted reward: Z’}’t?“t
t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

A simple MDP: Grid World

actions = { states
1. right — *
2. left <— Set a negative “reward”
3. u I o for each transition
- (e.9.r=-1)
4. down 1
}

Objective: reach one of terminal states (greyed out) in
least number of actions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

A simple MDP: Grid World

* 1

SEGERSE IEE

SRR D

Random Policy Optimal Policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

The optimal policy u*®

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

The optimal policy u*®

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7* = argmaxE
T

Z’Yt?‘tlﬂ'] W|th 8p NP(S[}),ﬂt i W('|St)53t—|—l Np('|3t,,[1t)

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Definitions: Value and Q-value functions

Following a policy produces sample trajectories (or paths) s, a,, o, Sy, @5, I, .-

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:

VT(s) = Zf}f Ti|So = 8, T

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E Z'ytms[} =8,0y)=a,T

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Bellman equation

The optimal Q-value function Q*
is the maximum expected cumulative reward achievable from a given (state, action) pair:

Q*(s,a) = maxE | 3" 'rilso = 5,00 = a,m
>0

Q* satisfies the following Bellman equation:

Q*(s,a) =Eg g ['r‘ + ymax Q*(s',a’)|s, a,]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+~Q* (s, a’)

The optimal policy u* corresponds to taking the best action in any state as specified by Q*

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Solving for the optimal policy:
Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe a0 Q' (3,0)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q-network Architecture

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q(s,a;0): FC-4 (Q-values) < Last FC layer has 4-d

neural network output (if 4 actions),

with weights § FC-256 corresponding to
Q(s, &), Q(s, a,),

A single feedforward pass Qs a,), Qlspa,)

to compute Q-values for all

actions from the current Number of actions between 4-18

state => efficient! 11n g

|

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

depending on Atari game

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

for episode = 1, M do - Play M episodes (full games)
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a;)

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;) *
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a;)

Execute action a; in emulator and observe reward r; and image z;

Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Initialize state
(starting game
screen pixels) atthe
beginning of each
episode

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
for iv?thl’ Tl‘)iobili ; . _ - For each timestep t
ith probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a;) of the game
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;, <
otherwise select a; = max, Q*(¢(s¢),a;)

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (¢, @y, 7y, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Skl T3 for terminal ¢,
g r; +ymaxy Q(¢j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 0))2 according to equation 3
end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;

Set 8,1 = 84, a4, Ty and preprocess @y.1 = P(S141) - Take the action (a,),
Store transition (@, ay, 7y, ¢re1) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r,and next
Sety, = Tj , for terminal (.bj+1 state s, ,
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6))? according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set 841 = 84, a4, Ty41 and preprocess @1 = (841 e
Store transition (@, az, 7¢, G141) in D () < Store transition in
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D replay memory
S . { Tj for terminal ¢,
ety; = . : . ’. : .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,

Perform a gradient descent step on (y; — Q(¢;, a;; 6))2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a;)
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (¢, @y, 7y, ¢¢+1) in D _
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) fromD <« EXperience Replay:

Gl i { T; for terminal ¢, Sample a random
Yi r; + ymax, Q(¢j+1,a’;0) for non-terminal ¢, , minibatch of transitions
Perform a gradient descent step on (y; — Q(¢;, a;; 0))2 according to equation 3 from replay memory
end for and perform a gradient
end for descent step

https://arxiv.org/pdf/1312.5602.pdf

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

https://arxiv.org/pdf/1312.5602.pdf

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients

Formally, let’s define a class of parameterized policies: IT = {7y,0 € R™}

For each policy, define its value:

J(@) =E Z Yire|me

t>0

We want to find the optimal policy 6* = arg max J(6)

How can we do this?
Gradient ascent on policy parameters!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

REINFORCE Algorithm (Williams 1992)

Gradient estimator: ~ VyJ(0) ~ ZT‘(T)VQ log mo(a|st)

t>0
Interpretation:
- If r(7) is high, push up the probabilities of the actions seen

- If r(7) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients

UP DOWN DOWN DOWN

o— o oo .0 .@ WIN

", Mo .0 L -0 LOSE

DDWN... DOWN._. DOWN.. DOWN UP @ LOSE
" .0 o0 WIN

Andrej Karpathy

REINFORCE Algorithm (Williams 1992)

Gradient estimator: ~ VyJ(0) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:
- If r(7) is high, push up the probabilities of the actions seen

- If r(7) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment
Is really hard. Can we help the estimator?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Variance Reduction

Gradient estimator: Vg J(8) & ZT‘(T)VQ log mo(a|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Ved(0) = Z (Z “rtr) Vo log me(as|st)

>0 \t/'>t

Second idea: Use discount factor y to ignore delayed effects

Vo J (6 Z (Z S) Vo log me(as|st)

t>0 \t'>t

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Variance Reduction: Baseline

Problem: The raw value of a trajectory isn’'t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VoJ (0 Z (Z fyt e, — b(s¢)) Vo log mg(a|st)

t>0 \t'>t

Fei-Fei Li, Ranjay Krishna, Danfei Xu

How to choose the baseline?

Want to push up the probability of an action from a state, if this action was
better than the expected value of what we should get from that state.

Intuitively, we are happy with an action a. in a state s,if Q" (s¢;a¢) — V7™ (sy)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator:

VoJ(0) ~ Z(Q“f" (s¢,at) — V7™ (s¢)) Vg logme(at|st)

t>0

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Actor-Critic Algorithm

We can combine Policy Gradients and Q-learning by training both an
actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Define by the advantage function how much an action was better

than expected A (s,a) = Q™ (s,a) — V™ (s)

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients tl;dr

* Objective: YiAilog p(yilxi)
* X, = state
* y. =sampled action

* A =“advantage” e.g. +1/-1 for win/lose in
simplest version, or discounted, or
improvement over “baseline”

Adapted from Andrej Karpathy

Policy Gradients vs Q-Learning

Policy gradients suffers from high variance and
instability; might want to make gradients smaller (e.g.
relative to a baseline)

Policy gradients can handle continuous action spaces
(Gaussian policy)

Estimating exact value of state-action pairs vs choosing
what actions to take (value not important)

Step-by-step (did | correctly estimate the reward at this
time) vs delayed feedback (run policy and wait until
game terminates)

RL for navigation

target-driven visual navigation

\J update
observation

— | act < target 1

i
y
o

Fig. 1. The goal of our deep reinforcement learning model is to navigate
towards a visual target with a minimum number of steps. Our model takes
the current observation and the image of the target as input and generates
an action in the 3D environment as the output. Our model learns to navigate
to different targets in a scene without re-training.

Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning”, ICRA 2017

RL for navigation

Figure 1: Our goal is to use scene priors to improve navigation in unseen scenes and towards novel
objects. (a) There is no mug in the field of view of the agent, but the likely location for finding a
mug is the cabinet near the coffee machine. (b) The agent has not seen a mango before, but it infers
that the most likely location for finding a mango is the fridge since similar objects such as apple

appear there as well. The most likely locations are shown with the orange box.

St

p e

History frames l

Actor-Critic Model
Environment
HESNEESUNE—— 1 -~~~ -~~-~-—-=--~ -
) L
'
1
1
Value : at
1
“Television” 1
___________ | Action
% M ' Sampler
:Remote : FC (512) Policy :
1 ' !
g ! Gaph [B B ’
) i Convolutional
| % - Network
1
e - FC (512)
l\ Television J Joint

__________ Embedding

Figure 2: Overview of the architecture. Our model to incorporate semantic knowledge into se-
mantic navigation. Specifically, we learn a policy network that decides an action based on the visual
features of the current state, the semantic target category feature and the features extracted from the
knowledge graph. We extract features from the parts of the knowledge graph that are activated.

Yang et al., “Visual Semantic Navigation using Scene Priors”, ICLR 2019

RL for question-answering

)&

) ‘»"»& Q: What color is the car?

{
)

il
"\|||IUI

Figure 1: Embodied Question Answering — EmbodiedQA— tasks
agents with navigating rich 3D environments in order to answer
questions. These agents must jointly learn language understand-
ing, visual reasoning, and goal-driven navigation to succeed.

Das et al., “Embodied Question Answering”, CVPR 2018

RL for question-answering

CINN CNN CNN “
0 1 2 0
hess ¥ s e i ., e
gy q At 2 Ay 43
r’ PLNR L & ¥ ¥ v ¥ * ¥ r. PLNR v v - ¥ r’ PLNR
Q CTRL CTRL CTRL CTRL Q CTRL CTRL Q
0 1 1 1 0 1 0
At 41 RETURN Qg 42 0t +3 [a +2 RETURN ;43 @ 43 RETURN ap 1q
TURN RIGHT FORWARD FORWARD FORWARD FORWARD TURN LEFT TURN LEFT STOF

Figure 4: Our PACMAN navigator decomposes navigation into a planner and a controller. The planner selects actions and the controller
executes these actions a variable number of times. This enables the planner to operate on shorter timescales, strengthening gradient flows.

Das et al., “Embodied Question Answering”, CVPR 2018

RL for object detection

Sequence of attended regions to localize the object

Figure 1. A sequence of actions taken by the proposed algorithm
to localize a cow. The algorithm attends regions and decides how
to transform the bounding box to progressively localize the object.

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015

RL for object detection

Horizontal moves Vertical moves Scale changes Aspect ratio changes
Right Left Down Bigger Smaller Fatter Taller Trigger

Figure 2. Illustration of the actions in the proposed MDP, giving 4
degrees of freedom to the agent for transforming boxes.

Ra(s,s") = sign (IoU (b, g) — IoU (b, g)) R,(s,5) =

—n otherwise

action
hfstoryl;l
Size: 224 pixels
1024 102 9
units unit action
5 conv 4096
layers units

Layer 6 Layer 1 Layer2 Output

Input region Pre-trained CNN Deep QNetwork

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015

+n it loU(b,g) > T

	Slide 1: CS 1678/2078: Intro to Deep Learning Reinforcement Learning
	Slide 2: Plan for this lecture
	Slide 3: Reinforcement Learning
	Slide 4: Cart-Pole Problem
	Slide 5: Atari Games
	Slide 6: Go
	Slide 7: How can we mathematically formalize the RL problem?
	Slide 8: Markov Decision Process
	Slide 9: Markov Decision Process
	Slide 10: A simple MDP: Grid World
	Slide 11: A simple MDP: Grid World
	Slide 12: The optimal policy u*
	Slide 13: The optimal policy u*
	Slide 14: Definitions: Value and Q-value functions
	Slide 15: Bellman equation
	Slide 16: Solving for the optimal policy: Q-learning
	Slide 17: Q-network Architecture
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Putting it together: Deep Q-Learning with Experience Replay
	Slide 22
	Slide 23: Putting it together: Deep Q-Learning with Experience Replay
	Slide 24: Putting it together: Deep Q-Learning with Experience Replay
	Slide 25: Putting it together: Deep Q-Learning with Experience Replay
	Slide 26: Putting it together: Deep Q-Learning with Experience Replay
	Slide 27: Policy Gradients
	Slide 28: Policy Gradients
	Slide 29: REINFORCE Algorithm (Williams 1992)
	Slide 30: Policy Gradients
	Slide 31: REINFORCE Algorithm (Williams 1992)
	Slide 32: Variance Reduction
	Slide 33: Variance Reduction: Baseline
	Slide 34: How to choose the baseline?
	Slide 35: Actor-Critic Algorithm
	Slide 36: Policy Gradients tl;dr
	Slide 37: Policy Gradients vs Q-Learning
	Slide 38: RL for navigation
	Slide 39: RL for navigation
	Slide 40: RL for question-answering
	Slide 41: RL for question-answering
	Slide 42: RL for object detection
	Slide 43: RL for object detection

