
CS 1678/2078: Intro to Deep Learning

Reinforcement Learning

Prof. Adriana Kovashka
University of Pittsburgh

April 8, 2024

Plan for this lecture

• Basics: actions, states, rewards, MDP

• Different techniques (Q learning, policy
gradients, actor-critic, etc.)

• Example applications

Agent

Environment

Action a
t

State st Reward rt

Next state s

Lecture 14 - 3

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

t+1

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Reinforcement Learning

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Cart-Pole Problem

Atari Games

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung 5

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Objective: Win the game!

State: Position of all pieces

Action: Where to put the next piece down

Reward: 1 if win at the end of the game, 0 otherwise

Lecture 14 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Go

Agent

Environment

Action a
t

State st Reward rt

Next state s

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

t+1

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

How can we mathematically formalize
the RL problem?

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by:

: set of possible states

: set of possible actions

: distribution of reward given (state, action) pair

: transition probability i.e. distribution over next state given (state, action) pair

: discount factor

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Markov Decision Process

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

- At time step t=0, environment samples initial state s0 ~ p(s0)

- Then, for t=0 until done:

- Agent selects action at

- Environment samples reward rt ~ R(. | st, at)

- Environment samples next state st+1 ~ P(. | st, at)

- Agent receives reward rt and next state st+1

- A policy u is a function from S to A that specifies what action to take in

each state

- Objective: find policy u* that maximizes cumulative discounted reward:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Markov Decision Process

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

★

★

actions = {

1. right

2. left

3. up

4. down

}

Objective: reach one of terminal states (greyed out) in

least number of actions

Set a negative “reward”

for each transition

(e.g. r = -1)

states

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

A simple MDP: Grid World

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Random Policy Optimal Policy

★

★

★

★

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

A simple MDP: Grid World

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

The optimal policy u*

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?

Maximize the expected sum of rewards!

Formally: with

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

The optimal policy u*

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Definitions: Value and Q-value functions

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,

then the optimal strategy is to take the action that maximizes the expected value of

The optimal policy u* corresponds to taking the best action in any state as specified by Q*

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Q* satisfies the following Bellman equation:

The optimal Q-value function Q*

is the maximum expected cumulative reward achievable from a given (state, action) pair:

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Bellman equation

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Q-learning: Use a function approximator to estimate the action-value function

function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Solving for the optimal policy:
Q-learning

:
neural network

with weights

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Current state st: 84x84x4 stack of last 4 frames

(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d

output (if 4 actions),

corresponding to

Q(s
t
, a

1
), Q(s

t
, a

2
),

Q(s
t
, a

3
), Q(s

t
,a

4
)

Number of actions between 4-18

depending on Atari game

A single feedforward pass

to compute Q-values for all

actions from the current

state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q-network Architecture

Putting it together: Deep Q-Learning with Experience Replay

Fei-Fei Li & Justin Johnson
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Initialize replay memory, Q-network

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Putting it together: Deep Q-Learning with Experience Replay

Play M episodes (full games)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Initialize state

(starting game

screen pixels) at the

beginning of each

episode

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

For each timestep t

of the game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li & Justin Johnson
& Serena Yeung

May 22, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Putting it together: Deep Q-Learning with Experience Replay

Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

With small probability,

select a random

action (explore),

otherwise select

greedy action from

current policy

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Take the action (a
t
),

and observe the

reward rt and next

state st+1

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Putting it together: Deep Q-Learning with Experience Replay

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Store transition in

replay memory

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Experience Replay:

Sample a random

minibatch of transitions

from replay memory

and perform a gradient

descent step

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

https://arxiv.org/pdf/1312.5602.pdf

Putting it together: Deep Q-Learning with Experience Replay

https://arxiv.org/pdf/1312.5602.pdf

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

What is a problem with Q-learning?

The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard

to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of

policies?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We want to find the optimal policy

How can we do this?

Gradient ascent on policy parameters!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Policy Gradients

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Gradient estimator:

Interpretation:

- If r(τ) is high, push up the probabilities of the actions seen

- If r(τ) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were

good. But in expectation, it averages out!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

REINFORCE Algorithm (Williams 1992)

Andrej Karpathy

Policy Gradients

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

Gradient estimator:

Interpretation:

- If r(τ) is high, push up the probabilities of the actions seen

- If r(τ) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were

good. But in expectation, it averages out!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

REINFORCE Algorithm (Williams 1992)

However, this also suffers from high variance because credit assignment

is really hard. Can we help the estimator?

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative

future reward from that state

Second idea: Use discount factor 𝛾 to ignore delayed effects

Lecture 14 -

June 04, 2020

Variance Reduction

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Problem: The raw value of a trajectory isn’t necessarily meaningful. For

example, if rewards are all positive, you keep pushing up probabilities of

actions.

What is important then? Whether a reward is better or worse than what you

expect to get

Idea: Introduce a baseline function dependent on the state.

Concretely, estimator is now:

Lecture 14 -

June 04, 2020

Variance Reduction: Baseline

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Want to push up the probability of an action from a state, if this action was

better than the expected value of what we should get from that state.

Intuitively, we are happy with an action at in a state st if

is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

Lecture 14 -

34

How to choose the baseline?

Fei-Fei Li, Ranjay Krishna, Danfei Xu

May 22, 2018 Fei-Fei Li & Justin Johnson & SerenaYeung

We can combine Policy Gradients and Q-learning by training both an

actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor

how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values

of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Define by the advantage function how much an action was better

than expected

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Actor-Critic Algorithm

• Objective:

• xi = state

• yi = sampled action

• Ai = “advantage” e.g. +1/-1 for win/lose in
simplest version, or discounted, or
improvement over “baseline”

∑i Ai log p(yi∣xi)

Adapted from Andrej Karpathy

Policy Gradients tl;dr

• Policy gradients suffers from high variance and
instability; might want to make gradients smaller (e.g.
relative to a baseline)

• Policy gradients can handle continuous action spaces
(Gaussian policy)

• Estimating exact value of state-action pairs vs choosing
what actions to take (value not important)

• Step-by-step (did I correctly estimate the reward at this
time) vs delayed feedback (run policy and wait until
game terminates)

Policy Gradients vs Q-Learning

RL for navigation

Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning”, ICRA 2017

RL for navigation

Yang et al., “Visual Semantic Navigation using Scene Priors”, ICLR 2019

RL for question-answering

Das et al., “Embodied Question Answering”, CVPR 2018

RL for question-answering

Das et al., “Embodied Question Answering”, CVPR 2018

RL for object detection

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015

RL for object detection

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015

	Slide 1: CS 1678/2078: Intro to Deep Learning Reinforcement Learning
	Slide 2: Plan for this lecture
	Slide 3: Reinforcement Learning
	Slide 4: Cart-Pole Problem
	Slide 5: Atari Games
	Slide 6: Go
	Slide 7: How can we mathematically formalize the RL problem?
	Slide 8: Markov Decision Process
	Slide 9: Markov Decision Process
	Slide 10: A simple MDP: Grid World
	Slide 11: A simple MDP: Grid World
	Slide 12: The optimal policy u*
	Slide 13: The optimal policy u*
	Slide 14: Definitions: Value and Q-value functions
	Slide 15: Bellman equation
	Slide 16: Solving for the optimal policy: Q-learning
	Slide 17: Q-network Architecture
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Putting it together: Deep Q-Learning with Experience Replay
	Slide 22
	Slide 23: Putting it together: Deep Q-Learning with Experience Replay
	Slide 24: Putting it together: Deep Q-Learning with Experience Replay
	Slide 25: Putting it together: Deep Q-Learning with Experience Replay
	Slide 26: Putting it together: Deep Q-Learning with Experience Replay
	Slide 27: Policy Gradients
	Slide 28: Policy Gradients
	Slide 29: REINFORCE Algorithm (Williams 1992)
	Slide 30: Policy Gradients
	Slide 31: REINFORCE Algorithm (Williams 1992)
	Slide 32: Variance Reduction
	Slide 33: Variance Reduction: Baseline
	Slide 34: How to choose the baseline?
	Slide 35: Actor-Critic Algorithm
	Slide 36: Policy Gradients tl;dr
	Slide 37: Policy Gradients vs Q-Learning
	Slide 38: RL for navigation
	Slide 39: RL for navigation
	Slide 40: RL for question-answering
	Slide 41: RL for question-answering
	Slide 42: RL for object detection
	Slide 43: RL for object detection

