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Plan for this lecture

• From language models (LLMs) to assistants
– Instruction tuning 

– Zero-shot and few-shot emergent capabilities 

– Prompt tuning and adaptation  

• Vision-language foundation models (VLMs)
– Contrastive Language-Image Pretraining (CLIP)

– Using LLM descriptions to help with vision tasks 

– Learning class and visual input prompts, for vision tasks

– Advanced VLMs: BLIP-2, LLAVA

– Other applications: Visual Programming, CLIP for robotics



https://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress

Larger and larger models

Jesse Mu, Tatsunori Hashimoto

http://www.economist.com/interactive/briefing/2022/06/11/huge-foundation-models-are-turbo-charging-ai-progress


# tokens seen during training

https://babylm.github.io/

Trained on more and more data

Jesse Mu, Tatsunori Hashimoto



[Larnerd, 2023]

…medicine:

Language models as world models?

Jesse Mu, Tatsunori Hashimoto



[Microsoft Bing]

(Also see OpenAI’s ChatGPT, 
Google’s Bard, Anthropic’s Claude)

Language models as multitask 
assistants?

Jesse Mu, Tatsunori Hashimoto



• How do we get from this

• Stanford University is located in 

• to this?

Language models as multitask 
assistants?

Jesse Mu, Tatsunori Hashimoto



1. Instruction finetuning

2. Reinforcement Learning from Human Feedback (RLHF)

3. What’s next?

From Language Models to Assistants

Jesse Mu, Tatsunori Hashimoto



Language models are not aligned with user intent [Ouyang et al., 2022].

Language modeling ≠ assisting users

Jesse Mu, Tatsunori Hashimoto



Human
A giant rocket ship blasted off from Earth carrying 
astronauts to the moon. The astronauts landed their 
spaceship on the moon and walked around exploring the 
lunar surface. Then they returned safely back to Earth, 
bringing home moon rocks to show everyone.

Language models are not aligned with user intent [Ouyang et al., 2022].
Finetuning to the rescue!

Language modeling ≠ assisting users

Jesse Mu, Tatsunori Hashimoto



Pretraining can improve NLP applications by serving as parameter initialization.

Decoder 
(Transformer,LSTM,++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Decoder 
(Transformer,LSTM,++)

☺/

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

… the movie was …

Recall: The Pretraining / Finetuning 
Paradigm

Jesse Mu, Tatsunori Hashimoto



Pretraining can improve NLP applications by serving as parameter initialization.

Decoder 
(Transformer,LSTM,++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Decoder 
(Transformer,LSTM,++)

☺/

Step 2: Finetune (on many tasks)

Not many labels; adapt to the tasks!

… the movie was …

Scaling up finetuning

Jesse Mu, Tatsunori Hashimoto



• Collect examples of (instruction, output) pairs across many tasks and finetune an LM

[FLAN-T5; Chung et al., 2022]

• Evaluate on unseen tasks

Instruction finetuning

Jesse Mu, Tatsunori Hashimoto



[Wang et al., 2022]

• As is usually the case, data + model 
scale is key for this to work!

• For example, the Super-
NaturalInstructions dataset 
contains over 1.6K tasks, 
3M+ examples

• Classification, sequence tagging, 
rewriting, translation, QA...

• Q: how do we evaluate such a 
model?

Instruction finetuning pretraining?

Jesse Mu, Tatsunori Hashimoto



Massive Multitask Language 
Understanding (MMLU) 
[Hendrycks et al., 2021]

New benchmarks for measuring LM 
performance on 57 diverse knowledge 
intensive tasks

New benchmarks for multitask LMs

Jesse Mu, Tatsunori Hashimoto



Some intuition: examples from MMLU

Jesse Mu, Tatsunori Hashimoto



• Rapid, impressive progress on challenging knowledge-intensive benchmarks

Progress on MMLU

Jesse Mu, Tatsunori Hashimoto



BIG-Bench [Srivastava et al., 2022] 
200+ tasks, spanning:

https://github.com/google/BIG-
bench/blob/main/bigbench/benchmark_tasks/README.md

New benchmarks for multitask LMs

Jesse Mu, Tatsunori Hashimoto



Before instruction finetuning

Highly recommend trying FLAN-T5 out to get a sense of its capabilities: 
https://huggingface.co/google/flan-t5-xxl

[Chung et al., 2022]

Instruction finetuning

Jesse Mu, Tatsunori Hashimoto



After instruction finetuning

Highly recommend trying FLAN-T5 out to get a sense of its capabilities: 
https://huggingface.co/google/flan-t5-xxl

[Chung et al., 2022]

Instruction finetuning

Jesse Mu, Tatsunori Hashimoto



• One limitation of instruction finetuning is obvious: it’s expensive to collect ground-
truth data for tasks.

• But there are other, subtler limitations too. Can you think of any?

• Problem 1: tasks like open-ended creative generation have no right answer.

• Write me a story about a dog and her pet grasshopper.

• Problem 2: language modeling penalizes all token-level mistakes equally, but some
errors are worse than others.

• Even with instruction finetuning, there 
a mismatch between the LM
objective and the objective of 
“satisfy human preferences”!

• Can we explicitly attempt to satisfy 
human preferences?

LM

Avatar is a fantasy TV show

is a
adventure

fantasy

musical

TV show END

Limitations of instruction finetuning?

Jesse Mu, Tatsunori Hashimoto



1. Instruction finetuning

+ Simple and straightforward, generalize to unseen tasks
– Collecting demonstrations for so many tasks is expensive
– Mismatch between LM objective and human preferences

2. Reinforcement Learning from Human Feedback (RLHF)

3. What’s next?

From Language Models to Assistants

Jesse Mu, Tatsunori Hashimoto



• Let’s say we were training a language model on some task (e.g. summarization).

• For each LM sample 𝑠, imagine we had a way to obtain a human reward of that 
summary: 𝑅 𝑠 ∈ ℝ, higher is better.

An earthquake hit 

San Francisco.

There was minor 

property damage, 

but no injuries.

𝑠1
𝑅 𝑠1 = 8.0

The Bay Area has 

good weather but is 

prone to 

earthquakes and 

wildfires.

𝑠2
𝑅 𝑠2 = 1.2

• Now we want to maximize the expected reward of samples from our LM:

E𝑠 ̂~𝑝𝜃(𝑠) 𝑅(𝑠 ̂ )

SAN FRANCISCO,

California (CNN) --

A magnitude 4.2 

earthquake shook the 

San Francisco

...

overturn unstable 

objects.

Note: for mathematical simplicity 
we’re assuming only one “prompt”

Optimizing for human preferences

Jesse Mu, Tatsunori Hashimoto



• First step: instruction tuning!

• Second + third steps: maximize reward (but how??)

High-level instantiation: RLHF pipeline

Jesse Mu, Tatsunori Hashimoto



• The field of reinforcement learning (RL) has studied these 
(and related) problems for many years now
[Williams, 1992; Sutton and Barto, 1998]

• Circa 2013: resurgence of interest in RL applied
to deep learning, game-playing [Mnih et al., 2013]

• But the interest in applying RL to modern LMs is
an even newer phenomenon [Ziegler et al., 2019;
Stiennon et al., 2020; Ouyang et al., 2022]. Why?

• RL w/ LMs has commonly been viewed as very
hard to get right (still is!)

• Newer advances in RL algorithms that work for 
large neural models, including language
models (e.g. PPO; [Schulman et al., 2017])

Reinforcement learning to the rescue

Jesse Mu, Tatsunori Hashimoto



• How do we actually change our LM parameters 𝜃 to maximize this?

E𝑠 ̂~𝑝𝜃(𝑠) 𝑅(𝑠 ̂ )

• Let’s try doing gradient ascent!

𝜃𝑡+1 ≔ 𝜃𝑡 + 𝛼 ∇𝜃𝑡E𝑠 ̂ ~𝑝𝜃𝑡(𝑠) 𝑅(𝑠 ̂ )

How do we estimate 
expectation??

• Policy gradient methods in RL (e.g., REINFORCE; [Williams, 1992]) give us tools for 
estimating and optimizing this objective.

• We’ll describe a very high-level mathematical overview of the simplest policy gradient 
estimator, but a full treatment of RL is outside the scope of this course.

What if our reward 
function is non-
differentiable??

Optimizing for human preferences

Jesse Mu, Tatsunori Hashimoto



A (very!) brief introduction to policy 
gradient/REINFORCE [Williams, 1992]

Jesse Mu, Tatsunori Hashimoto



A (very!) brief introduction to policy 
gradient/REINFORCE [Williams, 1992]

Jesse Mu, Tatsunori Hashimoto



An earthquake hit 

San Francisco.

There was minor 

property damage, 

but no injuries.

𝑠1
𝑅 𝑠1 = 8.0

The Bay Area has 

good weather but is 

prone to 

earthquakes and 

wildfires.

𝑠2
𝑅 𝑠2 = 1.2

• Awesome: now for any arbitrary, non-differentiable reward function 𝑅 𝑠 , we can 
train our language model to maximize expected reward.

• Not so fast! (Why not?)

• Problem 1: human-in-the-loop is expensive!

• Solution: instead of directly asking humans for preferences, model their 
preferences as a separate (NLP) problem! [Knox and Stone, 2009]

Train an LM 𝑅𝑀𝜙 𝑠 to 
predict human 
preferences from an 
annotated dataset, then 
optimize for 𝑅𝑀𝜙

instead.

How do we model human preferences?

Jesse Mu, Tatsunori Hashimoto



Bradley-Terry [1952] paired comparison model

𝐽𝑅𝑀 𝜙 = − E 𝑠w ,𝑠 𝑙 ~𝐷 log 𝜎(𝑅𝑀𝜙   𝑠 w  −
𝑅𝑀𝜙(𝑠𝑙))

• Problem 2: human judgments are noisy and miscalibrated!

• Solution: instead of asking for direct ratings, ask for pairwise comparisons, which can 
be more reliable [Phelps et al., 2015; Clark et al., 2018]

An earthquake hit 

San Francisco.

There was minor 

property damage, 

but no injuries.

𝑠1

The Bay Area has 

good weather but is 

prone to 

earthquakes and 

wildfires.

𝑠2

A 4.2 magnitude 

earthquake hit 

San Francisco, 

resulting in 

massive damage.

𝑠3

> >

RewardModel (𝑅𝑀𝜙)

The Bay Area … ... wildfires

1.2

“winning” 
sample

“losing” 
sample

𝑠 w should
score higher
than 𝑠𝑙

How do we model human preferences?

Adapted from Jesse Mu, Tatsunori Hashimoto



This is a penalty which prevents us from diverging too far from 
the pretrained model. In expectation, it is known as the

𝜃Kullback-Leibler (KL) divergence between 𝑝𝑅𝐿(𝑠) and 𝑝𝑃𝑇 𝑠 .

Pay a price when
𝑅𝐿 𝑃𝑇𝑝𝜃 𝑠 > 𝑝 𝑠

• Finally, we have everything we need:

• A pretrained (possibly instruction-finetuned) LM 𝑝𝑃𝑇(𝑠)

• A reward model 𝑅𝑀𝜙(𝑠) that produces scalar rewards for LM outputs, trained on a 

dataset of human comparisons

• A method for optimizing LM parameters towards an arbitrary reward function.

• Now to do RLHF:

• Initialize a copy of the model 𝑝𝑅𝐿(𝑠) , with parameters 𝜃 we would like to optimize𝜃

• Optimize the following reward with RL:

𝑅 𝑠 = 𝑅𝑀𝜙(𝑠) − 𝛽 log
𝑝𝑅𝐿(𝑠)𝜃

𝑝𝑃𝑇(𝑠)

RLHF: Putting it all together 
[Christiano et al., 2017; Stiennon et al., 2020]

Jesse Mu, Tatsunori Hashimoto



[Stiennon et al., 2020]

𝑝𝐼𝐹𝑇(𝑠)

𝑝𝑃𝑇(𝑠)

𝑝𝑅𝐿(𝑠)

RLHF provides gains over pretraining + 
finetuning

Jesse Mu, Tatsunori Hashimoto



[Ouyang et al., 2022]33

30k 
tasks!

Jesse Mu, Tatsunori Hashimoto

InstructGPT: scaling up RLHF to tens of 
thousands of tasks



InstructGPT

Jesse Mu, Tatsunori Hashimoto



InstructGPT

Jesse Mu, Tatsunori Hashimoto



Note: OpenAI (and similar 
companies) are keeping 
more details secret about 
ChatGPT training 
(including data, training 
parameters, model size)—
perhaps to keep a 
competitive edge…

(Instruction finetuning!)

https://openai.com/blog/chatgpt/

ChatGPT: Instruction Finetuning + RLHF 
for dialog agents

Jesse Mu, Tatsunori Hashimoto



Note: OpenAI (and similar 
companies) are keeping 
more details secret about 
ChatGPT training 
(including data, training 
parameters, model size)—
perhaps to keep a 
competitive edge…

(RLHF!)

https://openai.com/blog/chatgpt/

ChatGPT: Instruction Finetuning + 
RLHF for dialog agents

Jesse Mu, Tatsunori Hashimoto



• Human preferences are
unreliable!

• ”Reward hacking” is
a common problem
in RL

• Chatbots are
rewarded to 
produce responses
that seem 
authoritative and
helpful, regardless
of truth

• This can result in
making up facts

• + hallucinations

https://www.npr.org/2023/02/09/1155650909/google-chatbot--error-bard-shares

https://news.ycombinator.com/item?id=34776508

https://apnews.com/article/kansas-city-chiefs-philadelphia-eagles-technology-science-
82bc20f207e3e4cf81abc6a5d9e6b23a

Limitations of RL + Reward Modeling

Jesse Mu, Tatsunori Hashimoto

http://www.npr.org/2023/02/09/1155650909/google-chatbot--error-bard-shares


𝑅 = 𝑅𝑀𝜙(𝑠) − 𝛽 log
𝑝𝑅𝐿(𝑠)𝜃

𝑝𝑃𝑇(𝑠)

Reward model over-optimization

• Human preferences are unreliable!

• ”Reward hacking” is a common 
problem in RL

• Chatbots are rewarded to 
produce responses that seem 
authoritative and helpful, 
regardless of truth

• This can result in making up facts
+ hallucinations

• Models of human preferences are
even more unreliable!

[Stiennon et al., 2020]

Limitations of RL + Reward Modeling

Jesse Mu, Tatsunori Hashimoto



• RLHF labels are often obtained from overseas, low-wage workers

Where do the labels come from?

Jesse Mu, Tatsunori Hashimoto



1. Instruction finetuning

+ Simple and straightforward, generalize to unseen tasks
– Collecting demonstrations for so many tasks is expensive
– Mismatch between LM objective and human preferences

2. Reinforcement Learning from Human Feedback (RLHF)

+ Directly model preferences (cf. language modeling), generalize beyond labeled data

– RL is very tricky to get right
– Human preferences are fallible; models of human preferences even more so

3. What’s next?

From Language Models to Assistants

Jesse Mu, Tatsunori Hashimoto



• RLHF is still a very underexplored and fast-
moving area!

• RLHF gets you further than instruction 
finetuning, but is (still!) data expensive.

• Recent work aims to alleviate such data 
requirements:

• RL from AI feedback [Bai et al., 2022]

• Finetuning LMs on their own outputs 
[Huang et al., 2022; Zelikman et al.,
2022]

• However, there are still many limitations
of large LMs (size, hallucination) that may
not be solvable with RLHF!

[Huang et al., 2022]

LM chain of thought

Self-Taught Reasoner (STaR) 
[Zelikman et al., 2022]

What’s next?

Jesse Mu, Tatsunori Hashimoto



Plan for this lecture

• From language models (LLMs) to assistants
– Instruction tuning 

– Zero-shot and few-shot emergent capabilities 

– Prompt tuning and adaptation  

• Vision-language foundation models (VLMs)
– Contrastive Language-Image Pretraining (CLIP)

– Using LLM descriptions to help with vision tasks 

– Learning class and visual input prompts, for vision tasks

– Advanced VLMs: BLIP-2, LLAVA

– Other applications: Visual Programming, CLIP for robotics



Let’s revisit the Generative Pretrained Transformer (GPT) 
models from OpenAI as an example:

GPT (117M parameters; Radford et al., 2018)

• Transformer decoder with 12 layers.

• Trained on BooksCorpus: over 7000 unique books (4.6GB text).

Showed that language modeling at scale can be an effective pretraining technique for 
downstream tasks like natural language inference.

entailment

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

Decoder

Emergent abilities of large language 
models: GPT (2018)

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



Let’s revisit the Generative Pretrained Transformer (GPT) 
models from OpenAI as an example:

GPT-2 (1.5B parameters; Radford et al., 2019)

• Same architecture as GPT, just bigger (117M -> 1.5B)

• But trained on much more data: 4GB -> 40GB of internet text data (WebText)

• Scrape links posted on Reddit w/ at least 3 upvotes (rough proxy of human quality)

GPT 
(2018)

GPT-2 
(2019)

117M 1.5B

Emergent abilities of large language 
models: GPT-2 (2019)

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



One key emergent ability in GPT-2 is zero-shot learning: the ability to do many tasks with no 
examples, and no gradient updates, by simply:

• Specifying the right sequence prediction problem (e.g. question answering):

Passage: Tom Brady... Q: Where was Tom Brady born? A: ...

• Comparing probabilities of sequences (e.g. Winograd Schema Challenge [Levesque, 2011]):

The cat couldn’t fit into the hat because it was too big.

Does it = the cat or the hat?

≡ Is P(...because the cat was too big) >=

P(...because the hat was too big)

?

[Radford et al., 2019]

Emergent zero-shot learning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



GPT-2 beats SoTA on language modeling benchmarks with no task-specific fine-tuning

You can get interesting zero-shot behavior if you’re creative enough with how you specify 
your task!
Summarization on CNN/DailyMail dataset [See et al., 2017]:

SAN FRANCISCO,

California (CNN) --

A magnitude 4.2 

earthquake shook

the San Francisco

...

overturn unstable

[Radford et al., 2019]

2018 SoTA

Supervised (287K)

“Too Long, Didn’t Read” 
“Prompting”?

objects. TL;DR: Select from article

ROUGE

Emergent zero-shot learning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



GPT-3 (175B parameters; Brown et al., 2020)

• Another increase in size (1.5B -> 175B)

• and data (40GB -> over 600GB)

117M 1.5B

GPT 
(2018)

GPT-2 
(2019)

GPT-3 
(2020)

175B

Emergent abilities of large language 
models: GPT-3 (2020)

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



• Specify a task by simply prepending examples of the task before your example

• Also called in-context learning, to stress that no gradient updates are performed when 
learning a new task (there is a separate literature on few-shot learning with gradient updates)

[Brown et al., 2020]

Emergent few-shot learning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



Zero-shot

[Brown et al., 2020]50

Emergent few-shot learning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



One-shot

[Brown et al., 2020]51

Emergent few-shot learning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



Few-shot

[Brown et al., 2020]52

Emergent few-shot learning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



[Brown et al., 2020]

Synthetic “word unscrambling” tasks, 100-shot

Cycle letters: 
pleap -> 

apple

Random insertion: 
a.p!p/l!e -> 

apple

Reversed words: 
elppa -> 

apple

Few-shot learning is an emergent 
property of model scale

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



Traditional fine-tuning

[Brown et al., 2020]

Zero/few-shot prompting

Prompting

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



Some tasks seem too hard for even large LMs to learn through prompting alone. 

Especially tasks involving richer, multi-step reasoning.

(Humans struggle at these tasks too!)

19583 + 29534 = 49117

98394 + 49384 = 147778

29382 + 12347 = 41729

93847 + 39299 = ?

Solution: change the 
prompt!

Limits of prompting for harder tasks?

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



[Wei et al., 2022; also see Nye et al., 2021]

Chain-of-thought prompting

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



[Wei et al., 2022; also see Nye et al., 2021]

Middle school 
math word 
problems

Chain-of-thought prompting is an 
emergent property of model scale

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



[Wei et al., 2022; also see Nye et al., 2021]

Do we even need 
examples of reasoning? 
Can we just ask the model 
to reason through things?

Chain-of-thought prompting

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



balls in total. Half of the balls are golf 

balls. That means there are 8 golf balls. 

Half of the golf balls are blue. That means 

there are 4 blue golf balls.

A: There are 16Let’s think step by step.

Q: A juggler can juggle 16 balls. Half of 

the balls are golf balls, and half of the golf 

balls are blue. How many blue golf balls 

are there?

[Kojima et al., 2022]

Zero-shot chain-of-thought prompting

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



Greatly outperforms 
zero-shot

Manual CoT 
still better

[Kojima et al., 2022]

Zero-shot chain-of-thought prompting

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



LM-Designed

[Zhou et al., 2022; Kojima et al., 2022]

Zero-shot chain-of-thought prompting

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



Use Google code header to generate more “professional” code?

Asking a model for reasoning

On Second Thought, Let's Not Think Step by Step! Bias and 
Toxicity in Zero-Shot Reasoning (Shaikh et al., 2023)

“Jailbreaking” LMs
https://twitter.com/goodside/status/1569128808308957185/photo/1

The new dark art of “prompt 
engineering”?

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



The new dark art of “prompt 
engineering”?

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



1. Inefficiency: The prompt needs to be processed every time the model makes a 
prediction.

2. Poor performance: Prompting generally performs worse than fine-tuning [Brown et
al., 2020].

3. Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], order of examples 
[Zhao et al., 2021; Lu et al., 2022], etc.

4. Lack of clarity regarding what the model learns from the prompt. Even random labels 
work [Zhang et al., 2022; Min et al., 2022]!

Downside of prompt–based learning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



[Li and Liang, 2021; Lester et al., 2021]

☺ / 

(Transformer,LSTM,++)

… the movie was …
Learnable prefix 
parameters

An input perspective of adaptation: 
Prefix-Tuning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



• Prefix-Tuning adds a prefix of 
parameters, and freezes all 
pretrained parameters.

• The prefix is processed by the 
model just like real words 
would be.

• Advantage: each element of a
batch at inference could run a
different tuned model.

Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous

prompts for generation." ACL 2021. 

https://aclanthology.org/2021.acl-long.353.pdf 

Prefix-Tuning, Prompt tuning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang

https://aclanthology.org/2021.acl-long.353.pdf


• Instead of learning parameters only at the input layer, learn them at every layer

Liu, Xiao, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. "P-tuning: Prompt tuning can be
comparable to fine-tuning across scales and tasks." ACL 2022

Optimizing multi-layer prompt tuning

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



• Only using trainable 
parameters at the input 
layer limits capacity for 
adaptation

• Prompt tuning performs
poorly at smaller model
sizes and on harder tasks

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning.” EMNLP 2021.

Prompt tuning only works well at scale

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang



LoRA: low rank adaptation (Hu et al., ICLR 2022)

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang

https://openreview.net/forum?id=nZeVKeeFYf9


LoRA: low rank adaptation (Hu et al., ICLR 2022)

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang

https://openreview.net/forum?id=nZeVKeeFYf9


LoRA: low rank adaptation (Hu et al., ICLR 2022)

https://openreview.net/forum?id=nZeVKeeFYf9


• Insert a new function f𝜙 between layers of a pre-

trained model to adapt to a downstream task ---
known as “adapters”

• An adapter in a Transformer layer consists of:

• A feed-forward down-projection 𝑊𝐷 ∈ 𝑅𝑘×𝑑

• A feed-forward up-projection 𝑊𝑈 ∈ 𝑅𝑑×𝑘

• 𝑓𝜙 𝒙 = 𝑊𝑈(𝜎 𝑊𝐷𝒙 )

Feedforward 
down-projection

Nonlinearity

Feedforward 
up-projection

+

Adapter (Houlsby et al., ICML 2019)

● The adapter is usually placed after the multi-head 
attention and/or after the feed- forward layer

Jesse Mu, Ivan Vulic, Jonas Pfeiffer, Sebastian Ruder, Diyi Yang

http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf


Plan for this lecture

• From language models (LLMs) to assistants
– Instruction tuning 

– Prompt tuning and adaptation  

– Zero-shot and few-shot emergent capabilities 

• Vision-language foundation models (VLMs)
– Contrastive Language-Image Pretraining (CLIP)

– Using LLM descriptions to help with vision tasks 

– Learning class and visual input prompts, for vision tasks

– Advanced VLMs: BLIP-2, LLAVA

– Other applications: Visual Programming, CLIP for robotics



Learning vision tasks from noisy web data

• Massive datasets of image-text pairs from the web

– E.g. alt text, Flickr, Reddit, Wikipedia, etc

• Images and their co-occurring text assumed related 
(text provides a reasonable description of image?)

• Train text and image feature extractors using the 
objective that matched (co-occurring) image-text 
should be more similar than mismatched ones

• Great performance at a low annotation cost (data 
already existed)

74



Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021. 

Contrastive Language-Image 
Pretraining (CLIP)



Using CLIP for Object Recognition

• Compute dot product of image and prompt 
for each class, e.g. “A photo of dog”

• Return class with highest dot product for each 
image

• Prompt can be optimized manually or through 
training

• Can extend idea for object detection



Open-vocabulary Object Detection via Vision and 
Language Knowledge Distillation (Gu et al., ICLR 2022)



CLIP Pretraining 

• Sometimes unreasonable mistakes

• Lack of intermediate reasoning

• Uninterpretable

Radford et al., 2021

Issues with VLMs for Classification

Haolin Zhang



• Instead of directly querying class category names, can we use descriptions 

to improve the classification for vision language models?

• Can we use language modality as the internal representation for vision 

task to enhance interpretability?

Classification by Description

Haolin Zhang



𝑠 𝑐, 𝑥 : computed as the addition of all the descriptors pertains to image

- x: image

- d: descriptor

- D(c): descriptors for class c

- phi: dot product using CLIP

Visual Classification via Description 
from Large Language Models 

(Menon and Vondrick, ICLR 2023)

Haolin Zhang

Visual Classification via Description from Large Language Models


• Goal: producing discrete descriptors from LLMs without human parsing

Prompt 

Structure

Adding “-” help elicit LLMs to output in a bulleted list

Generating Descriptors from Large 
Language Models (LLMs)

Haolin Zhang; Menon and Vondrick, ICLR 2023



Computed by CLIP similarity

Classification by Description

Haolin Zhang; Menon and Vondrick, ICLR 2023



• Descriptors are generated by prompting GPT3

• Category Specific

• Or general description 

Generating Descriptors from Large 
Language Models (LLMs)

Haolin Zhang; Menon and Vondrick, ICLR 2023



Classification by Description (Results)

Adapted from Haolin Zhang; Menon and Vondrick, ICLR 2023

Dosovitskiy et al., ICLR 2021



Classification by Description (Results)



Capability in acquiring and utilizing novel information

• Add two new categories to the validation dataset of ImageNet

Descriptors generated by GPT 3

Recall: 100% Recall: 10%

Recall: 0%Recall: 100%

Classification by Description (Results)

Haolin Zhang; Menon and Vondrick, ICLR 2023



Classification by Description (Results)
Correcting failures induced by bias

• Both foundational models (CLIP and GPT 3) have bias for certain 

categories ---- e.g. “Wedding”

Manually corrected description

Haolin Zhang; Menon and Vondrick, ICLR 2023



Analyzing the failure modes

• Failure in descriptor creation

Not visual descriptors

Vespa from ImageNet

From GPT 3

Classification by Description (Results)

Haolin Zhang; Menon and Vondrick, ICLR 2023



Classification by Description (Results)
Influences of language model choices

• Small LLMs degrade the performance 

Haolin Zhang; Menon and Vondrick, ICLR 2023



Classification by Description (Results)
Comparison with ImageNet using the original 80 handcrafted 
prompts designed for CLIP

Haolin Zhang; Menon and Vondrick, ICLR 2023



What does a platypus look like? Generating customized 
prompts for zero-shot image classification (Pratt et al., ICCV 2023)
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Learning to Prompt for Vision-
Language Models (Zhou et al., IJCV 2022)



Learning to Prompt for Vision-
Language Models (Zhou et al., IJCV 2022)



Learning to Prompt for Vision-
Language Models (Zhou et al., IJCV 2022)



Learning to Prompt for Vision-
Language Models (Zhou et al., IJCV 2022)



Visual-Language Prompt 
Tuning with Knowledge-

guided Context 
Optimization (Yao CVPR’23)



CVPR 2024



Geo-Diverse Knowledge into Prompting for Increased
Geographical Robustness in Object Recognition

(Buettner et al., CVPR 2024)



Geo-Diverse Knowledge into Prompting for Increased
Geographical Robustness in Object Recognition

(Buettner et al., CVPR 2024)



Geo-Diverse Knowledge into Prompting for Increased
Geographical Robustness in Object Recognition

(Buettner et al., CVPR 2024)



Visual Prompt Tuning (Jia et al., ECCV 2022)



Visual Prompt Tuning (Jia et al., ECCV 2022)



Visual Prompt Tuning (Jia et al., ECCV 2022)



Multimodal Prompt Tuning (Khattak CVPR ‘23)



ViP-LLaVA: Making Large Multimodal Models 
Understand Arbitrary Visual Prompts (Cai et al., CVPR 2024)

Attend Yong Jae Lee’s talk on April 12!
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Multimodal Few-Shot Learning with Frozen 
Language Models (Tsimpoukelli, NeurIPS 2021)



Blip-2: Bootstrapping language-image pre-training 

with frozen image encoders and large language models

Kyle Buettner



BLIP-2 Architecture: Q-Former 

• Extracts fixed # of features from image encoder

• Has image and text transformers with same self-attention layers

• Learnable query embeddings (Z) are inputs to image transformer
– 32x768; can interact with each other, text, and frozen image features 

– Goal: Extract visual info most relevant to the text  

• Initialized with BERTbase weights 

• 188M parameters

Kyle Buettner



Goal: Alignment 
Task: Contrastive learning with in-batch 
negatives (original BLIP uses 
momentum queue)
Masking: Text only attends to text and 
queries to queries to avoid info leak 

Stage 1 Training: Representation Learning

• 3 objectives are jointly optimized using different self-attention 
masking strategies to control query-text interaction

Goal: Fine-grained alignment 
Task: Binary classification if 
image-text pair is matching
Masking: All queries/text can 
attend to each other

Goal: Generate text conditioned on image 
Task: Decode text 
Masking: Queries can attend to each other 
but not the text tokens. Text can attend to 
queries and previous text tokens. 

Kyle Buettner



• Query embeddings Z projected into LLM embedding space and prepended to 
input text embeddings

– A soft visual prompting mechanism for the LLM

• Different loss forms are used for different LM architectures 

– Decoder – language modeling loss over the queries

– Encoder-decoder – prefix pretrained with LM loss; suffix used as generation target 
Kyle Buettner

Stage 2: Generative Learning



Instructed Zero-Shot Image-to-Text Generation (1/2)

Kyle Buettner



Instructed Zero-Shot Image-to-Text Generation (2/2)

Kyle Buettner



BLIP-2 Zero-Shot Results

• State-of-the-art on various tasks while using 
fewer trainable parameters 

• Benefits of being open-source 

Kyle Buettner



Example Issues

Kyle Buettner



Visual Instruction Tuning (LLaVA: Large 
Language and Vision Assistant) (Liu NeurIPS’23)

• Instruction tuning in multimodal space 

• Contributions
– 1) Data creation strategy to create instruction-

following multimodal data (from image-text pairs)

– 2) Large multimodal model – LLaVA – open-set visual 
encoder of CLIP connected with language decoder 
LLaMA, finetuned end-to-end
• State-of-the-art performance on ScienceQA dataset 

– 3) Open-source assets – multimodal instruction data, 
codebase for data generation/training, checkpoint, 
visual chat demo 

Kyle Buettner



GPT-Assisted Visual Instruction Data 
Generation

• Amount of multimodal instruction-following data is 
limited, but image-text pairs are widely available
– Conceptual Captions, LAION 

• Approach: Use ChatGPT/GPT-4 to create instruction 
data
– Create set of questions Xq  with intent to instruct assistant 

to describe image content 

– Input: Image Xv, Caption Xc 

– Use simple/cheap idea to expand <Xv, Xc> 
• XqXv<STOP>\n Assistant: Xc<STOP>\n.

– But lacks diversity and in-depth reasoning…

Kyle Buettner



GPT-Assisted Visual Instruction Data 
Generation

• To expand data, use two symbolic representations for image and 
input into LLM (ChatGPT/GPT-4)
– 1) Captions
– 2) Bounding boxes for each object in the scene 

• Use these (from COCO images) to generate 3 types of instruction-
following data with LLMs
– 1) Conversation – QA about object types, counts, actions, 

locations, etc.
– 2) Detail description – detailed/comprehensive text; ?s from list 
– 3) Complex reasoning – more complex QA

• For each type, a few manually designed examples are used to seed 
in-context learning
– Only human annotations in data collection 

• 158K unique samples created overall

Kyle Buettner



GPT-Generated “Brief” Instructions

Kyle Buettner



GPT-Generated “Detailed” Instructions

Kyle Buettner



Example Context to Prompt LLMs

Kyle Buettner



Example Responses from LLM

Kyle Buettner



Conversation Generation

Kyle Buettner



LLaVA Model
• How can visual instruction data be used? 

• LLM = LLaMA

• Vision encoder = CLIP ViT-L/14

– Features linearly projected into word embedding space 
(layer trainable)
• Lightweight vs. gated cross-attention of Flamingo/Q-Former in 

BLIP-2

Kyle Buettner



LLaVA Training

• For each image Xv, multi-turn conversation data is 
generated -> (Xq

1, Xa
1, …, Xq

T, Xa
T); T = # of turns 

• Goal is to learn probability of generating answers 
based on previous conversation text and image

Kyle Buettner



Two-Stage Instruction Tuning
• Stage 1: Pretraining for Feature Alignment

– Conceptual Captions 3M filtered to 595K image-text pairs for efficiency
• Converted to instruction-following data using simple expansion strategy 

– Each sample treated as single-turn conversation 
– Question Xq randomly sampled, Xa original caption 
– Visual encoder and LLM weights frozen, projection layer trained
– “Training a compatible visual tokenizer for the frozen LLM” 

• Stage 2: Finetuning End-to-End 
– Visual encoder weights frozen, projection layer and LLM updated
– Use cases

• Multimodal chatbot – 158K unique language-image instruction-based data
• Science QA

– Context can be image/language 
– Answer from multiple choices, along with reasoning 

Kyle Buettner



• 21k multimodal 
multiple-choice 
questions

Evaluation: ScienceQA (Lu et al., NeurIPS 2022)

Kyle Buettner



Evaluation: Multimodal Chatbot

• Example from 
GPT-4 paper

• Describing 
image vs. 
intent

• Small (~80K 
unique image) 
data of LLaVA 
effective

Kyle Buettner



Evaluation: Multimodal Chatbot

• Example from 
GPT-4 paper

• Describing 
image vs. 
intent

• Small (~80K 
unique image) 
data of LLaVA 
effective

Kyle Buettner



Quantitative Evaluation 
• Use GPT-4 to measure the quality of model’s responses

• Randomly sample 30 images from COCO val

• Generate each question type; GPT-4 serves as reference 

• After getting GPT-4/LLaVA predictions, question/visual 
info/responses fed into GPT-4

• GPT-4 evaluates helpfulness, relevance, accuracy, and level of 
details; scale 1->10; results explained 

Kyle Buettner



LLaVA in Action

Kyle Buettner



LLaVA in Action

Kyle Buettner



LLaVA in Action

Kyle Buettner



LLaVA in Action

Kyle Buettner



LLaVA in Action



LLaVA in Action



LLaVA in Action https://llava.hliu.cc/ 

https://llava.hliu.cc/
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Visual Programming (Gupta & Kembhavi, CVPR 2023)



Visual Programming (Gupta & Kembhavi, CVPR 2023)



LLMs contain large amounts of 
commonsense knowledge

OpenAI. “GPT-4 Technical Report.” ArXiv (2023).
Huang, Wenlong et al. “Language Models as Zero-Shot Planners: Extracting 
Actionable Knowledge for Embodied Agents.” ICML (2022)

Can this be harnessed by an embodied 
agent?

Do As I Can, Not As I Say: Grounding Language in 
Robotic Affordances (SayCan) (Ahn et al., CoRL 2023)

Arushi Rai



1. Doesn’t know which actions are doable for an 
physical agent

2. Doesn’t know about physical state of environment
3. Or Physical State of Agent

LLMs are not grounded in the real world

Arushi Rai



1. Score likelihood: a skill will make progress 
towards goal or high level instruction

2. Affordance function: likelihood of successfully 
completing a skill from current state

a. Uses reinforcement learning (RL) to learn language-
conditioned value functions that simulate 
affordance modeling

SayCan Method

Arushi Rai



Probability of completing skill given state and 
language description of skill (affordance fn; Q fn)

Probability of skill as a valid next 
step for a given instruction and 
current sequence

= completion = language description of skill

= high-level 
instruction 
(“How can I clean 
up this mess”)

SayCan: Language x Affordance

Arushi Rai



Constraining output to sequences of 
primitive skills

Arushi Rai



1. Prompt engineering
2. Use model output probabilities

a. “language model represents a 
distribution over potential 
completions p(wk|w<k), where wk 
is a word that appears at a kth 
position in a text.” 

b. given a set of low-level skills Π, 
their language descriptions `Π and 
an instruction i, we compute the 
probability of a language 
description of a skill `π ∈ `Π 
making progress towards 
executing the instruction i: p(`π|i),

c. Optimal skill `π = arg max`π∈`Π 
p(`π|i).

Constraining output to sequences of 
primitive skills

Arushi Rai



SayCan Algorithm

Arushi Rai



SanCay Example Output

Arushi Rai
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