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Plan for this lecture

What is it? Learning representations from context in raw data

Language — predict nearby words [already covered]
— Word2Vec, transformers, BERT

Vision — predict pixels from other pixels
— Predict nearby patches in an image
— Predict order of frames in a video
— Predict what you will see as you move
— Predict physics
— More general formulation — contrastive learning

Jitendra Malik: "Supervision is the opium of the Al researcher"
Alyosha Efros: "The Al revolution will not be supervised"
Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the cake,
reinforcement learning is the cherry on the cake"
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Self-supervised Learning

e AiIms to learn from data without manual label annotation.

e Self-supervised learning methods solve “pretext” tasks that
produce good features for downstream tasks.
o Learn with supervised learning objectives, e.g.,
classification, regression.
o Labels of these pretext tasks are generated automatically

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

m & =

image completion rotation prediction “‘jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



How to evaluate a self-supervised
learning method?

We usually don'’t care about the performance of the self-supervised

learning task, e.g., we don'’t care if the model learns to predict image
rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



How to evaluate a self-supervised
learning method?

feature
:r; self-supervised Er; extractor supervised evaluate on the
learning (e.g.,a = learning = target task
convnet)
e.g. classification, detection
lots of
unlabeled

data
» bird
smaII amount of

labeled data on

conv the target task conv Ilnear
classifier
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext task: predict rotations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object
only if it has the “visual commonsense” of what the object should look
like unperturbed.

(Image source: Gidaris et al. 2018)

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext task: predict rotations

m | Objectives:

: ConvNet | Maximize prob.
» g(X,y=0) B ﬁ % model F() B F(x°)
Rotate 0 degrees . | Predict 0 degrees rotati =0 1
¢ Rotated image: X° | Predict 0 degrees rotation (y=0) Self-supervised
\ . .
learning by rotating
\ . . .
s e ConvNet Maximize prob.
> g(X, =1 >t >
g(x,y=1) 5@ moddF) ) the entire input
Rotate 90 degrees Predict 90 degrees rotation (y=1) |mag eS .
Rotated image: X' ‘
/ \
A N —— ﬂ e T The model learns to
Image X Rotate 180 degrees ‘h | Predict 180 degrees rotation (y=2) predICt WhICh rOtatlon

Rotated image: X~

IS applied (4-way
Wy o | Maximize prob. classification)

model F(.) F(Xx?)

» g(X,y=3)

Rotate 270 degrees | Predict 270 degrees rotation (y=3)

(Image source: Gidaris et al. 2018)

Rotated image: X

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Evaluation on semi-supervised learning
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Transfer learned features to supervised
learning

Classification Detection Segmentation
(%mAP) (%mAP) (%mloU)

Trained layers | fc6-8  all all all Pretrained with full
ImageNet labels | 789 799 56.8 48.0 ImageNet supervision
Random 533 434 19.8 -
Random rescaled Krihenbiihl et al. (2015) | 392  56.6  45.6 326 [° No pretraining
Egomotion (Agrawal et al., 2015) 310 542 43.9
Context Encoders (Pathak et al., 2016b) 346  56.5 44.5 29.7 . .
Tracking (Wang & Gupta, 2015) 556 631 474 Self-supervised learning
Context (Doersch et al., 2015) 55.1 65.3 51.1 .
Colorization (Zhang et al., 2016a) 615 656 469 35.6 on ImageNet (entire
BIGAN (Donahue et al., 2016) 523  60.1 46.9 34.9 training Set) with AlexNet.
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6
NAT (Bojanowski & Joulin, 2017) 56.7 65.3 49.4
Split-Brain (Zhang et al., 2016b) 630 67.1 46.7 36.0 :
ColorProxy (Larsson et al., 2017) 65.9 38.4 Finetune on Iabeled data
Counting (Noroozi et al., 2017) - 67.7 514 36.6 from Pascal VOC 2007.

[ (Ours) RotNet 70.87 72.97 544 39.1 |

Self-supervised learning with rotation prediction source: Gidaris et al. 2018

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext task: predict relative patch
locations

Example:

(Image source: Doersch et al., 2015)

Unsupervised Visual Representation Learning by Context Prediction
Carl Doersch, Alexei Efros and Abhinav Gupta
ICCV 2015



ImageNet + Deep Learning

» Beagle

- Image Retrieval

- Detection (RCNN)

- Segmentation (FCN)
- Depth Estimation

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Relative Position Task
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Patch Embedding

CNN Note: connects across instances!

Doersch et aI.’Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



What is learned?

ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Y NG
1. Input 2. Extract region
Image proposals (~2k)

=] warped region

P aeroplane? no.
, .

person? yes.

tvmonitor? no.

3. Compute
CNN features

!

4. Classify
regions

Pre-train on relative-position task, w/o labels

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

[Girshick et al. 2014]



VOC 2007 Performance

(pretraining for R-CNN)

54.2
46.3

40.7

% Average Precision

ImageNet Labels Rel. Position No Pretraining

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Which will be better?

e Option 1: pretrain (unsup) on dataset B
e Option 2: pretrain (sup) on dataset A
* Test on dataset B



Pretext task: solving
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Transfer learned features to supervised
learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time  Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi &
Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext task: predict missing pixels
(inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)
Source: Pathak et al., 2016

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext task: image coloring

i

Grayscale image: L channel

X c RHXWXl

L

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li

Color information: ab channels
? = RHxWx2

ab

Source: Richard Zhang / Phillip Isola



Learning features from colorization:
Split-brain Autoencoder

><)

Split-Brain Autoencoder
Source: Richard Zhang / Phillip Isola

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Learning features from colorization:
Split-brain Autoencoder

Input Image X

Source: Richard Zhang / Phillip Isola

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Learning features from colorization:
Split-brain Autoencoder

RGB channels HHA depth channels

Input / -2 \ Predicted
RGB-HHA ; RGB-HHA
image image

HHA depth channels RGB channels
Source: Richard Zhang / Phillip Isola

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Transfer learned features to supervised
learning
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Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext task:
Temporal Order Verification

(a)

Temporally Correct order

Positive Tuples (b) Negative Tuples

Original video

Temporally Incorrect order

Fig.1: (a) A video imposes a natural temporal structure for visual data. In many
cases, one can easily verify whether frames are in the correct temporal order (shuffled
or not). Such a simple sequential verification task captures important spatiotemporal
signals in videos. We use this task for unsupervised pre-training of a Convolutional
Neural Network (CNN). (b) Some examples of the automatically extracted positive
and negative tuples used to formulate a classification task for a CNN.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016
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Pretext task:
Temporal Order Verification

(a) Data Sampling (b) Triplet Siamese network for sequence

verification
Input Tuple Lt AlexNet architecture
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Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form
positive and negative tuples based on whether the three input frames are in the correct
temporal order. (b) Our triplet Siamese network architecture has three parallel network
stacks with shared weights upto the £c7 layer. Each stack takes a frame as input, and
produces a representation at the fc7 layer. The concatenated fc7 representations are

concatenation

[, Shared parameters

used to predict whether the input tuple is in the correct temporal order.

Misra et al., “Shuffle and

Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016
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Pretext task:
Temporal Order Verification

Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51
datascts. We compare different initializations and finetune them for action recognition.

Dataset Initialization Mean Accuracy
UCF101 Random 38.6
(Ours) Tuple verification 50.2
HMDB51 Random 13.3
UCEF Supervised 15.2
(Ours) Tuple verification 18.1

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Learning image representations tied to
ego-motion

Dinesh Jayaraman and Kristen Grauman
ICCV 2015



The kitten carousel experiment
[Held & Hein, 1963]
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Problem with today’s visual learning

Status quo: Learn from
“disembodied” bag of
labeled snapshots.

Our goal: Learn in the
context of acting and moving
In the world.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Our idea: Ego-motion < vision

Goal: Teach computer vision system the connection:
“*how | move” & “how my visual surroundings change”

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision: view prediction

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision for recognition

Learning this connection requires:

—_—

» Depth, 3D geometry Also key to
» Semantics — recognition!
» Context

Can be learned without manual labels!

Our approach: unsupervised feature learning
using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of
transformations

z(gx) = z(X)
\ _J
/Equivariant features : predictably responsive to N

some classes of transformations, through simple
mappings (e.d., linear)

“‘equivariance map”
z(gx) =~ M,z(X)

e %

Invariance discards information;
equivariance organizes It.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Training data Equivariant embedding

Unlabeled video + organized by ego-motions
motor signals

'

@ Pairs of frames related by
2 R } similar ego-motion should
= time — be related by same

feature transformation

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using
egocentric video + motor signals

1. Extract training frame pairs from video
2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

yaw change

-

forward distance

e

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion equivariant feature learning

Given: Desired: for all motions g and all images x,
Zo(gX) =~ M,Zg(X)

Unsupervised training
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

s % Bl -

’, Geiger et al, IJRR '13

Exploit features for static scene classification
(SUN, 397 classes)

Xiao et al, CVPR 10

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Do ego-motion equivariant features improve recognition?

DU o B

1.5 397 classes ! 121
£ 1.02 ;

6 labeled training
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Up to 30% accuracy increase
over state of the art!

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,
Yong-Lae Park, and Abhinav Gupta

ECCV 2016



Grasping

Successful grasps Unsuccessful grasps

Fig. 2. Examples of successful (left) and unsuccesful grasps (right). We use a patch
based representation: given an input patch we predict 18-dim vector which represents
whether the center location of the patch is graspable at 0°, 10°, ...170°.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Objects and push action pairs

a * o

1
-

> )\
u\ \bu ‘
Initial state Final state Initial state Final state Initial state Final state

Fig. 4. Examples of initial state and final state images taken for the push action. The
arrows demonstrate the direction and magnitude of the push action.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Objects and poke tactile response pairs

-

Fig. 6. Examples of the data collected by the poking action. On the left we show the
object poked, and on the right we show force profiles as observed by the tactile sensor.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions
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Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Fig. 10. The first column corresponds to query image and rest show the retrieval. Note
how the network learns that cups and bowls are similar (row 5).

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Table 1. Classification accuracy on ImageNet Household, UW RGBD and Caltech-256

Household UW RGBD Caltech-256

Root network with random init. 0.250 0.468 0.242
Root network trained on robot tasks (ours) 0.354 0.693 0.317
AlexNet trained on ImageNet 0.625 0.820 0.656

Table 2. Image Retrieval with Recall@k metric

Instance level Category level
k=1 k=5 k=10 k=20| k=1 k=5 k=10 k=20
Random Network 0.062 0.219 0.331 0.475 | 0.150 0.466 0.652 0.800
Our Network 0.720 0.831 0.875 0.909 | 0.833 0.918 0.946 0.966
AlexNet 0.686 0.857 0.903 0.941 | 0.854 0.953 0.969 0.982

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Summary: pretext tasks from image
transformations

e Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the
pretext tasks.

e We don’t care about the performance of these pretext tasks, but rather
how useful the learned features are for downstream tasks (classification,
detection, segmentation).

e Problems: 1) coming up with individual pretext tasks is tedious, and 2)
the learned representations may not be general.

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext tasks from image

transformations
image completion rotation prediction “‘jigsaw puzzle” colorization

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



A more general pretext task?

same object

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



A more general pretext task?

same object

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Contrastive Representation Learning
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attract

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Contrastive Representation Learning

_|_

x  reference

T positive

x~ nhegative

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



A formulation of contrastive learning

What we want:

score(f(x), f(z7)) >> score(f(z), f(z7))

X: reference sample; x* positive sample; x- negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and
low scores for negative pairs (X, x°).

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L =—-Ex |log

exp(s(f(z), f(z1))

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f (:v+))

L=-Ex log —
exp(s(f(2), f(x 1)) + Loy exp(s(f (@), f(z})).
score for the score for the N-1
positive pair negative pairs

This seems familiar ...
Cross entropy loss for a N-way softmax classifier!
l.e., learn to find the positive sample from the N samples

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

S xp(s(/(2), £ *)
exp(s(/(2), f(z%)) + 20" exp(s(/ (2), £(z5)

Commonly known as the InfoNCE loss (van den Oord et al., 2018)
A lower bound on the mutual information between f(x) and f(x*)

MI[f(z), f(z™)] —log(N) = —L

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



SimCLR: A Simple Framework for
Contrastive Learning

Cosine similarity as the score function: 2 . Mamize agreement
T
(4 0) = 0] o0
U\
h; <— Representation —» h;

Use a projection network g(-) to project
features to a space where contrastive 9 £0)
learning is applied

Generate positive samples through data WS 1
augmentation:
e random cropping, random color
distortion, and random blur.

Source: Chen et al., 2020

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



SimCLR: generating positive samples
from data augmentation

T R
' ‘.-
ol T Y % p

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering
Source: Chen et al., 2020

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Training linear classifier on SImCLR
features

% Supervised ..~ %SimCLR (4x)
. 75} e _
S .- KSImCLR (2x) Train feature encoder on
& . i oCPCv2-L ImageNet (entire training set)
5 [ *¥SimCLR oCMC JMOCO’(“X) using SIMCLR.
Q oPIRL-c2x
< AMDIM
- 65F R eMoCo (2x) .
! qCPCv2 PIRL-ens. Freeze feature encoder, train a
% o *I\PA'OR(%O oBigBIGAN linear classifier on top with
z LA labeled data.
g ;
£ eRotation
=2 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li

Source: Chen et al., 2020




Semi-supervised learning on SImCLR

features

Label fraction

Method Architecture 1% 10%
Top 5
Supervised baseline ResNet-50 484 80.4 Train feature encoder on
Methods using other label-propagation: : A
Pseudo-label ResNet-50 5.6 82.4 ImageNet (entire training set)
VAT+Entropy Min. ResNet-50 470 834 using SIMCLR.
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1 ] ]
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 Finetune the encoder with 1% /
Methods using representation learning only: 10% of labeled data on
InstDisc ResNet-50 39.2 77.4
BigBiGAN RevNet-50 (4x) 552 788 ImageNet.
PIRL ResNet-50 572 838
CPC v2 ResNet-161(x) 779 912
SimCLR (ours) ResNet-50 755 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x)
Table 7. ImageNet accuracy of models trained with few labels. Source: Chen et al.. 2020

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li




SimCLR design choices: large batch size

Large training batch size is crucial for

SImMCLR!
65.0
62.5 )
- Large batch size causes large memory
8 %00 ot e footprint during backpropagation:
57.5 mrl | | requires distributed training on TPUs
55.0 | 1024 (ImageNet experiments)
2048
52.5 4096
8192
50.0 EEEEEE EEEEEd

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with difter-
ent batch size and epochs. Each bar is a single run from scratch.'”

Source: Chen et al., 2020

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Momentum Contrastive Learning
(MoCo)

contrastive loss g grad Key differences to SImCLR:
similarity / e Keep a running queue of keys
(negative samples).
q kO kl kz e Compute gradients and update the
queue encoder only through the queries.

e Decouple min-batch size with the
number of keys: can support a large
number of negative samples.

momentum

encoder
encoder

e The key encoder is slowly progressing
key key _key

query through the momentum update rules:
X T €T €T g P
0 1 2 Ok < mbx + (1 —m)bq

Source: He et al., 2020

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



MoCo Results: Transferring Features

VOC 2007 Detection, Faster R-CNN, ResNet-50

pre-train RelPos, by [10] Multi-task [10] Jigsaw, by [22] LocalAgg [60] MoCo
super. IN-1M 74.2 74.2 70.5 74.6 74.4
unsup. IN-1M 66.8 (—7.4) 70.5 (=3.7) 61.4(-9.1) 69.1 (=5.5) 74.9 (+0.5)
unsup. IN-14M - - 69.2 (—1.3) - 75.2 (+0.8)
unsup. IG-1B - - - - 75.6 (+1.2)
MoCo:
benefit from images

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020



Other examples: DINO

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron’?>  Hugo Touvron'®  Ishan Misra!  Hervé Jegou'
Julien Mairal>  Piotr Bojanowski! ~ Armand Joulin®

! Facebook Al Research 2 Inria* 3 Sorbonne University

Figure 1: Selr-attention from a Vision Iransformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Other examples: Masked Autoencoder

method pre-train data ViT-B  ViT-L  ViT-H ViT-Hy4g
scratch, our impl. - 82.3 82.6 83.1 -
DINO [5] INIK 82.8 - - -
MoCo v3 [9] IN1K 83.2 84.1 - -
BEIT [2] INIK+DALLE 83.2 85.2 - -
MAE INIK 83.6 85.9 86.9 87.8

He et al., Masked Autoencoders Are Scalable Vision Learners, FAIR

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Other examples: CLIP

Contrastive learning between image and natural language sentences

1. Contrastive pre-training

pepper the Text

aussie pup > Encoder
Image
Encoder

I,-T,

IZ'Tl

I3 T,

IN'TI

I,

I3T,

InT,

I, Ts

I, Ty

I3Ts

InTs

I, Ty

I Ty

IyTy

2. Create dataset classifier from label text

a photo of Text
A [
a {object}. Encoder

bird

3. Use for zero-shot prediction

3 Image
) > -
e Encoder 1

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li
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