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Plan for this lecture

• What is it? Learning representations from context in raw data

• Language – predict nearby words [already covered]
– Word2Vec, transformers, BERT

• Vision – predict pixels from other pixels
– Predict nearby patches in an image

– Predict order of frames in a video

– Predict what you will see as you move

– Predict physics

– More general formulation – contrastive learning 

Jitendra Malik: "Supervision is the opium of the AI researcher"
Alyosha Efros: "The AI revolution will not be supervised"

Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the cake, 
reinforcement learning is the cherry on the cake"



Learned Representations

Fei-Fei Li, Yunzhu
Li, Ruohan Gao

Lecture 13 -

Test image L2 Nearest neighbors in feature space

4096-dim vector

Recall: Nearest neighbors 
in pixel space
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Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012. 

Figures reproduced with permission.

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Self-supervised Learning

Fei-Fei Li, Yunzhu
Li, Ruohan Gao

Lecture 13 -

4 May 18, 2023

● Aims to learn from data without manual label annotation.

● Self-supervised learning methods solve “pretext” tasks that 

produce good features for downstream tasks.

○ Learn with supervised learning objectives, e.g., 

classification, regression.

○ Labels of these pretext tasks are generated automatically

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



?

Example: learn to predict image transformations / complete corrupted images

image completion rotation prediction “jigsaw puzzle”

θ=?

colorization

Self-supervised pretext tasks

Lecture 13 -Fei-Fei Li, Yunzhu Li, Ruohan Gao

5 May 18, 2023

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



How to evaluate a self-supervised 
learning method?

Lecture 13 -6Fei-Fei Li, Yunzhu Li, Ruohan Gao

May 18, 2023

We usually don’t care about the performance of the self-supervised 

learning task, e.g., we don’t care if the model learns to predict image 

rotation perfectly.

Evaluate the learned feature encoders on downstream target tasks

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



lots of 

unlabeled  

data

self-supervised  
learning

feature
extractor  

(e.g., a 

convnet)

small amount of 

labeled data on 

the target task

supervised  
learning

evaluate on the 
target task

e.g. classification, detection

90°

conv fc

1. Learn good feature extractors from 

self-supervised pretext tasks, e.g., 

predicting image rotations

bird

conv linear 
classifier

2. Attach a shallow network on the 

feature extractor; train the shallow 

network on the target task with small 

amount of labeled data

May 18, 2023

How to evaluate a self-supervised 
learning method?

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Hypothesis: a model could recognize the correct rotation of an object

only if it has the “visual commonsense” of what the object should look

like unperturbed.

(Image source: Gidaris et al. 2018)

Pretext task: predict rotations

Lecture 13 -8

May 18, 2023

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Self-supervised 

learning by rotating 

the entire input 

images.

The model learns to 

predict which rotation 

is applied (4-way 

classification)

(Image source: Gidaris et al. 2018)

Pretext task: predict rotations

Lecture 13 -9

May 18, 2023

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Self-supervised learning on

CIFAR10 (entire training set).

Freeze conv1 + conv2 

Learn conv3 + linear layers 

with subset of labeled

CIFAR10 data (classification).

(Image source: Gidaris et al. 2018)

Evaluation on semi-supervised learning

Lecture 13 -10Fei-Fei Li, Yunzhu Li, Ruohan Gao

May 18, 2023

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretrained with full 
ImageNet supervision

No pretraining

Self-supervised learning 
on ImageNet (entire 

training set) with AlexNet.

Finetune on labeled data 

from Pascal VOC 2007.

Self-supervised learning with rotation prediction
source: Gidaris et al. 2018

Transfer learned features to supervised
learning

Lecture 13 -11

May 18, 2023

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



(Image source: Doersch et al., 2015)

Pretext task: predict relative patch 
locations

Fei-Fei Li, Yunzhu
Li, Ruohan Gao

Lecture 13 - 12

May 18, 2023Unsupervised Visual Representation Learning by Context Prediction
Carl Doersch, Alexei Efros and Abhinav Gupta

ICCV 2015



ImageNet + Deep Learning

Beagle

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- …

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning

Beagle

Do we even need semantic labels?
Pose?

Boundaries?Geometry?

Parts?
Materials?

Do we need this task?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

Deep
Net



Context Prediction for Images

A B

1 2 3

54

6 7 8
Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

Relative Position Task
8 possible locations

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Architecture

Patch 2Patch 1

Fully connected

Max Pooling
LRN

Max Pooling
LRN

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Max Pooling
LRN

Max Pooling
LRN

Fully connected

Convolution
Convolution
Convolution

Convolution

Convolution

Max Pooling

Softmax loss

Fully connected

Fully connected

Tied Weights

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



CNN CNN

Classifier

Patch Embedding

Input Nearest Neighbors

CNN Note: connects across instances!

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Ours

What is learned?

Input ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



VOC 2007 Performance
(pretraining for R-CNN)

No PretrainingRel. PositionImageNet Labels
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Which will be better?

• Option 1: pretrain (unsup) on dataset B

• Option 2: pretrain (sup) on dataset A

• Test on dataset B



(Image source: Noroozi & Favaro, 2016)

Pretext task: solving “jigsaw puzzles”

Fei-Fei Li, Yunzhu
Li, Ruohan Gao

Lecture 13 - 25

May 18, 2023

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & 

Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)

Lecture 13 - 26

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Transfer learned features to supervised
learning

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Source: Pathak et al., 2016

May 18, 2023

Pretext task: predict missing pixels
(inpainting)

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Source: Richard Zhang / Phillip Isola

Pretext task: image coloring

Fei-Fei Li, Yunzhu
Li, Ruohan Gao

Lecture 13 - 28

May 18, 2023

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Source: Richard Zhang / Phillip Isola

Lecture 13 - 29

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Learning features from colorization: 
Split-brain Autoencoder

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Source: Richard Zhang / Phillip Isola

May 18, 2023

Learning features from colorization: 
Split-brain Autoencoder

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Source: Richard Zhang / Phillip Isola

May 18, 2023

Learning features from colorization: 
Split-brain Autoencoder

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Source: Zhang et al., 2017

Self-supervised learning on 

ImageNet (entire training 

set).

Lecture 13 - 32

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Use concatenated features

from F1 and F2

Labeled data is from the

Places (Zhou 2016).

supervised

this paper

Transfer learned features to supervised
learning

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Pretext task: 
Temporal Order Verification

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Pretext task: 
Temporal Order Verification

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Pretext task: 
Temporal Order Verification

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016 



Learning image representations tied to 
ego-motion

Dinesh Jayaraman and Kristen Grauman

ICCV 2015



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

The kitten carousel experiment
[Held & Hein, 1963]

active kitten passive kitten

Key to perceptual development:

self-generated motion + visual feedback



Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015

Problem with today’s visual learning

Status quo: Learn from 
“disembodied” bag of 
labeled snapshots.

Our goal: Learn in the 
context of acting and moving 
in the world.



Goal: Teach computer vision system the connection:

“how I move” “how my visual surroundings change”

Our idea: Ego-motion  vision

+

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion vision: view prediction

After moving:

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion vision for recognition

Learning this connection requires:

➢ Depth, 3D geometry

➢ Semantics

➢ Context

Can be learned without manual labels!

Also key to 

recognition!

Our approach: unsupervised feature learning 

using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of 

transformations

𝐳 𝑔𝐱  ≈ 𝐳(𝐱)  

Invariance discards information;

 equivariance organizes it. 

Equivariant features : predictably responsive to 

some classes of transformations, through simple 

mappings (e.g., linear)

𝐳 𝑔𝐱  ≈ 𝑀𝑔𝐳(𝐱)

“equivariance map”

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Equivariant embedding 

organized by ego-motions

Pairs of frames related by 

similar ego-motion should 

be related by same 

feature transformation

left turn

right turn

forward

Learn

Approach idea: Ego-motion equivariance

time →

m
o
to

r 
s
ig

n
a
l

Training data

Unlabeled video + 

motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using 

egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

Right turn

=forward

=right turn

=left turn

y
a
w
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h

a
n

g
e

forward distance

𝑔

𝑔

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



∥ 𝑀𝑔𝐳𝛉(𝐱𝑖) − 𝐳𝛉(𝑔𝐱𝑖) ∥𝟐

Ego-motion equivariant feature learning

𝐱𝑖

𝑔𝐱𝑖

𝐳𝛉(𝐱𝑖)

𝐳𝛉(𝑔𝐱𝑖)

𝑀𝑔

Desired: for all motions 𝑔 and all images 𝐱, 

𝐳𝛉 𝑔𝐱  ≈ 𝑀𝑔𝐳𝛉(𝐱)  

𝛉

𝛉

Given:

𝛉 𝐳𝛉(𝐱𝑘)𝐱𝑘 𝑊 softmax loss 𝐿𝐶(𝐱𝑘 , y𝑘)

Unsupervised training

Supervised training

𝐳𝛉(𝑔𝐱𝑖)

𝐳𝛉(𝐱𝑖) 𝑀𝑔

Feature space

class y𝑘 𝛉, 𝑀𝑔 and 𝑊 jointly trained

𝑔

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

Exploit features for static scene classification 

(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



KITTI ⟶ SUN

Do ego-motion equivariant features improve recognition?

397 classes
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Results: Recognition

6 labeled training 

examples per class

Up to 30% accuracy increase 

over state of the art!

0.25

0.70

1.02

1.21

1.58

invariance

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual 
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,    
Yong-Lae Park, and Abhinav Gupta 

ECCV 2016



Grasping

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Lecture 13 - 56

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

● Pretext tasks focus on “visual common sense”, e.g., predict rotations, 
inpainting, rearrangement, and colorization.

● The models are forced learn good features about natural images, e.g., 

semantic representation of an object category, in order to solve the 

pretext tasks.

● We don’t care about the performance of these pretext tasks, but rather 

how useful the learned features are for downstream tasks (classification, 

detection, segmentation).

● Problems: 1) coming up with individual pretext tasks is tedious, and 2) 

the learned representations may not be general.

Summary: pretext tasks from image 
transformations

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



?

image completion rotation prediction “jigsaw puzzle”

θ=?

colorization

Lecture 13 - 57

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Learned representations may be tied to a specific pretext task! 

Can we come up with a more general pretext task?

Pretext tasks from image
transformations

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



?

θ=?

same object

Lecture 13 - 58

May 18, 2023

A more general pretext task?

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



?

θ=?

same object

different object

May 18, 2023

A more general pretext task?

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



?

θ=?

attract

May 18, 2023

repel

Contrastive Representation Learning

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



?

θ=?

reference  

positive 

negative

May 18, 2023

Contrastive Representation Learning

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



What we want:

x: reference sample; x+ positive sample; x- negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x+) and

low scores for negative pairs (x, x-).
62

May 18, 2023

A formulation of contrastive learning

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



...

Lecture 13 - 63

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



score for the 

positive pair

This seems familiar …

score for the N-1 

negative pairs

Lecture 13 - 64

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Cross entropy loss for a N-way softmax classifier!

I.e., learn to find the positive sample from the N samples

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Commonly known as the InfoNCE loss (van den Oord et al., 2018) 

A lower bound on the mutual information between f(x) and f(x+)

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

May 18, 2023

A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Use a projection network g(·) to project 

features to a space where contrastive 

learning is applied

Generate positive samples through data 

augmentation:

● random cropping, random color

distortion, and random blur.

Cosine similarity as the score function:

Source: Chen et al., 2020

May 18, 2023

Lecture 13 - 66

SimCLR: A Simple Framework for
Contrastive Learning

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Source: Chen et al., 2020

May 18, 2023

SimCLR: generating positive samples 
from data augmentation

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Train feature encoder on 

ImageNet (entire training set) 

using SimCLR.

Freeze feature encoder, train a 

linear classifier on top with 

labeled data.

Source: Chen et al., 2020

May 18, 2023

Lecture 13 - 68

Training linear classifier on SimCLR
features

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Train feature encoder on 

ImageNet (entire training set) 

using SimCLR.

Finetune the encoder with 1% / 

10% of labeled data on 

ImageNet.

Source: Chen et al., 2020

May 18, 2023

69

Semi-supervised learning on SimCLR
features

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Large training batch size is crucial for 

SimCLR!

Large batch size causes large memory 

footprint during backpropagation:

requires distributed training on TPUs 

(ImageNet experiments)

Source: Chen et al., 2020

May 18, 2023

Lecture 13 - 70Fei-Fei Li, Yunzhu Li, Ruohan Gao

SimCLR design choices: large batch size

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Key differences to SimCLR:no_grad

● Keep a running queue of keys 

(negative samples).

● Compute gradients and update the 

encoder only through the queries.

● Decouple min-batch size with the 

number of keys: can support a large 

number of negative samples.

● The key encoder is slowly progressing 

through the momentum update rules:

Source: He et al., 2020

May 18, 2023

Momentum Contrastive Learning
(MoCo)

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



MoCo:

benefit from 1 billion images

VOC 2007 Detection, Faster R-CNN,ResNet-50

He et al., “Momentum Contrast for Unsupervised Visual Representation Learning”, CVPR 2020

MoCo Results: Transferring Features



Lecture 13 -

73 May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Other examples: DINO

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



He et al., Masked Autoencoders Are Scalable Vision Learners, FAIR

Lecture 13 - 74

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Other examples: Masked Autoencoder

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li



Contrastive learning between image and natural language sentences

CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021
Lecture 13 - 75

May 18, 2023

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Other examples: CLIP

Yunzhu Li, Ruohan Guo, Justin Johnson, Fei-Fei Li
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