
CS 1678: Intro to Deep Learning

Transformers

Prof. Adriana Kovashka
University of Pittsburgh

March 18, 2024

Plan for this lecture

• Background

– Context prediction, unsupervised learning

• Transformer models

– Self-attention

– Adapting self-attention for sequential data

– The transformer architecture, encoder/decoder

– Pre-training, BERT, GPT

• Transformers beyond language

Additional resources

• Learning about transformers on your own?

• Key recommended resource:

• http://nlp.seas.harvard.edu/2018/04/03/attention.html

• The Annotated Transformer by Sasha Rush

• Jupyter Notebook using PyTorch that explains everything!

• The Illustrated Transformer

• http://jalammar.github.io/illustrated-transformer/

• Attention visualizer

• https://github.com/jessevig/bertviz

Adapted from Christopher Manning

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/
https://github.com/jessevig/bertviz

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

• the idea that is represented by a word, phrase, etc.

• the idea that a person wants to express by using

words, signs, etc.

• the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotationalsemantics

Christopher Manning

How do we have usable meaning in a computer?

Common solution: Use e.g.WordNet, a thesaurus containing lists

of synonym sets and hypernyms (“is a” relationships).

e.g. synonym sets containing “good”: e.g. hypernyms of“panda”:

[Synset('procyonid.n.01'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01')]

noun: good
noun: good, goodness
noun: good, goodness
noun: commodity, trade_good, good
adj: good
adj (sat): full, good adj:
good
adj (sat): estimable, good, honorable, respectable adj (sat):
beneficial, good
adj (sat): good
adj (sat): good, just, upright
…
adverb: well, good
adverb: thoroughly, soundly, good

from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):

print("{}: {}".format(poses[synset.pos()],
", ".join([l.name() for l insynset.lemmas()])))

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01") hyper =
lambda s: s.hypernyms()
list(panda.closure(hyper))

Christopher Manning

Problems with resources like WordNet

• Great as a resource but missing nuance

• e.g. “proficient” is listed as a synonym for “good”.

This is only correct in some contexts.

• Missing new meanings of words

• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

• Can’t compute accurate word similarity

Christopher Manning

Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:

hotel, conference, motel – a localist representation

Words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocab (e.g. 500,000)

Means one 1, the rest 0s

Christopher Manning

Problem with words as discrete symbols

Example: in web search, if user searches for “Seattle motel”, we

would like to match documents containing “Seattle hotel”.

But:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal.

There is no natural notion of similarity for one-hot vectors!

Solution:

• Could try to rely on WordNet’s list of synonyms to get similarity?

• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2

Christopher Manning

Representing words by theircontext

• Distributional semantics: A word’s meaning is given

by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words

that appear nearby (within a fixed-size window).

• Use the many contexts of w to build up a representation of w

…government debt problems turning into

…saying that Europe needs unified

…India has just given its

banking

banking

banking

crises as happened in 2009…

regulation to replace the hodgepodge…

system a shot in the arm…

These context words will representbanking

Christopher Manning

Stanford University is located in , California.

John Hewitt

What can we learn from reconstructing the input?

I put fork down on the table.

John Hewitt

What can we learn from reconstructing the input?

The woman walked across the street,

checking for traffic over shoulder.

John Hewitt

What can we learn from reconstructing the input?

I went to the ocean to see the fish, turtles, seals, and .

John Hewitt

What can we learn from reconstructing the input?

Overall, the value I got from the two hours watching

it was the sum total of the popcorn and the drink.

The movie was .

John Hewitt

What can we learn from reconstructing the input?

Iroh went into the kitchen to make some tea.

Standing next to Iroh, Zuko pondered his destiny.

Zuko left the .

John Hewitt

What can we learn from reconstructing the input?

I was thinking about the sequence that goes

1, 1, 2, 3, 5, 8, 13, 21,

John Hewitt

What can we learn from reconstructing the input?

Word vectors

We will build a dense vector for each word, chosen so that it is

similar to vectors of words that appear in similar contexts

Note: word vectors are sometimes called word embeddings or
word representations. They are a distributed representation.

banking =

0.286

0.792

−0.177

−0.107

0.109

−0.542

0.349

0.271

Christopher Manning

Word meaning as a neural word vector – visualization

0.286

0.792

−0.177

−0.107

0.109

−0.542

0.349

0.271

0.487

expect =

Christopher Manning

Word2Vec Overview

Word2vec (Mikolov et al.2013) is a framework for learning

word vectors

Idea:

• We have a large corpus of text

• Every word in a fixedvocabulary is represented by a vector

• Go through each position t in the text,which has a center word

c and context (“outside”)words o

• Use the similarity of the word vectors for c and o to calculate

the probability of o given c (or viceversa)

• Keep adjusting the word vectors to maximize this probability

Christopher Manning

Word2Vec Overview

• Example windows and process for computing P(wt+j|wt)

…crisesbankingintoturningproblems… as

centerword

at position t
outside contextwords

in window of size2

outside contextwords

in window of size2

P wt-2|wt

P wt-1|wt P wt+1|wt

P wt+2|wt

Christopher Manning

Word2Vec Overview

• Example windows and process for computing P(wt+j|wt)

…crisesbankingintoturningproblems… as

centerword

at position t
outside contextwords

in window of size2

outside contextwords

in window of size2

P wt-2|wt

P wt-1|wt P wt+1|wt

P wt+2|wt

Christopher Manning

Word2Vec: objective function

For each position t = 1, … , T, predict context words within a

window of fixed size m, given center word wj.

The objective function is the (average) negative log
likelihood:

Minimizing objective function ⟺ Maximizing predictive

accuracy

Christopher Manning

Word2Vec: objective function

• We want to minimize the objective function:

• Question: How to calculate P(wt+j|wt ; θ)?

• Answer: We will use two vectors per word w:

• v w when w is a center word

• uw when w is a contextword

• Then for a center word c and a context word o:

Christopher Manning

Word2Vec: prediction function

• This is an example of the softmax function ℝn→ℝn

Christopher Manning

Recall: Recurrent Neural Networks (RNNs)
= negative log prob

of “students”

Loss

Predicted
prob dists

…

Corpus the students opened their exams …

Abigail See

• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; not necessarily the right way to think about
sentences…

The chef who … was

Info of chef has gone through
O(sequence length) many layers!

Adapted from John Hewitt

Issues with recurrent models:
Linear interaction distance

• Forward and backward passes have O(sequence length) unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

• Inhibits training on very large datasets!

h1 h2

0

1 T

hT

T-11

2

2

3

Numbers indicate min # of steps before a state can be computed

John Hewitt

Issues with recurrent models:
Lack of parallelizability

• Word window models aggregate local contexts

• Also known as 1D convolution

• Number of unparallelizable operations not tied to sequence length!

h1 h2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

hT

window

window

embedding

Numbers indicate min # of steps before a state can be computed

Adapted from John Hewitt

If not recurrence, then what?
How about word windows?

• Word window models aggregate local contexts

• What about long-distance dependencies?

• Stacking word window layers allows interaction between farther words

• But if your sequences are too long, you’ll just ignore long-distance context

Red states
indicate those
“visible” to hkwindow (size=5)

embedding

h1 hk hT

window (size=5)

Too far from hk to be considered

If not recurrence, then what?
How about word windows?

Adapted from John Hewitt

• Attention treats each word’s representation as a query to access and
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll also think
about attention within a single sentence.
• If attention gives us access to any state… maybe we can just use

attention and don’t need the RNN?

• Number of unparallelizable operations not tied to sequence length.

• All words interact at every layer!

attention

embedding
h1 h2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

hT

attention
All words attend
to all words in
previous layer;
most arrows here
are omitted

If not recurrence, then what?
How about attention?

Adapted from John Hewitt

Recall: Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention

output
Use the attention distribution to takea

weighted sum of the encoder hidden

states.

The attention output mostly contains

information from the hidden statesthat

received high attention.

Source sentence (input)
Abigail See

Recall: Attention in equations

• We have encoder hidden states

• On timestep t, we have decoder hidden state

• We get the attention scores for this step:

• We take softmax to get the attention distribution

a probability distribution and sums to 1)

for this step (this is

• We use to take a weighted sum of the encoder hidden states to

get the attention output

• Finally we concatenate the attention output with the decoder

hidden state and proceed as in the non-attention seq2seq model

Abigail See

• We have some keys 𝑘1, 𝑘2, … ,𝑘𝑇. Each key is 𝑘𝑖 ∈ ℝ𝑑

• We have some values 𝑣1, 𝑣2, … , 𝑣𝑇. Each value is 𝑣𝑖 ∈ ℝ𝑑

• Attention operates on queries, keys, and values.

1 2 𝑇• We have some queries 𝑞 , 𝑞 , … ,𝑞 . Each query is 𝑞i ∈ ℝ𝑑

• In self-attention, the queries, keys, and values are drawn from the same source.

• For example, if the output of the previous layer is 𝑥1, … , 𝑥𝑇, (one vec per word)
we could let 𝑣𝑖 = 𝑘𝑖 = 𝑞𝑖 = 𝑥𝑖 (that is, use the same vectors for all of them!)

• The (dot product) self-attention operation is as follows:

The number of queries
can differ from the
number of keys and
values in practice.

𝑖 𝑗 𝑗

Compute key-
query affinities

𝑖 j𝑒 = 𝑞i
𝖳𝑘 𝛼 =

exp(𝑒𝑖𝑗)

Σ 𝑗'

Compute attention
weights from affinities

(softmax)

output = Σ 𝑗 𝛼 𝑣𝑖 𝑖 𝑗 𝑗

Compute outputs as
weighted sum of values

exp(𝑒𝑖𝑗’)

Adapted from John Hewitt

Attention Notation: Queries, Keys, Values

Key-Query-Value Attention

• We saw that self-attention is when keys, queries, and values come from the same
source. The Transformer does this in a particular way:

• Let 𝑥1, … ,𝑥𝑇 be input vectors to the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Then keys, queries, values are:

• 𝑘𝑖 = 𝐾𝑥𝑖, where 𝐾 ∈ ℝ𝑑×𝑑 is the key matrix.

• 𝑞𝑖 = 𝑄𝑥𝑖, where Q ∈ ℝ𝑑×𝑑 is the query matrix.

• 𝑣𝑖 = 𝑉𝑥𝑖, where V ∈ ℝ𝑑×𝑑 is the value matrix.

• These matrices allow different aspects of the 𝑥 vectors to be used/emphasized in
each of the three roles.

John Hewitt

• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑇×𝑑, 𝑋𝑄 ∈ ℝ𝑇×𝑑, 𝑋𝑉 ∈ ℝ𝑇×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾 T ×𝑋𝑉.

= 𝑋𝑄𝐾𝖳 𝑋𝖳

∈ ℝ𝑇×𝑇

All pairs of
attention scores!

output ∈ ℝ𝑇×𝑑

=

𝐾𝖳 𝑋𝖳

𝑋𝑄

First, take the query-key dot
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾

Next, softmax, and
compute the weighted
average with another
matrix multiplication.

𝑋𝑄𝐾𝖳 𝑋𝖳softmax 𝑋𝑉

Key-Query-Value Attention

John Hewitt

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗 is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let,𝑄𝑃,𝐾𝑃,𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

• Each attention head performs attention independently:

𝑃• output𝑃 = softmax 𝑋𝑄𝑃𝐾𝖳𝑋𝖳 ∗ 𝑋𝑉𝑃, where output𝑃 ∈ ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors
differently.

John Hewitt

Multi-headed attention

• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗 is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let,𝑄𝑃,𝐾𝑃,𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

𝑋

𝑄 =
𝑋𝑄

Single-head attention
(just the query matrix)

𝑋

Multi-head attention
(just two heads here)

𝑄1𝑄2 =
𝑋𝑄1 𝑋𝑄2

Same amount of
computation as
single-head self-
attention!

John Hewitt

Multi-headed attention

Dot-Product Attention (alternative slide)

• Inputs: a query q and a set of key-value (k-v) pairs to an output

• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where

• Weight of each value is computed by an inner product of query and

corresponding key

• Queries and keys have same dimensionality dk , value have dv

Christopher Manning

Dot-Product Attention – Matrix notation (alternative slide)

• When we have multiple queries q, we stack them in a matrix Q

• becomes:

[|Q| x dk] x [dk x |K|] x [|K| x dv]

softmax

row-wise
= [|Q| x dv]

Christopher Manning

Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t
“look at the future” when
predicting a sequence

• Like in machine translation

• Or language modeling

Solutions
• Add position

representations to the
inputs

• Easy fix: apply the same
feedforward network to each
self- attention output.

• Mask out the future by
artificially setting attention
weights to 0!

John Hewitt

Barriers and solutions for Self-Attention as a
building block

• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑 , for 𝑖 ∈ {1,2, … ,𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let 𝑣𝑖 ‘, 𝑘𝑖 ‘, 𝑞𝑖 ‘ be our old values, keys, and queries.

Fixing the first self-attention problem:
Sequence order

𝑣𝑖 = 𝑣𝑖 ‘ + 𝑝𝑖
𝑞𝑖 = 𝑞𝑖 ‘ + 𝑝𝑖
𝑘𝑖 = 𝑘𝑖 ‘ + 𝑝𝑖

In deep self-attention
networks, we do this at the
first layer! You could
concatenate them as well,
but people mostly just add…

John Hewitt

Pros: Periodicity indicates that maybe “absolute position” isn’t as important; maybe can
extrapolate to longer sequences as periods restart. Cons: Not learnable.

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

sin(𝑖/100002∗1/𝑑)

cos(𝑖/100002∗1/𝑑)

𝑝𝑖 =

𝑑

sin(𝑖/100002∗2/𝑑)
𝑑

cos(𝑖/100002∗2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n

Adapted from John Hewitt

Position representation vectors through sinusoids

Image: http://nlp.seas.harvard.edu/annotated-transformer/

𝑤1

The

𝑞1𝑘1 𝑣1

𝑤2

chef

𝑞2

𝑤3

who

𝑤𝑇

food

𝑘𝑇 𝑞𝑇 𝑣𝑇

…

𝑞1𝑘1 𝑣1 𝑘2 𝑞2 𝑞3𝑣2 𝑘3 𝑣3 𝑘𝑇 𝑞𝑇 𝑣𝑇

…
self-attention

𝑘2 𝑣2 𝑘3 𝑞3 𝑣3

• In the diagram at the right, we
have stacked self-attention
blocks, like we might stack LSTM
layers.

• The different layers capture a
hierarchy of relationships within
the data, similar to how
convolutional networks capture
a hierarchy of patterns that
range from low- to high-level.

self-attention

Stacking self-attention

Adapted from John Hewitt

• Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 × output𝑖 + 𝑏1 + 𝑏2

𝑤1

The

𝑤2

chef

𝑤3

who

𝑤𝑇

food

…

Intuition: the FF network processes the result of attention

FF FF FF

self-attention

FF

…

FF FF FF

self-attention

FF

Adding nonlinearities in self-attention

John Hewitt

• To use self-attention in
decoders, we need to ensure
we can’t peek at the future.

• To enable parallelization, we
mask out attention to future
words by setting attention
scores to −∞.

𝑒𝑖𝑗 =

−∞ −∞ −∞ −∞

−∞ −∞ −∞

−∞ −∞

−∞

The

chef

who

[START]

For encoding
these words

We can look at these
(not greyed out) words

Masking the future in self-attention

𝑞i
𝖳 𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

Adapted from John Hewitt

• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is an unordered function of its
inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-forward network.

• Masking:

• In order to parallelize operations while not looking at the future.

• Keeps information about the future from “leaking” to the past.

• That’s it! But this is not the Transformer model we’ve been hearing about (yet).

Necessities for a self-attention building block:

Adapted from John Hewitt

Extract spatial

features from a

pretrained CNN

Recall: Image Captioning with RNNs and Attention

CNN

Features:

H x W x D

h0

c1 y0

h1 h2

c2 y1

z0,0
h3

c3 y2

h4

y4

c4 y3

person wearing hat

y1 y2 y3

[END]

z0,1 z0,2

z1,0 z1,1 z1,2

z2,0 z2,1 z2,2

This entire process is differentiable.

- Model chooses its own

attention weights. No attention

supervision is required.
e1,0,0 e1,0,1 e1,0,2

e1,1,0 e1,1,1 e1,1,2

e1,2,0 e1,2,1 e1,2,2

a1,0,0 a1,0,1 a1,0,2

a1,1,0 a1,1,1 a1,1,2

a1,2,0 a1,2,1 a1,2,2

Alignment scores:

H x W
Attention:

H x W

X

[START]

Lecture 9 -

person

47

wearing hatXu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

Attention we saw in image captioning

A
lig

n
m

e
n
t

F
e

a
tu

re
s z0,0 z0,1 z0,2

z1,0 z1,1 z1,2

z2,0 z2,1 z2,2

A
tt

e
n
ti
o
n

e0,0 e0,1 e0,2

e1,0 e1,1 e1,2

e2,0 e2,1 e2,2

softmax

c

mul + add

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2

Outputs:

context vector: c (shape: D)

Inputs:

Features: z (shape: H x W x D)

Query: h (shape: D)
h

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Operations:

Alignment: ei,j = fatt(h, zi,j)

Attention: a = softmax(e)

Output: c = ∑i,j ai,j zi,j

Justin Johnson, Yunzhu Li, Ruohan Guo

Inputs:

Input vectors: x (shape: N x D)

Query: h (shape: D)

Attention operation is permutation invariant.
- Doesn't care about ordering of the features

- Stretch H x W = N into N vectors

General attention layer (alternative slide)

A
lig

n
m

e
n
t

In
p

u
t
v
e

c
to

rs

A
tt

e
n
ti
o
n

softmax

c

mul + add

Outputs:

context vector: c (shape: D)

Operations:

Alignment: ei = fatt(h, xi)

Attention: a = softmax(e)

Output: c = ∑i ai xi

x2

x1

x0

e2

e1

e0

a2

a1

a0

h

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

Change fatt(.) to a simple dot product

- only works well with key &

value transformation trick (will

mention in a few slides)

General attention layer (alternative slide)

A
lig

n
m

e
n
t

A
tt

e
n
ti
o
n

softmax

c

mul + add

Outputs:

context vector: c (shape: D)

Operations:

Alignment: ei = h ᐧ xi

Attention: a = softmax(e)

Output: c = ∑i ai xi

x2

x1

x0

e2

e1

e0

a2

a1

a0

Inputs:

Input vectors: x (shape: N x D)

Query: h (shape: D)

h

Fei-Fei Li, Yunzhu Li, Ruohan Gao

In
p

u
t
v
e

c
to

rs

Justin Johnson, Yunzhu Li, Ruohan Guo

Input vectors: x (shape: N x D)
Queries: q (shape: M x D)

Multiple query vectors
- each query creates a new

output context vector

mul(→) + add (↑)

Multiple query vectors

General attention layer (alternative slide)

A
lig

n
m

e
n
t

A
tt

e
n
ti
o
n

Inputs:

softmax (↑)

y1 y2
Outputs:
context vectors: y (shape: D)

Operations:

Alignment: ei,j = qj ᐧ xi / √D

Attention: a = softmax(e)

Output: yj = ∑i ai,j xi

x2

x1

x0

a
2,0

a
1,0

a
0,0

e
0,0

e
0,1

e
0,2

e
1,0

e
1,1

e
1,2

e
2,0

e
2,1

e
2,2

a
2,1

a
1,1

a
0,1

a
2,2

a
1,2

a
0,2

q1 q2

y0

In
p

u
t
v
e

c
to

rs

q0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

Notice that the input vectors are

used for both the alignment as well

as the attention calculations.

- We can add more expressivity

to the layer by adding a

different FC layer before

each of the two steps.

Inputs:

Input vectors: x (shape: N x D)

Queries: q (shape: M x Dk)

The input and output dimensions

can now change depending on

the key and value FC layers

mul(→) + add (↑)

General attention layer (alternative slide)

A
lig

n
m

e
n
t

A
tt

e
n
ti
o
n

softmax (↑)

y1 y2

v

Outputs:

context vectors: y (shape: Dv)

Operations:

Key vectors: k = xWk

Value vectors: v = xWv

Alignment: ei,j = qj ᐧ ki / √D

Attention: a = softmax(e)

Output: yj = ∑i ai,j vi

x2

x1

x0

a
2,0

a
1,0

a
0,0

e
0,0

e
0,1

e
0,2

e
1,0

e
1,1

e
1,2

e
2,0

e
2,1

e
2,2

a
2,1

a
1,1

a
0,1

a
2,2

a
1,2

a
0,2

q1 q2

y0

In
p

u
t
v
e

c
to

rs

k2

k1

k0

v2

v1

v0

q0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

No input query vectors anymore

Self attention layer (alternative slide)

Inputs:

Input vectors: x (shape: N x D)
Queries: q (shape: M x Dk)

Operations:

Key vectors: k = xWk

Value vectors: v = xWv

Query vectors: q = xWq

Alignment: ei,j = qj ᐧ ki / √D

Attention: a = softmax(e)

Output: yj = ∑i ai,j vi

x2

x1

x0

q0 q1 q2

In
p

u
t
v
e

c
to

rs

We can calculate the query vectors

from the input vectors, therefore,

defining a "self-attention" layer.

Instead, query vectors are

calculated using a FC layer.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

mul(→) + add (↑)

Self attention layer (alternative slide)

A
lig

n
m

e
n
t

q0

A
tt

e
n
ti
o
n

Inputs:

Input vectors: x (shape: N x D)

softmax (↑)

y1 y2
Outputs:

context vectors: y (shape: Dv)

Operations:

Key vectors: k = xWk

Query vectors: q = xWq

Alignment: ei,j = qj ᐧ ki / √D

Attention: a = softmax(e)

Output: yj = ∑i ai,j vi

x2

x1

x0

e
2,0

e
1,0

e
0,0

a
2,0

a
1,0

a
0,0

e
2,1

e
1,1

e
0,1

e
2,2

e
1,2

e
0,2

a
2,1

a
1,1

a
0,1

a
2,2

a
1,2

a
0,2

q1 q2

y0

In
p

u
t
v
e

c
to

rs

k2

k1

k0

v2

v1

v0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

Value vectors: v = xWv

Positional encoding
Options for pos(.)

1. Learn a lookup table:

○ Learn parameters to use for pos(t) for t ε[0, T)

○ Lookup table contains T x d parameters.

Desiderata of pos(.) :

1. It should output a unique encoding for each

time-step (word’s position in a sentence)

2. Distance between any two time-steps should be

consistent across sentences with different lengths.

3. Our model should generalize to longer sentences

without any efforts. Its values should be bounded.

4. It must be deterministic.

x0 x1 x2

p0 p1 p2

self-attention

y0 y1 y2

position encoding

x0 x1 x2

Concatenate special positional

encoding pj to each input vector xj

We use a function pos: N →Rd

to process the position j of the

vector into a d-dimensional vector

So, pj = pos(j)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Vaswani et al, “Attention is all you need”, NeurIPS 2017

63

Justin Johnson, Yunzhu Li, Ruohan Guo

Positional encoding
Options for pos(.)

1. Learn a lookup table:

○ Learn parameters to use for pos(t) for t ε[0, T)

○ Lookup table contains T x d parameters.

2. Design a fixed function with the desiderata

p(t) =

where

Intuition:

image source

x0 x1 x2

p0 p1 p2

self-attention

y0 y1 y2

position encoding

x0 x1 x2

Concatenate special positional

encoding pj to each input vector xj

We use a function pos: N →Rd

to process the position j of the

vector into a d-dimensional vector

So, pj = pos(j)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Justin Johnson, Yunzhu Li, Ruohan Guo

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer Overview

Attention is all you need. 2017. Aswani,

Shazeer, Parmar, Uszkoreit, Jones,

Gomez, Kaiser, Polosukhin

https://arxiv.org/pdf/1706.03762.pdf

• Non-recurrent sequence-to-

sequence encoder-decoder model

• Task: machine translation

with parallel corpus

• Predict each translated word

• Final cost/error function is

standard cross-entropy error

on top of a softmax classifier

This and related figures from paper ⇑

Christopher Manning

https://arxiv.org/pdf/1706.03762.pdf

Attention visualization in layer5

• Words start to pay attention to other words in sensible ways

Christopher Manning

Attention visualization: Implicit anaphoraresolution

In 5th layer. Isolated attentions from just the word ‘its’ forattention heads 5 and 6.
Note that the attentions are very sharp for this word.

Christopher Manning

I kicked the ball

Who

Did what?

To whom?

I kicked the ball

Ashish Vaswani

Parallel attention heads

Transformer
Encoder

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]

The Transformer Encoder-Decoder
[Vaswani et al., 2017]

John Hewitt

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder
[Vaswani et al., 2017]

Next, let’s look at the Transformer Encoder and Decoder Blocks

What’s in a Transformer Encoder Block?

1. Key-query-value attention: How do we get the 𝑘, 𝑞, 𝑣 vectors from a single word embedding?

2. Multi-headed attention: Attend to multiple places in a single layer!

3. Tricks to help with training! (see hidden slides)

1. Residual connections

2. Layer normalization

3. Scaling the dot product

4. These tricks don’t improve what the model is able to do; they help improve the training process

Adapted from John Hewitt

https://arxiv.org/pdf/1706.03762.pdf

Word
Embeddings

Position
Representations

+

Transformer
Encoder

[input sequence]

Transformer
Decoder

Word
Embeddings

Position
Representations

+

Transformer
Decoder

[output sequence]

[decoder attends
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]

Multi-Head Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

John Hewitt

The Transformer Encoder-Decoder
[Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762.pdf

Transformer
Encoder

Word
Embeddings

Position
Representations

+

[input sequence]

Word
Embeddings

Position
Representations

+

Looking back at the whole model,

zooming in on a Decoder block:

Transformer
Encoder

[output sequence]

[predictions!]

Transformer
Decoder

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

Multi-Head Cross-Attention

Residual + LayerNorm

Masked Multi-Head Self-Attention

John Hewitt

The Transformer Encoder-Decoder
[Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762.pdf

The Transformer Decoder:
Cross-attention (details)

• We saw self-attention is when keys, queries, and values come from the same source.

• In the decoder, we have attention that looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑇 be output vectors from the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑇 be input vectors from the Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the decoder, 𝑞𝑖 = 𝑄𝑧𝑖.

John Hewitt

• Quadratic compute in self-attention:

• Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

John Hewitt

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑇2𝑑 , where 𝑇 is the
sequence length, and 𝑑 is the dimensionality.

= 𝑋𝑄𝐾𝖳 𝑋𝖳

∈ ℝ𝑇×𝑇

Need to compute all
pairs of interactions!
𝑂 𝑇2𝑑𝐾𝖳 𝑋𝖳

𝑋𝑄

Quadratic computation as function of seq. length

• Think of 𝑑 as around 𝟏,𝟎𝟎𝟎.

• So, for a single (shortish) sentence, 𝑇 ≤ 30; 𝑇2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑇 = 512.

• But what if we’d like 𝑻 ≥ 𝟏𝟎,𝟎𝟎𝟎? For example, to work on long documents?

John Hewitt

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys In

fe
re

n
ce

ti
m

e
(s

)

Recent work on improving on quadratic self-
attention cost

Sequence length / batch size

John Hewitt

https://arxiv.org/pdf/2006.04768.pdf

• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

Recent work on improving on quadratic self-
attention cost

John Hewitt

https://arxiv.org/pdf/2007.14062.pdf

In modern NLP:

• All (or almost all) parameters in NLP
networks are initialized via pretraining.

• Pretraining methods hide parts of the input
from the model, and train the model to
reconstruct those parts.

• This has been exceptionally effective at
building strong:

• representations of language

• parameter initializations for strong NLP
models.

… the movie was …

𝒚

Pretrained jointly

[This model has learned how to represent
entire sentences through pretraining]

Pretraining models

Adapted from John Hewitt

The neural architecture influences the type of pretraining, and natural use cases.

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• Wait, how do we pretrain them?

Encoder-

Decoders

Pretraining for three types of architectures

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Adapted from John Hewitt

Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability
distribution over words given their past
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language
modeling on a large amount of text.

• Save the network parameters.

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes

Pretraining through language modeling
[Dai and Le, 2015]

to make tasty tea END

John Hewitt

https://arxiv.org/pdf/1511.01432.pdf

Pretraining can improve NLP applications by serving as parameter initialization.

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++)

☺/

The Pretraining / Finetuning Paradigm

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

… the movie was …

John Hewitt

There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language:

• Stanford University is located in , California. [Trivia]

• I put fork down on the table. [syntax]

• The woman walked across the street, checking for traffic over shoulder. [coreference]

• I went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

• Overall, the value I got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was . [sentiment]

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning – this is harder]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

• Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

Adapted from John Hewitt

Capturing meaning via context:

What kinds of things does pretraining learn?

So far, we’ve looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words.

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

𝑦𝑖∼ 𝐴𝑤𝑖 + 𝑏

Only add loss terms from words that are
“masked out.” If 𝑥 ’ is the masked version of 𝑥,
we’re learning 𝑝𝜃(𝑥|𝑥’). Called Masked LM.

I [M] to the [M]

went store

𝐴,𝑏

ℎ1, … , ℎ𝑇

[Devlin et al., 2018]

Pretraining encoders:
What pretraining objective to use?

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the time

• Replace input word with a random token 10% of
the time

• Leave input word unchanged 10% of the time (but
still predict it!)

• Why? Doesn’t let the model get complacent and not
build strong representations of non-masked words.
(No masks are seen at fine-tuning time!)

[Predict these!]

I pizza to the [M]

storewent to

Transformer
Encoder

[Devlin et al., 2018]

[Masked][Replaced] [Not replaced]

John Hewitt

BERT: Bidirectional Encoder Representations from
Tranformers

https://arxiv.org/pdf/1810.04805.pdf

• Mask out k% of the input words, and then predict the masked words

• They always use k = 15%

store

↑

gallon

↑

the man went to the [MASK] to buy a [MASK] of milk

• Too little masking: Too expensive to train

• Too much masking: Not enough context

Christopher Manning

BERT: Bidirectional Encoder Representations from
Tranformers

• Additional task: Next sentence prediction

• To learn relationships between sentences, predict whether

Sentence B is actual sentence that proceeds Sentence A, or a

random sentence

Adapted from Christopher Manning

BERT: Bidirectional Encoder Representations from
Tranformers

• The pretraining input to BERT was two separate

contiguous chunks of text:

• In addition to masked input reconstruction, BERT was trained to predict

whether one chunk follows the other or is randomly sampled.

• Later work has argued this “next sentence prediction” is not necessary.

[Devlin et al., 2018, Liu et al., 2019]

Adapted from John Hewitt

BERT: Bidirectional Encoder Representations from
Tranformers

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692

BERT: Bidirectional Encoder Representations from
Tranformers

[Devlin et al., 2018]

Details about BERT

• Two models were released:

• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU

• “Pretrain once, finetune many times.”

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf

BERT was massively popular and hugely versatile; finetuning BERT led to
new state-of- the-art results on a broad range of tasks.

• CoLA: corpus of linguistic acceptability
(detect whether sentences are grammatical.)
• STS-B: semantic textual similarity
• MRPC: microsoft paraphrase corpus
• RTE: small natural language inference corpus

BERT: Bidirectional Encoder Representations from
Tranformers

[Devlin et al., 2018]
John Hewitt

• QQP: Quora Question Pairs (detect
paraphrase questions)

• QNLI: natural language inference over
question answering data

• SST-2: sentiment analysis

https://arxiv.org/pdf/1810.04805.pdf

You’ll see a lot of BERT variants like RoBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:

• RoBERTa: mainly just train BERT for longer and remove next sentence prediction!

• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

BERT

[MASK] irr## esi## sti## [MASK] good

It’s

SpanBERT

bly

Extensions of BERT

[Liu et al., 2019; Joshi et al., 2020]

It’ [MASK] [MASK] [MASK] [MASK] good

irr## esi## sti## bly

John Hewitt

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder.

Extensions of BERT

[Liu et al., 2019; Joshi et al., 2020]

John Hewitt

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1)!

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

• Dialogue (context=dialogue history)

• Summarization (context=document)

ℎ1,… , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑤𝑡 ∼ 𝐴𝑤𝑡−1 + 𝑏

Where 𝐴, 𝑏 were pretrained in the language
model!

𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

𝐴,𝑏

ℎ1, … , ℎ𝑇

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

[Note how the linear layer has been pretrained.]

John Hewitt

Pretraining decoders

ℎ1, … , ℎ𝑇

When using language model pretrained decoders, we can ignore

that they were trained to model 𝑝 𝑤𝑡 𝑤1:𝑡−1).

We can finetune them by training a classifier
on the last word’s hidden state.

ℎ1,… , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑦 ∼ 𝐴𝑤𝑇 + 𝑏

Where 𝐴 and 𝑏 are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

𝑤1, … ,𝑤𝑇

☺/

Linear

Pretraining decoders

𝐴,𝑏

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

John Hewitt

2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers.

• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

• Byte-pair encoding with 40,000 merges

• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.

• The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

[Devlin et al., 2018]

John Hewitt

Generative Pretrained Transformer (GPT)
[Radford et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral

Premise: The man is in the doorway

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.

Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

entailment

Generative Pretrained Transformer (GPT)
[Radford et al., 2018]

John Hewitt

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

GPT results on various natural language inference datasets.

Generative Pretrained Transformer (GPT)
[Radford et al., 2018]

John Hewitt

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

We mentioned how pretrained decoders can be used in their capacities as language models.

GPT-2, a larger version of GPT trained on more data, was shown to produce relatively

convincing samples of natural language.

John Hewitt

Increasingly convincing generations (GPT2)
[Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word

hat

learn

taaaaasty

laern

vocab mapping

pizza (index)

tasty (index)

UNK (index)

UNK (index)

UNK (index)

embedding

Transformerify

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have
hundreds of conjugations, each
encoding a wide variety of
information. (Tense, mood,
definiteness, negation, information
about the object, ++)

Here’s a small fraction of the
conjugations for ambia – to tell.

[Wiktionary]

John Hewitt

Aside: Word structure and subword models

https://en.wiktionary.org/wiki/ambia

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

[Sennrich et al., 2016, Wu et al., 2016]

John Hewitt

Aside: The byte-pair encoding algorithm

https://www.aclweb.org/anthology/P16-1162.pdf
https://arxiv.org/pdf/1609.08144.pdf

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping

hat

learn

taa## aaa## sty

la## ern##

Transformer## ify

embedding

hat

learn

taaaaasty

laern

Transformerify

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models

What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

Replace different-length spans from the input
with unique placeholders; decode out the
spans that were removed!

This is implemented in text
preprocessing: it’s still an objective
that looks like language modeling at
the decoder side.

John Hewitt

Pretraining encoder-decoders:
What pretraining objective to use?

https://arxiv.org/pdf/1910.10683.pdf

A fascinating property
of T5: it can be
finetuned to answer a
wide range of
questions, retrieving
knowledge from its
parameters.

NQ: Natural Questions

WQ: WebQuestions

TQA: Trivia QA

All “open-domain”
versions

[Raffel et al., 2018]

220 million params

770 million params

3 billion params

11 billion params

John Hewitt

Pretraining encoder-decoders:
What pretraining objective to use?

https://arxiv.org/pdf/1910.10683.pdf

So far, we’ve interacted with pretrained models in two ways:

• Sample from the distributions they define (maybe providing a prompt)

• Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.

GPT-3 has 175 billion parameters.

John Hewitt

GPT-3, in-context learning, very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

“ thanks -> merci

hello -> bonjour

mint -> menthe

otter -> ”

Output (conditional generations):

loutre…”

John Hewitt

GPT-3, in-context learning, very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3, in-context learning, very large models

John Hewitt

Transformers in vision

https://www.youtube.com/watch?v=TrdevFK_am4 Dosovitskiy, ICLR 2021, https://github.com/google-research/vision_transformer

https://www.youtube.com/watch?v=TrdevFK_am4
https://github.com/google-research/vision_transformer

Cross-modal transformers

Chen et al., “UNITER: Learning UNiversal Image-TExt Representations”, arxiv 2019

Cross-modal transformers

Tan and Bansal, “LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers”, EMNLP 2019

ULMfit

Jan 2018

Training: 1

GPU day

BERT

Oct 2018

Training

256 TPU days

~320–560

GPU days

GPT-2

Feb 2019

Training

~2048 TPU v3

days according to

a reddit thread

GPT

June 2018

Training

240 GPU days

Christopher Manning

Cost of training

	Slide 1: CS 1678: Intro to Deep Learning Transformers
	Slide 2: Plan for this lecture
	Slide 3: Additional resources
	Slide 4: How do we represent the meaning of a word?
	Slide 5: How do we have usable meaning in a computer?
	Slide 6: Problems with resources like WordNet
	Slide 7: Representing words as discrete symbols
	Slide 8: Problem with words as discrete symbols
	Slide 9: Representing words by their context
	Slide 10: What can we learn from reconstructing the input?
	Slide 11: What can we learn from reconstructing the input?
	Slide 12: What can we learn from reconstructing the input?
	Slide 13: What can we learn from reconstructing the input?
	Slide 14
	Slide 15
	Slide 16: What can we learn from reconstructing the input?
	Slide 17: Word vectors
	Slide 18: Word meaning as a neural word vector – visualization
	Slide 19: Word2Vec Overview
	Slide 20: Word2Vec Overview
	Slide 21: Word2Vec Overview
	Slide 22: Word2Vec: objective function
	Slide 23: Word2Vec: objective function
	Slide 24: Word2Vec: prediction function
	Slide 25: Recall: Recurrent Neural Networks (RNNs)
	Slide 26: Issues with recurrent models: Linear interaction distance
	Slide 27: Issues with recurrent models: Lack of parallelizability
	Slide 28: If not recurrence, then what? How about word windows?
	Slide 29: If not recurrence, then what? How about word windows?
	Slide 30: If not recurrence, then what? How about attention?
	Slide 31: Recall: Sequence-to-sequence with attention
	Slide 32: Recall: Attention in equations
	Slide 33: Attention Notation: Queries, Keys, Values
	Slide 34: Key-Query-Value Attention
	Slide 35: Key-Query-Value Attention
	Slide 36: Multi-headed attention
	Slide 37: Multi-headed attention
	Slide 38: Dot-Product Attention (alternative slide)
	Slide 39: Dot-Product Attention – Matrix notation (alternative slide)
	Slide 40: Barriers and solutions for Self-Attention as a building block
	Slide 41: Fixing the first self-attention problem: Sequence order
	Slide 42: Position representation vectors through sinusoids
	Slide 43: Stacking self-attention
	Slide 44: Adding nonlinearities in self-attention
	Slide 45: Masking the future in self-attention
	Slide 46: Necessities for a self-attention building block:
	Slide 47: Recall: Image Captioning with RNNs and Attention
	Slide 48: Attention we saw in image captioning
	Slide 49: General attention layer (alternative slide)
	Slide 50: General attention layer (alternative slide)
	Slide 51: General attention layer (alternative slide)
	Slide 52: General attention layer (alternative slide)
	Slide 53: Self attention layer (alternative slide)
	Slide 54: Self attention layer (alternative slide)
	Slide 55: Positional encoding
	Slide 56: Positional encoding
	Slide 57: Transformer Overview
	Slide 58: Attention visualization in layer 5
	Slide 59: Attention visualization: Implicit anaphora resolution
	Slide 60: Parallel attention heads
	Slide 61: The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 62: The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 66: The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 67: The Transformer Encoder-Decoder [Vaswani et al., 2017]
	Slide 68: The Transformer Decoder: Cross-attention (details)
	Slide 70: What would we like to fix about the Transformer?
	Slide 71: Quadratic computation as function of seq. length
	Slide 72: Recent work on improving on quadratic self-attention cost
	Slide 73: Recent work on improving on quadratic self-attention cost
	Slide 74: Pretraining models
	Slide 75: Pretraining for three types of architectures
	Slide 76: Pretraining through language modeling [Dai and Le, 2015]
	Slide 77: The Pretraining / Finetuning Paradigm
	Slide 78: Capturing meaning via context: What kinds of things does pretraining learn?
	Slide 79: Pretraining encoders: What pretraining objective to use?
	Slide 80: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 81: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 82: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 83: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 84: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 85: BERT: Bidirectional Encoder Representations from Tranformers
	Slide 86: Extensions of BERT
	Slide 87: Extensions of BERT
	Slide 88: Pretraining decoders
	Slide 89: Pretraining decoders
	Slide 90: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 91: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 92: Generative Pretrained Transformer (GPT) [Radford et al., 2018]
	Slide 93: Increasingly convincing generations (GPT2) [Radford et al., 2018]
	Slide 94: Aside: Word structure and subword models
	Slide 95: Aside: Word structure and subword models
	Slide 96: Aside: The byte-pair encoding algorithm
	Slide 97: Aside: Word structure and subword models
	Slide 98: Pretraining encoder-decoders: What pretraining objective to use?
	Slide 99: Pretraining encoder-decoders: What pretraining objective to use?
	Slide 100: GPT-3, in-context learning, very large models
	Slide 101: GPT-3, in-context learning, very large models
	Slide 102: GPT-3, in-context learning, very large models
	Slide 103: Transformers in vision
	Slide 104: Cross-modal transformers
	Slide 105: Cross-modal transformers
	Slide 106

