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Plan for this lecture

• Background

– Context prediction, unsupervised learning

• Transformer models

– Self-attention

– Adapting self-attention for sequential data

– The transformer architecture, encoder/decoder

– Pre-training, BERT, GPT

• Transformers beyond language



Additional resources

• Learning about transformers on your own?

• Key recommended resource:

• http://nlp.seas.harvard.edu/2018/04/03/attention.html

• The Annotated Transformer by Sasha Rush

• Jupyter Notebook using PyTorch that explains everything!

• The Illustrated Transformer 

• http://jalammar.github.io/illustrated-transformer/ 

• Attention visualizer

• https://github.com/jessevig/bertviz 

Adapted from Christopher Manning

http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/
https://github.com/jessevig/bertviz


How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)

• the idea that is represented by a word, phrase, etc.

• the idea that a person wants to express by using  

words, signs, etc.

•    the idea that is expressed in a work of writing, art, etc.  

Commonest linguistic way of thinking of meaning:

signifier (symbol) ⟺ signified (idea or thing)

= denotationalsemantics

Christopher Manning



How do we have usable meaning in a computer?

Common solution: Use e.g.WordNet, a thesaurus containing lists  

of synonym sets and hypernyms (“is a” relationships).

e.g. synonym sets containing “good”: e.g. hypernyms of“panda”:

[Synset('procyonid.n.01'),  
Synset('carnivore.n.01'),  
Synset('placental.n.01'),  
Synset('mammal.n.01'),  
Synset('vertebrate.n.01'),  
Synset('chordate.n.01'),  
Synset('animal.n.01'),  
Synset('organism.n.01'),  
Synset('living_thing.n.01'),  
Synset('whole.n.02'),
Synset('object.n.01'),  
Synset('physical_entity.n.01'),  
Synset('entity.n.01')]

noun: good
noun: good, goodness  
noun: good, goodness
noun: commodity, trade_good, good  
adj: good
adj (sat): full, good  adj:
good
adj (sat): estimable, good, honorable, respectable  adj (sat): 
beneficial, good
adj (sat): good
adj (sat): good, just, upright
…
adverb: well, good
adverb: thoroughly, soundly, good

from nltk.corpus import wordnet as wn
poses = { 'n':'noun', 'v':'verb', 's':'adj (s)', 'a':'adj', 'r':'adv'}
for synset in wn.synsets("good"):

print("{}: {}".format(poses[synset.pos()],
", ".join([l.name() for l insynset.lemmas()])))

from nltk.corpus import wordnet as wn  
panda = wn.synset("panda.n.01")  hyper = 
lambda s: s.hypernyms()  
list(panda.closure(hyper))

Christopher Manning



Problems with resources like WordNet

• Great as a resource but missing nuance

• e.g. “proficient” is listed as a synonym for “good”.  

This is only correct in some contexts.

• Missing new meanings of words

• e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

• Impossible to keep up-to-date!

• Subjective

• Requires human labor to create and adapt

• Can’t compute accurate word similarity 

Christopher Manning



Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:  

hotel, conference, motel – a localist representation

Words can be represented by one-hot vectors:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

Vector dimension = number of words in vocab (e.g. 500,000)

Means one 1, the rest 0s

Christopher Manning



Problem with words as discrete symbols

Example: in web search, if user searches for “Seattle motel”, we  

would like to match documents containing “Seattle hotel”.

But:

motel = [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0]

hotel = [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]

These two vectors are orthogonal.

There is no natural notion of similarity for one-hot vectors!

Solution:

• Could try to rely on WordNet’s list of synonyms to get similarity?

• But it is well-known to fail badly: incompleteness, etc.

• Instead: learn to encode similarity in the vectors themselves

Sec. 9.2.2

Christopher Manning



Representing words by theircontext

• Distributional semantics: A word’s meaning is given  

by the words that frequently appear close-by

• “You shall know a word by the company it keeps” (J. R. Firth 1957)

• One of the most successful ideas of modern statistical NLP!

• When a word w appears in a text, its context is the set of words  

that appear nearby (within a fixed-size window).

• Use the many contexts of w to build up a representation of w

…government debt problems turning into

…saying that Europe needs unified

…India has just given its

banking

banking 

banking

crises as happened in 2009…

regulation to replace the hodgepodge…  

system a shot in the arm…

These context words will representbanking

Christopher Manning



Stanford University is located in , California.

John Hewitt

What can we learn from reconstructing the input?



I put fork down on the table.

John Hewitt

What can we learn from reconstructing the input?



The woman walked across the street,  

checking for traffic over shoulder.

John Hewitt

What can we learn from reconstructing the input?



I went to the ocean to see the fish, turtles, seals, and .

John Hewitt

What can we learn from reconstructing the input?



Overall, the value I got from the two hours watching  

it was the sum total of the popcorn and the drink.

The movie was .

John Hewitt

What can we learn from reconstructing the input?



Iroh went into the kitchen to make some tea.

Standing next to Iroh, Zuko pondered his destiny.

Zuko left the .

John Hewitt

What can we learn from reconstructing the input?



I was thinking about the sequence that goes  

1, 1, 2, 3, 5, 8, 13, 21,

John Hewitt

What can we learn from reconstructing the input?



Word vectors

We will build a dense vector for each word, chosen so that it is  

similar to vectors of words that appear in similar contexts

Note: word vectors are sometimes called word embeddings or  
word representations. They are a distributed representation.

banking =

0.286

0.792

−0.177

−0.107

0.109

−0.542

0.349

0.271

Christopher Manning



Word meaning as a neural word vector – visualization

0.286

0.792

−0.177

−0.107

0.109

−0.542

0.349

0.271

0.487

expect =

Christopher Manning



Word2Vec Overview

Word2vec (Mikolov et al.2013) is a framework for learning  

word vectors

Idea:

• We have a large corpus of text

• Every word in a fixedvocabulary is represented by a vector

• Go through each position t in the text,which has a center word

c and context (“outside”)words o

• Use the similarity of the word vectors for c and o to calculate  

the probability of o given c (or viceversa)

• Keep adjusting the word vectors to maximize this probability

Christopher Manning



Word2Vec Overview

• Example windows and process for computing P(wt+j|wt)

…crisesbankingintoturningproblems… as

centerword  

at position t
outside contextwords  

in window of size2

outside contextwords  

in window of size2

P wt-2|wt

P wt-1|wt P wt+1|wt 

P wt+2|wt

Christopher Manning



Word2Vec Overview

• Example windows and process for computing  P(wt+j|wt)

…crisesbankingintoturningproblems… as

centerword  

at position t
outside contextwords  

in window of size2

outside contextwords  

in window of size2

P wt-2|wt

P wt-1|wt P wt+1|wt

P wt+2|wt

Christopher Manning



Word2Vec: objective function

For each position t = 1, … , T, predict context words within a 

window of fixed size m, given center word wj.

The objective function is the (average) negative log 
likelihood:

Minimizing objective function ⟺ Maximizing predictive 

accuracy

Christopher Manning



Word2Vec: objective function

• We want to minimize the objective function:

• Question: How to calculate P(wt+j|wt ; θ)?

• Answer: We will use two vectors per word w:

• v w when w is a center word

• uw when w is a contextword

• Then for a center word c and a context word o:

Christopher Manning



Word2Vec: prediction function

• This is an example of the softmax function ℝn→ℝn

Christopher Manning



Recall: Recurrent Neural Networks (RNNs)
= negative log prob

of “students”

Loss

Predicted  
prob dists

…

Corpus the students opened their exams …

Abigail See



• O(sequence length) steps for distant word pairs to interact means:

• Hard to learn long-distance dependencies (because gradient problems!)

• Linear order of words is “baked in”; not necessarily the right way to think about 
sentences…

The chef who … was

Info of chef has gone through 
O(sequence length) many layers!

Adapted from John Hewitt

Issues with recurrent models:
Linear interaction distance



• Forward and backward passes have O(sequence length) unparallelizable operations

• GPUs can perform a bunch of independent computations at once!

• But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

• Inhibits training on very large datasets!

h1 h2

0

1 T

hT

T-11

2

2

3

Numbers indicate min # of steps before a state can be computed

John Hewitt

Issues with recurrent models: 
Lack of parallelizability



• Word window models aggregate local contexts

• Also known as 1D convolution

• Number of unparallelizable operations not tied to sequence length!

h1 h2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

hT

window 

window 

embedding

Numbers indicate min # of steps before a state can be computed

Adapted from John Hewitt

If not recurrence, then what?
How about word windows?



• Word window models aggregate local contexts

• What about long-distance dependencies?

• Stacking word window layers allows interaction between farther words

• But if your sequences are too long, you’ll just ignore long-distance context

Red states
indicate those
“visible” to hkwindow (size=5) 

embedding

h1 hk hT

window (size=5)

Too far from hk to be considered

If not recurrence, then what?
How about word windows?

Adapted from John Hewitt



• Attention treats each word’s representation as a query to access and 
incorporate information from a set of values.

• We saw attention from the decoder to the encoder; today we’ll also think
about attention within a single sentence.
• If attention gives us access to any state… maybe we can just use 

attention and don’t need the RNN?

• Number of unparallelizable operations not tied to sequence length.

• All words interact at every layer!

attention 

embedding
h1 h2

2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

hT

attention
All words attend
to all words in 
previous layer; 
most arrows here 
are omitted

If not recurrence, then what?
How about attention?

Adapted from John Hewitt



Recall: Sequence-to-sequence withattention
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Attention  

output
Use the attention distribution to takea  

weighted sum of the encoder hidden  

states.

The attention output mostly contains  

information from the hidden statesthat  

received high attention.

Source sentence (input)
Abigail See



Recall: Attention in equations

• We have encoder hidden states

• On timestep t, we have decoder hidden state

• We get the attention scores for this step:

• We take softmax to get the attention distribution

a probability distribution and sums to 1)

for this step (this is 

• We use    to take a weighted sum of the encoder hidden states to 

get the attention output

• Finally we concatenate the attention output      with the decoder 

hidden state        and proceed as in the non-attention seq2seq model

Abigail See



• We have some keys 𝑘1, 𝑘2, … ,𝑘𝑇. Each key is 𝑘𝑖 ∈ ℝ𝑑

• We have some values 𝑣1, 𝑣2, … , 𝑣𝑇. Each value is 𝑣𝑖 ∈ ℝ𝑑

• Attention operates on queries, keys, and values.

1 2 𝑇• We have some queries 𝑞 , 𝑞 , … ,𝑞 . Each query is 𝑞i ∈ ℝ𝑑

• In self-attention, the queries, keys, and values are drawn from the same source.

• For example, if the output of the previous layer is 𝑥1, … , 𝑥𝑇, (one vec per word) 
we could let 𝑣𝑖 = 𝑘𝑖 = 𝑞𝑖 = 𝑥𝑖 (that is, use the same vectors for all of them!)

• The (dot product) self-attention operation is as follows:

The number of queries 
can differ from the 
number of keys and
values in practice.

𝑖 𝑗 𝑗

Compute key-
query affinities

𝑖 j𝑒 = 𝑞i
𝖳𝑘 𝛼 =

exp(𝑒𝑖𝑗)

Σ 𝑗'

Compute attention 
weights from affinities

(softmax)

output = Σ 𝑗 𝛼 𝑣𝑖  𝑖 𝑗  𝑗

Compute outputs as 
weighted sum of values

exp(𝑒𝑖𝑗’ )

Adapted from John Hewitt

Attention Notation: Queries, Keys, Values



Key-Query-Value Attention

• We saw that self-attention is when keys, queries, and values come from the same
source. The Transformer does this in a particular way:

• Let 𝑥1, … ,𝑥𝑇 be input vectors to the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Then keys, queries, values are:

• 𝑘𝑖 = 𝐾𝑥𝑖, where 𝐾 ∈ ℝ𝑑×𝑑 is the key matrix.

• 𝑞𝑖 = 𝑄𝑥𝑖, where Q ∈ ℝ𝑑×𝑑 is the query matrix.

• 𝑣𝑖 = 𝑉𝑥𝑖, where V ∈ ℝ𝑑×𝑑 is the value matrix.

• These matrices allow different aspects of the 𝑥 vectors to be used/emphasized in 
each of the three roles.

John Hewitt



• Let’s look at how key-query-value attention is computed, in matrices.

• Let 𝑋 = 𝑥1; … ; 𝑥𝑇 ∈ ℝ𝑇×𝑑 be the concatenation of input vectors.

• First, note that 𝑋𝐾 ∈ ℝ𝑇×𝑑, 𝑋𝑄 ∈ ℝ𝑇×𝑑, 𝑋𝑉 ∈ ℝ𝑇×𝑑.

• The output is defined as output = softmax 𝑋𝑄 𝑋𝐾  T ×𝑋𝑉.

= 𝑋𝑄𝐾𝖳 𝑋𝖳

∈ ℝ𝑇×𝑇

All pairs of 
attention scores!

output ∈ ℝ𝑇×𝑑

=

𝐾𝖳 𝑋𝖳

𝑋𝑄

First, take the query-key dot 
products in one matrix
multiplication: 𝑋𝑄 𝑋𝐾

Next, softmax, and 
compute the weighted 
average with another 
matrix multiplication.

𝑋𝑄𝐾𝖳 𝑋𝖳softmax 𝑋𝑉

Key-Query-Value Attention

John Hewitt



• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗 is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let,𝑄𝑃,𝐾𝑃,𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

• Each attention head performs attention independently:

𝑃• output𝑃 = softmax 𝑋𝑄𝑃𝐾𝖳𝑋𝖳 ∗ 𝑋𝑉𝑃, where output𝑃 ∈ ℝ𝑑/ℎ

• Then the outputs of all the heads are combined!

• output = 𝑌[output1; … ; outputℎ], where 𝑌 ∈ ℝ𝑑×𝑑

• Each head gets to “look” at different things, and construct value vectors
differently.

John Hewitt

Multi-headed attention



• What if we want to look in multiple places in the sentence at once?

• For word 𝑖, self-attention “looks” where 𝑥𝖳𝑄𝖳𝐾𝑥𝑗 is high, but maybe we want

𝑑×

to focus on different 𝑗 for different reasons?

• We’ll define multiple attention “heads” through multiple Q,K,V matrices
𝑑

• Let,𝑄𝑃,𝐾𝑃,𝑉𝑃 ∈ ℝ ℎ , where ℎ is the number of attention heads, and 𝑃 ranges
from 1 to ℎ.

𝑋

𝑄 =
𝑋𝑄

Single-head attention
(just the query matrix)

𝑋

Multi-head attention
(just two heads here)

𝑄1𝑄2 =
𝑋𝑄1 𝑋𝑄2

Same amount of 
computation as 
single-head self-
attention!

John Hewitt

Multi-headed attention



Dot-Product Attention (alternative slide)

• Inputs: a query q and a set of key-value (k-v) pairs to an output

• Query, keys, values, and output are all vectors

• Output is weighted sum of values, where

• Weight of each value is computed by an inner product of query and 

corresponding key

• Queries and keys have same dimensionality dk , value have dv

Christopher Manning



Dot-Product Attention – Matrix notation (alternative slide)

• When we have multiple queries q, we stack them in a matrix Q

• becomes:

[|Q| x dk] x [dk x |K|] x [|K| x dv]

softmax  

row-wise
= [|Q| x dv]

Christopher Manning



Barriers
• Doesn’t have an inherent

notion of order!

• No nonlinearities for deep
learning magic! It’s all just
weighted averages

• Need to ensure we don’t 
“look at the future” when 
predicting a sequence

• Like in machine translation

• Or language modeling

Solutions
• Add position 

representations to the
inputs

• Easy fix: apply the same 
feedforward network to each 
self- attention output.

• Mask out the future by
artificially setting attention
weights to 0!

John Hewitt

Barriers and solutions for Self-Attention as a 
building block



• Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

• Consider representing each sequence index as a vector

𝑝𝑖 ∈ ℝ𝑑 , for 𝑖 ∈ {1,2, … ,𝑇} are position vectors

• Don’t worry about what the 𝑝𝑖 are made of yet!

• Easy to incorporate this info into our self-attention block: just add the 𝑝𝑖 to our inputs!

• Let 𝑣𝑖 ‘, 𝑘𝑖 ‘, 𝑞𝑖 ‘ be our old values, keys, and queries.

Fixing the first self-attention problem:
Sequence order

𝑣𝑖 = 𝑣𝑖 ‘ + 𝑝𝑖
𝑞𝑖 = 𝑞𝑖 ‘ + 𝑝𝑖
𝑘𝑖 = 𝑘𝑖 ‘ + 𝑝𝑖

In deep self-attention 
networks, we do this at the 
first layer! You could 
concatenate them as well, 
but people mostly just add…

John Hewitt



Pros: Periodicity indicates that maybe “absolute position” isn’t as important; maybe can
extrapolate to longer sequences as periods restart.      Cons: Not learnable.

• Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

sin(𝑖/100002∗1/𝑑) 

cos(𝑖/100002∗1/𝑑)

𝑝𝑖 =

𝑑

sin(𝑖/100002∗2/𝑑)
𝑑

cos(𝑖/100002∗2/𝑑)

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

Index in the sequence

D
im

en
si

o
n

Adapted from John Hewitt

Position representation vectors through sinusoids

Image: http://nlp.seas.harvard.edu/annotated-transformer/



𝑤1

The

𝑞1𝑘1 𝑣1

𝑤2

chef

𝑞2

𝑤3

who

𝑤𝑇

food

𝑘𝑇 𝑞𝑇 𝑣𝑇

…

𝑞1𝑘1 𝑣1 𝑘2 𝑞2 𝑞3𝑣2 𝑘3 𝑣3 𝑘𝑇 𝑞𝑇 𝑣𝑇

…
self-attention

𝑘2 𝑣2 𝑘3 𝑞3 𝑣3

• In the diagram at the right, we 
have stacked self-attention 
blocks, like we might stack LSTM 
layers.

• The different layers capture a 
hierarchy of relationships within 
the data, similar to how 
convolutional networks capture 
a hierarchy of patterns that 
range from low- to high-level.

self-attention

Stacking self-attention

Adapted from John Hewitt



• Note that there are no elementwise 
nonlinearities in self-attention; 
stacking more self-attention layers 
just re-averages value vectors

• Easy fix: add a feed-forward network
to post-process each output vector.

𝑚𝑖 = 𝑀𝐿𝑃 output𝑖
= 𝑊2 ∗ ReLU 𝑊1 × output𝑖 + 𝑏1 + 𝑏2

𝑤1

The

𝑤2

chef

𝑤3

who

𝑤𝑇

food

…

Intuition: the FF network processes the result of attention

FF FF FF

self-attention

FF

…

FF FF FF

self-attention

FF

Adding nonlinearities in self-attention

John Hewitt



• To use self-attention in 
decoders, we need to ensure 
we can’t peek at the future.

• To enable parallelization, we 
mask out attention to future 
words by setting attention 
scores to −∞.

𝑒𝑖𝑗 =

−∞ −∞ −∞ −∞

−∞ −∞ −∞

−∞ −∞

−∞

The

chef

who

[START]

For encoding 
these words

We can look at these 
(not greyed out) words

Masking the future in self-attention

𝑞i
𝖳 𝑘𝑗 , 𝑗 < 𝑖

−∞, 𝑗 ≥ 𝑖

Adapted from John Hewitt



• Self-attention:

• the basis of the method.

• Position representations:

• Specify the sequence order, since self-attention is an unordered function of its 
inputs.

• Nonlinearities:

• At the output of the self-attention block

• Frequently implemented as a simple feed-forward network.

• Masking:

• In order to parallelize operations while not looking at the future.

• Keeps information about the future from “leaking” to the past.

• That’s it! But this is not the Transformer model we’ve been hearing about (yet).

Necessities for a self-attention building block:

Adapted from John Hewitt



Extract spatial 

features from a 

pretrained CNN

Recall: Image Captioning with RNNs and Attention

CNN

Features: 

H x W x D

h0

c1 y0

h1 h2

c2 y1

z0,0
h3

c3 y2

h4

y4

c4 y3

person wearing hat

y1 y2 y3

[END]

z0,1 z0,2

z1,0 z1,1 z1,2

z2,0 z2,1 z2,2

This entire process is differentiable.

- Model chooses its own 

attention weights. No attention

supervision is required.
e1,0,0 e1,0,1 e1,0,2

e1,1,0 e1,1,1 e1,1,2

e1,2,0 e1,2,1 e1,2,2

a1,0,0 a1,0,1 a1,0,2

a1,1,0 a1,1,1 a1,1,2

a1,2,0 a1,2,1 a1,2,2

Alignment scores:

H x W
Attention:

H x W

X

[START]

Lecture 9 -

person

47

wearing hatXu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo



Attention we saw in image captioning
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s z0,0 z0,1 z0,2

z1,0 z1,1 z1,2

z2,0 z2,1 z2,2
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e0,0 e0,1 e0,2

e1,0 e1,1 e1,2

e2,0 e2,1 e2,2

softmax

c

mul + add

a0,0 a0,1 a0,2

a1,0 a1,1 a1,2

a2,0 a2,1 a2,2

Outputs:

context vector: c (shape: D)

Inputs:

Features: z (shape: H x W x D) 

Query: h (shape: D)
h

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Operations:

Alignment: ei,j = fatt(h, zi,j) 

Attention: a = softmax(e) 

Output: c = ∑i,j ai,j zi,j

Justin Johnson, Yunzhu Li, Ruohan Guo



Inputs:

Input vectors: x (shape: N x D) 

Query: h (shape: D)

Attention operation is permutation invariant.
- Doesn't care about ordering of the features

- Stretch H x W = N into N vectors

General attention layer (alternative slide)
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softmax

c

mul + add

Outputs:

context vector: c (shape: D)

Operations:

Alignment: ei = fatt(h, xi) 

Attention: a = softmax(e) 

Output: c = ∑i ai xi

x2

x1

x0

e2

e1

e0

a2

a1

a0

h

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo



Change fatt(.) to a simple dot product

- only works well with key & 

value transformation trick (will

mention in a few slides)

General attention layer (alternative slide)

A
lig

n
m

e
n
t

A
tt

e
n
ti
o
n

softmax

c

mul + add

Outputs:

context vector: c (shape: D)

Operations:

Alignment: ei = h ᐧ xi

Attention: a = softmax(e) 

Output: c = ∑i ai xi

x2

x1

x0

e2

e1

e0

a2

a1

a0

Inputs:

Input vectors: x (shape: N x D) 

Query: h (shape: D)

h

Fei-Fei Li, Yunzhu Li, Ruohan Gao
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Justin Johnson, Yunzhu Li, Ruohan Guo



Input vectors: x (shape: N x D) 
Queries: q (shape: M x D)

Multiple query vectors
- each query creates a new

output context vector

mul(→) + add (↑)

Multiple query vectors

General attention layer (alternative slide)

A
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n
m

e
n
t

A
tt

e
n
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n

Inputs:

softmax (↑)

y1 y2
Outputs:
context vectors: y (shape: D)

Operations:

Alignment: ei,j = qj ᐧ xi / √D 

Attention: a = softmax(e) 

Output: yj = ∑i ai,j xi

x2

x1

x0

a
2,0

a
1,0

a
0,0

e
0,0

e
0,1

e
0,2

e
1,0

e
1,1

e
1,2

e
2,0

e
2,1

e
2,2

a
2,1

a
1,1

a
0,1

a
2,2

a
1,2

a
0,2

q1 q2

y0

In
p
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v
e

c
to

rs

q0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

Notice that the input vectors are 

used for both the alignment as well 

as the attention calculations.

- We can add more expressivity

to the layer by adding a

different FC layer before

each of the two steps.



Inputs:

Input vectors: x (shape: N x D) 

Queries: q (shape: M x Dk)

The input and output dimensions 

can now change depending on 

the key and value FC layers

mul(→) + add (↑)

General attention layer (alternative slide)
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softmax (↑)

y1 y2

v

Outputs:

context vectors: y (shape: Dv )

Operations:

Key vectors: k = xWk

Value vectors: v = xWv 

Alignment: ei,j = qj ᐧ ki / √D 

Attention: a = softmax(e) 

Output: yj = ∑i ai,j vi
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x0
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k2

k1

k0

v2

v1

v0

q0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo



No input query vectors anymore

Self attention layer (alternative slide)

Inputs:

Input vectors: x (shape: N x D)
Queries: q (shape: M x Dk)

Operations:

Key vectors: k = xWk 

Value vectors: v = xWv 

Query vectors: q = xWq

Alignment: ei,j = qj ᐧ ki / √D

Attention: a = softmax(e) 

Output: yj = ∑i ai,j vi

x2

x1

x0

q0 q1 q2

In
p

u
t
v
e

c
to

rs

We can calculate the query vectors 

from the input vectors, therefore, 

defining a "self-attention" layer.

Instead, query vectors are 

calculated using a FC layer.

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo



mul(→) + add (↑)

Self attention layer (alternative slide)

A
lig

n
m

e
n
t

q0

A
tt

e
n
ti
o
n

Inputs:

Input vectors: x (shape: N x D)

softmax (↑)

y1 y2
Outputs:

context vectors: y (shape: Dv)

Operations:

Key vectors: k = xWk

Query vectors: q = xWq 

Alignment: ei,j = qj ᐧ ki / √D 

Attention: a = softmax(e) 

Output: yj = ∑i ai,j vi
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v2
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v0

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Justin Johnson, Yunzhu Li, Ruohan Guo

Value vectors: v = xWv



Positional encoding
Options for pos(.)

1. Learn a lookup table:

○ Learn parameters to use for pos(t) for t ε[0, T)

○ Lookup table contains T x d parameters.

Desiderata of pos(.) :

1. It should output a unique encoding for each 

time-step (word’s position in a sentence)

2. Distance between any two time-steps should be 

consistent across sentences with different lengths.

3. Our model should generalize to longer sentences 

without any efforts. Its values should be bounded.

4. It must be deterministic.

x0 x1 x2

p0 p1 p2

self-attention

y0 y1 y2

position encoding

x0 x1 x2

Concatenate special positional 

encoding pj to each input vector xj

We use a function pos: N →Rd 

to process the position j of the

vector into a d-dimensional vector

So, pj = pos(j)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Vaswani et al, “Attention is all you need”, NeurIPS 2017
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Positional encoding
Options for pos(.)

1. Learn a lookup table:

○ Learn parameters to use for pos(t) for t ε[0, T)

○ Lookup table contains T x d parameters.

2. Design a fixed function with the desiderata

p(t) =

where

Intuition:

image source

x0 x1 x2

p0 p1 p2

self-attention

y0 y1 y2

position encoding

x0 x1 x2

Concatenate special positional 

encoding pj to each input vector xj

We use a function pos: N →Rd 

to process the position j of the

vector into a d-dimensional vector

So, pj = pos(j)

Fei-Fei Li, Yunzhu Li, Ruohan Gao

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Justin Johnson, Yunzhu Li, Ruohan Guo

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Transformer Overview

Attention is all you need. 2017.  Aswani, 

Shazeer, Parmar, Uszkoreit,  Jones, 

Gomez, Kaiser, Polosukhin  

https://arxiv.org/pdf/1706.03762.pdf 

• Non-recurrent sequence-to-

sequence encoder-decoder model

• Task: machine translation  

with parallel corpus

• Predict each translated word

• Final cost/error function is  

standard cross-entropy error 

on top of a softmax classifier

This and related figures from paper ⇑

Christopher Manning

https://arxiv.org/pdf/1706.03762.pdf


Attention visualization in layer5

• Words start to pay attention to other words in sensible ways

Christopher Manning



Attention visualization: Implicit anaphoraresolution

In 5th layer. Isolated attentions from just the word ‘its’ forattention heads 5 and 6.  
Note that the attentions are very sharp for this word.

Christopher Manning



I kicked the ball

Who

Did what?

To whom?

I kicked the ball

Ashish Vaswani

Parallel attention heads



Transformer
Encoder

Word 
Embeddings

Position 
Representations

+

Transformer  
Encoder

[input sequence]

Transformer  
Decoder

Word
Embeddings

Position
Representations

+

Transformer  
Decoder

[output sequence]

[decoder attends 
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]

The Transformer Encoder-Decoder 
[Vaswani et al., 2017]

John Hewitt

https://arxiv.org/pdf/1706.03762.pdf


The Transformer Encoder-Decoder 
[Vaswani et al., 2017]

Next, let’s look at the Transformer Encoder and Decoder Blocks

What’s in a Transformer Encoder Block?

1. Key-query-value attention: How do we get the 𝑘, 𝑞, 𝑣 vectors from a single word embedding?

2. Multi-headed attention: Attend to multiple places in a single layer!

3. Tricks to help with training! (see hidden slides)

1. Residual connections

2. Layer normalization

3. Scaling the dot product

4. These tricks don’t improve what the model is able to do; they help improve the training process

Adapted from John Hewitt

https://arxiv.org/pdf/1706.03762.pdf


Word 
Embeddings

Position 
Representations

+

Transformer
Encoder

[input sequence]

Transformer  
Decoder

Word
Embeddings

Position
Representations

+

Transformer  
Decoder

[output sequence]

[decoder attends 
to encoder states]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]

Multi-Head Attention

Residual + LayerNorm

Feed-Forward

Residual + LayerNorm

John Hewitt

The Transformer Encoder-Decoder 
[Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762.pdf


Transformer
Encoder

Word 
Embeddings

Position 
Representations

+

[input sequence]

Word
Embeddings

Position
Representations

+

Looking back at the whole model, 

zooming in on a Decoder block:

Transformer  
Encoder

[output sequence]

[predictions!]

Transformer  
Decoder

Residual + LayerNorm 

Feed-Forward 

Residual + LayerNorm

Multi-Head Cross-Attention  

Residual + LayerNorm

Masked Multi-Head Self-Attention

John Hewitt

The Transformer Encoder-Decoder 
[Vaswani et al., 2017]

https://arxiv.org/pdf/1706.03762.pdf


The Transformer Decoder:
Cross-attention (details)

• We saw self-attention is when keys, queries, and values come from the same source.

• In the decoder, we have attention that looks more like what we saw last week.

• Let ℎ1, … , ℎ𝑇 be output vectors from the Transformer encoder; 𝑥𝑖 ∈ ℝ𝑑

• Let 𝑧1, … , 𝑧𝑇 be input vectors from the Transformer decoder, 𝑧𝑖 ∈ ℝ𝑑

• Then keys and values are drawn from the encoder (like a memory):

• 𝑘𝑖 = 𝐾ℎ𝑖, 𝑣𝑖 = 𝑉ℎ𝑖.

• And the queries are drawn from the decoder, 𝑞𝑖 = 𝑄𝑧𝑖.

John Hewitt



• Quadratic compute in self-attention:

• Computing all pairs of interactions means our computation grows
quadratically with the sequence length!

• For recurrent models, it only grew linearly!

• Position representations:

• Are simple absolute indices the best we can do to represent position?

• Relative linear position attention [Shaw et al., 2018]

• Dependency syntax-based position [Wang et al., 2019]

What would we like to fix about the Transformer?

John Hewitt

https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf


• One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

• However, its total number of operations grows as 𝑂 𝑇2𝑑 , where 𝑇 is the 
sequence length, and 𝑑 is the dimensionality.

= 𝑋𝑄𝐾𝖳 𝑋𝖳

∈ ℝ𝑇×𝑇

Need to compute all 
pairs of interactions!
𝑂 𝑇2𝑑𝐾𝖳 𝑋𝖳

𝑋𝑄

Quadratic computation as function of seq. length

• Think of 𝑑 as around 𝟏,𝟎𝟎𝟎.

• So, for a single (shortish) sentence, 𝑇 ≤ 30; 𝑇2 ≤ 𝟗𝟎𝟎.

• In practice, we set a bound like 𝑇 = 512.

• But what if we’d like 𝑻 ≥ 𝟏𝟎,𝟎𝟎𝟎? For example, to work on long documents?

John Hewitt



• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, Linformer [Wang et al., 2020]

Key idea: map the 
sequence length 
dimension to a lower-
dimensional space for 
values, keys In

fe
re

n
ce

ti
m

e
(s

)

Recent work on improving on quadratic self-
attention cost

Sequence length / batch size

John Hewitt

https://arxiv.org/pdf/2006.04768.pdf


• Considerable recent work has gone into the question, Can we build models like
Transformers without paying the 𝑂 𝑇2 all-pairs self-attention cost?

• For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local 
windows, looking at everything, and random interactions.

Recent work on improving on quadratic self-
attention cost

John Hewitt

https://arxiv.org/pdf/2007.14062.pdf


In modern NLP:

• All (or almost all) parameters in NLP
networks are initialized via pretraining.

• Pretraining methods hide parts of the input  
from the model, and train the model to  
reconstruct those parts.

• This has been exceptionally effective at  
building strong:

• representations of language

• parameter initializations for strong NLP
models.

… the movie was …

𝒚

Pretrained jointly

[This model has learned how to represent  
entire sentences through pretraining]

Pretraining models

Adapted from John Hewitt



The neural architecture influences the type of pretraining, and natural use cases.

Decoders
• Language models! What we’ve seen so far.

• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!

• Wait, how do we pretrain them?

Encoder-

Decoders

Pretraining for three types of architectures

• Good parts of decoders and encoders?

• What’s the best way to pretrain them?

Adapted from John Hewitt



Recall the language modeling task:

• Model 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1), the probability  
distribution over words given their past  
contexts.

• There’s lots of data for this! (In English.)

Pretraining through language modeling:

• Train a neural network to perform language  
modeling on a large amount of text.

• Save the network parameters.

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes

Pretraining through language modeling 
[Dai and Le, 2015]

to make tasty tea END

John Hewitt

https://arxiv.org/pdf/1511.01432.pdf


Pretraining can improve NLP applications by serving as parameter initialization.

Decoder
(Transformer, LSTM, ++)

Iroh goes to make tasty tea

goes to make tasty tea END

Step 1: Pretrain (on language modeling)

Lots of text; learn general things!

Decoder
(Transformer, LSTM, ++)

☺/

The Pretraining / Finetuning Paradigm

Step 2: Finetune (on your task)

Not many labels; adapt to the task!

… the movie was …

John Hewitt



There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language:

• Stanford University is located in , California. [Trivia]

• I put fork down on the table. [syntax]

• The woman walked across the street, checking for traffic over shoulder. [coreference]

• I went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]

• Overall, the value I got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was . [sentiment]

• Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his  
destiny. Zuko left the . [some reasoning – this is harder]

• I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, [some basic
arithmetic; they don’t learn the Fibonnaci sequence]

• Models also learn – and can exacerbate racism, sexism, all manner of bad biases.

Adapted from John Hewitt

Capturing meaning via context: 

What kinds of things does pretraining learn?



So far, we’ve looked at language model pretraining. But encoders get bidirectional  
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words.

ℎ1, … , ℎ𝑇 = Encoder 𝑤1, … , 𝑤𝑇

𝑦𝑖∼ 𝐴𝑤𝑖 + 𝑏

Only add loss terms from words that are  
“masked out.” If 𝑥 ’ is the masked version of  𝑥, 
we’re learning 𝑝𝜃(𝑥|𝑥’  ). Called Masked LM.

I [M] to the [M]

went store

𝐴,𝑏

ℎ1, … , ℎ𝑇

[Devlin et al., 2018]

Pretraining encoders: 
What pretraining objective to use?

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf


Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a  
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

• Predict a random 15% of (sub)word tokens.

• Replace input word with [MASK] 80% of the time

• Replace input word with a random token 10% of  
the time

• Leave input word unchanged 10% of the time (but  
still predict it!)

• Why? Doesn’t let the model get complacent and not  
build strong representations of non-masked words.  
(No masks are seen at fine-tuning time!)

[Predict these!]

I pizza to the [M]

storewent to

Transformer  
Encoder

[Devlin et al., 2018]

[Masked][Replaced] [Not replaced]

John Hewitt

BERT: Bidirectional Encoder Representations from
Tranformers

https://arxiv.org/pdf/1810.04805.pdf


• Mask out k% of the input words, and then predict the  masked words

• They always use k = 15%

store

↑

gallon

↑

the man went to the [MASK] to buy a [MASK] of milk

• Too little masking: Too expensive to train

• Too much masking: Not enough context

Christopher Manning

BERT: Bidirectional Encoder Representations from
Tranformers



• Additional task: Next sentence prediction

• To learn relationships between sentences, predict whether  

Sentence B is actual sentence that proceeds Sentence A, or a  

random sentence

Adapted from Christopher Manning

BERT: Bidirectional Encoder Representations from
Tranformers



• The pretraining input to BERT was two separate 

contiguous chunks of text:

• In addition to masked input reconstruction, BERT was trained to predict 

whether one chunk follows the other or is randomly sampled.

• Later work has argued this “next sentence prediction” is not necessary.

[Devlin et al., 2018, Liu et al., 2019]

Adapted from John Hewitt

BERT: Bidirectional Encoder Representations from
Tranformers

https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692


BERT: Bidirectional Encoder Representations from
Tranformers

[Devlin et al., 2018]

Details about BERT

• Two models were released:

• BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.

• BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.

• Trained on:

• BooksCorpus (800 million words)

• English Wikipedia (2,500 million words)

• Pretraining is expensive and impractical on a single GPU.

• BERT was pretrained with 64 TPU chips for a total of 4 days.

• (TPUs are special tensor operation acceleration hardware)

• Finetuning is practical and common on a single GPU

• “Pretrain once, finetune many times.”

John Hewitt

https://arxiv.org/pdf/1810.04805.pdf


BERT was massively popular and hugely versatile; finetuning BERT led to 
new state-of- the-art results on a broad range of tasks.

• CoLA: corpus of linguistic acceptability 
(detect  whether sentences are grammatical.)
• STS-B: semantic textual similarity
• MRPC: microsoft paraphrase corpus
• RTE: small natural language inference corpus

BERT: Bidirectional Encoder Representations from
Tranformers

[Devlin et al., 2018]
John Hewitt

• QQP: Quora Question Pairs (detect 
paraphrase questions)

• QNLI: natural language inference over 
question answering data

• SST-2: sentiment analysis

https://arxiv.org/pdf/1810.04805.pdf


You’ll see a lot of BERT variants like RoBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:

• RoBERTa: mainly just train BERT for longer and remove next sentence prediction!

• SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

BERT

[MASK] irr## esi## sti## [MASK] good

It’s

SpanBERT

bly

Extensions of BERT

[Liu et al., 2019; Joshi et al., 2020]

It’ [MASK] [MASK] [MASK] [MASK] good

irr## esi## sti## bly

John Hewitt

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529


A takeaway from the RoBERTa paper: more compute, more data can improve pretraining  
even when not changing the underlying Transformer encoder.

Extensions of BERT

[Liu et al., 2019; Joshi et al., 2020]

John Hewitt

https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529


It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their 𝑝𝜃 𝑤𝑡 𝑤1:𝑡−1)!

This is helpful in tasks where the output is a  
sequence with a vocabulary like that at  
pretraining time!

• Dialogue (context=dialogue history)

• Summarization (context=document)

ℎ1,… , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑤𝑡 ∼ 𝐴𝑤𝑡−1 + 𝑏

Where 𝐴, 𝑏 were pretrained in the language  
model!

𝑤2 𝑤3 𝑤4 𝑤5 𝑤6

𝐴,𝑏

ℎ1, … , ℎ𝑇

𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

[Note how the linear layer has been pretrained.]

John Hewitt

Pretraining decoders



ℎ1, … , ℎ𝑇

When using language model pretrained decoders, we can ignore  

that they were trained to model 𝑝 𝑤𝑡 𝑤1:𝑡−1).

We can finetune them by training a classifier
on the last word’s hidden state.

ℎ1,… , ℎ𝑇 = Decoder 𝑤1, … , 𝑤𝑇

𝑦 ∼ 𝐴𝑤𝑇 + 𝑏

Where 𝐴 and 𝑏 are randomly initialized and  
specified by the downstream task.

Gradients backpropagate through the whole  
network.

𝑤1, … ,𝑤𝑇

☺/

Linear

Pretraining decoders

𝐴,𝑏

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]

John Hewitt



2018’s GPT was a big success in pretraining a decoder!

• Transformer decoder with 12 layers.

• 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.

• Byte-pair encoding with 40,000 merges

• Trained on BooksCorpus: over 7000 unique books.

• Contains long spans of contiguous text, for learning long-distance dependencies.

• The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

[Devlin et al., 2018]

John Hewitt

Generative Pretrained Transformer (GPT) 
[Radford et al., 2018]

https://arxiv.org/pdf/1810.04805.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


How do we format inputs to our decoder for finetuning tasks?

Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral

Premise: The man is in the doorway

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.

Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

entailment

Generative Pretrained Transformer (GPT) 
[Radford et al., 2018]

John Hewitt

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


GPT results on various natural language inference datasets.

Generative Pretrained Transformer (GPT) 
[Radford et al., 2018]

John Hewitt

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


We mentioned how pretrained decoders can be used in their capacities as language models.  

GPT-2, a larger version of GPT trained on more data, was shown to produce relatively  

convincing samples of natural language.

John Hewitt

Increasingly convincing generations (GPT2) 
[Radford et al., 2018]

https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf


Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.  

All novel words seen at test time are mapped to a single UNK.

word  

hat  

learn

taaaaasty  

laern

vocab mapping  

pizza (index)  

tasty (index)  

UNK (index)  

UNK (index)  

UNK (index)

embedding

Transformerify

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models



Finite vocabulary assumptions make even less sense in many languages.

• Many languages exhibit complex morphology, or word structure.

• The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have  
hundreds of conjugations, each  
encoding a wide variety of  
information. (Tense, mood,  
definiteness, negation, information  
about the object, ++)

Here’s a small fraction of the
conjugations for ambia – to tell.

[Wiktionary]

John Hewitt

Aside: Word structure and subword models

https://en.wiktionary.org/wiki/ambia


Subword modeling in NLP encompasses a wide range of methods for reasoning about  
structure below the word level. (Parts of words, characters, bytes.)

• The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).

• At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.

3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

[Sennrich et al., 2016, Wu et al., 2016]

John Hewitt

Aside: The byte-pair encoding algorithm

https://www.aclweb.org/anthology/P16-1162.pdf
https://arxiv.org/pdf/1609.08144.pdf


Common words end up being a part of the subword vocabulary, while rarer words are split  
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping  

hat

learn

taa## aaa## sty  

la## ern##  

Transformer## ify

embedding

hat  

learn

taaaaasty  

laern

Transformerify

Common
words

Variations

misspellings

novel items

John Hewitt

Aside: Word structure and subword models



What Raffel et al., 2018 found to work best was span corruption. Their model: T5.

Replace different-length spans from the input  
with unique placeholders; decode out the  
spans that were removed!

This is implemented in text  
preprocessing: it’s still an objective  
that looks like language modeling at  
the decoder side.

John Hewitt

Pretraining encoder-decoders: 
What pretraining objective to use?

https://arxiv.org/pdf/1910.10683.pdf


A fascinating property  
of T5: it can be  
finetuned to answer a  
wide range of  
questions, retrieving  
knowledge from its  
parameters.

NQ: Natural Questions  

WQ: WebQuestions  

TQA: Trivia QA

All “open-domain”
versions

[Raffel et al., 2018]

220 million params

770 million params

3 billion params

11 billion params

John Hewitt

Pretraining encoder-decoders: 
What pretraining objective to use?

https://arxiv.org/pdf/1910.10683.pdf


So far, we’ve interacted with pretrained models in two ways:

• Sample from the distributions they define (maybe providing a prompt)

• Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient  
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.

GPT-3 has 175 billion parameters.

John Hewitt

GPT-3, in-context learning, very large models



Very large language models seem to perform some kind of learning without gradient  
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional  
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):

“ thanks -> merci

hello -> bonjour

mint -> menthe

otter -> ”

Output (conditional generations):

loutre…”

John Hewitt

GPT-3, in-context learning, very large models



Very large language models seem to perform some kind of learning without gradient  
steps simply from examples you provide within their contexts.

GPT-3, in-context learning, very large models

John Hewitt



Transformers in vision

https://www.youtube.com/watch?v=TrdevFK_am4 Dosovitskiy, ICLR 2021, https://github.com/google-research/vision_transformer 

https://www.youtube.com/watch?v=TrdevFK_am4
https://github.com/google-research/vision_transformer


Cross-modal transformers

Chen et al., “UNITER: Learning UNiversal Image-TExt Representations”, arxiv 2019



Cross-modal transformers

Tan and Bansal, “LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers”, EMNLP 2019



ULMfit  

Jan 2018

Training:  1 

GPU day

BERT  

Oct 2018

Training

256 TPU days

~320–560

GPU days

GPT-2  

Feb 2019

Training

~2048 TPU v3

days according to  

a reddit thread

GPT

June 2018  

Training

240 GPU days

Christopher Manning

Cost of training
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