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Plan for this lecture

* Background

— Context prediction, unsupervised learning
* Transformer models

— Self-attention

— Adapting self-attention for sequential data

— The transformer architecture, encoder/decoder
— Pre-training, BERT, GPT

* Transformers beyond language



Additional resources

« Learning about transformers on your own?
- Key recommended resource:

« The Annotated Transformer by Sasha Rush
« Jupyter Notebook using PyTorch that explains everything!
« The lllustrated Transformer

- Attention visualizer

Adapted from Christopher Manning


http://nlp.seas.harvard.edu/2018/04/03/attention.html
http://jalammar.github.io/illustrated-transformer/
https://github.com/jessevig/bertviz

How do we represent the meaning of a word?

Definition: meaning (Webster dictionary)
« the idea that is represented by a word, phrase, etc.

« the idea that a person wants to express by using
words, signs, etc.

« the idea that is expressed in a work of writing, art, etc.

Commonest linguistic way of thinking of meaning:

[signifier (symbol) < signified (idea or thing)}

= denotational semantics

Christopher Manning



How do we have usable meaning in a computer?

Common solution: Use e.g. WordNet, a thesaurus containing lists
of synonym sets and hypernyms (“is a” relationships).

e.g. synonym sets containing “good’’:

from nltk.corpus import wordnet aswn
poses = { 'n":'noun’, 'v':'verb', 's":'adj (s)', 'a":'adj’, 'r':'adv'}
for synset in wn.synsets("good"):
print("{}: {}".format(poses[synset.pos()],
" "join([l.name() for | insynset.lemmas()])))

noun: good

noun: good, goodness
noun: good, goodness

noun: commodity, trade_good, good
adj: good

adj (sat): full, good adj:

good

adj (sat): estimable, good, honorable, respectable adj (sat):

beneficial, good
adj (sat): good
adj (sat): good, just, upright

adverb: well, good
adverb: thoroughly, soundly, good

Christopher Manning

e.g. hypernyms of “panda”:

from nltk.corpus import wordnet as wn
panda = wn.synset("panda.n.01") hyper =
lambda s: s.hypernyms()
list(panda.closure(hyper))

[Synset('procyonid.n.01’'),
Synset('carnivore.n.01'),
Synset('placental.n.01'),
Synset('mammal.n.01’'),
Synset('vertebrate.n.01'),
Synset('chordate.n.01'),
Synset('animal.n.01’'),
Synset('organism.n.01'),
Synset('living_thing.n.01'),
Synset('whole.n.02'),
Synset('object.n.01'),
Synset('physical_entity.n.01'),
Synset('entity.n.01")]



Problems with resources like WordNet

Great as a resource but missing nuance

- e.g. “proficient” is listed as a synonym for “good”.
This is only correct in some contexts.

* Missing new meanings of words
 e.g., wicked, badass, nifty, wizard, genius, ninja, bombest

* Impossible to keep up-to-date!
« Subjective
* Requires human labor to create and adapt

« Can’t compute accurate word similarity

Christopher Manning



Representing words as discrete symbols

In traditional NLP, we regard words as discrete symbols:
hotel, conference, motel - a localist representation

Means one 1, the rest Os

Words can be represented by one-hot vectors:

motel=[00000000001000 0]
hotel=[000000010000000]

Vector dimension = number of words in vocab (e.g. 500,000)

Christopher Manning



Problem with words as discrete symbols

Example: in web search, if user searches for “Seattle motel”, we
would like to match documents containing “Seattle hotel”.

But:
motel=[000000000010000]
hotel=[000000010000000]
These two vectors are orthogonal.
There is no natural notion of similarity for one-hot vectors!

Solution:

« Could try to rely on WordNet’s list of synonyms to get similarity?
- But it is well-known to fail badly: incompleteness, etc.

« Instead: learn to encode similarity in the vectors themselves

Christopher Manning



Representing words by their context

 Distributional semantics: A word’s meaning is given
by the words that frequently appear close-by

*  “You shall know a word by the company it keeps” (J. R. Firth 1957)

* One of the most successful ideas of modern statistical NLP!

 When a word w appears in a text, its context is the set of words
that appear nearby (within a fixed-size window).

« Use the many contexts of w to build up a representation of w

...government debt problems turning into banking crises as happened in 2009...

...saying that Europe needs unified banking regulation to replace the hodgepodge. ..
...Indlia has just given its banking system a shot in the arm...

N\ /

These context words will represent banking

Christopher Manning



What can we learn from reconstructing the input?

Stanford University is located in , California.

John Hewitt



What can we learn from reconstructing the input?

| put fork down on the table.

John Hewitt



What can we learn from reconstructing the input?

The woman walked across the street,
checking for traffic over shoulder.

John Hewitt



What can we learn from reconstructing the input?

| went to the ocean to see the fish, turtles, seals, and

John Hewitt



What can we learn from reconstructing the input?

Overall, the value | got from the two hours watching
it was the sum total of the popcorn and the drink.

The movie was .

John Hewitt



What can we learn from reconstructing the input?

Iroh went into the kitchen to make some tea.
Standing next to Iroh, Zuko pondered his destiny.
Zuko left the

John Hewitt



What can we learn from reconstructing the input?

| was thinking about the sequence that goes
1,1,2,3,5,8, 13, 21,

John Hewitt



Word vectors

We will build a dense vector for each word, chosen so that it is
similar to vectors of words that appear in similar contexts

4 A
0.286

0.792
-0.177

-0.107
banking = 0.109

-0.542
0.349

K 0.271 )

Note: word vectors are sometimes called word embeddings or
word representations. They are a distributed representation.

Christopher Manning



Word meaning as a neural word vector - visualization

need help

COCIiI'(I)e
0286 )

0.792 qive keep
-0.177 make get
-0.107 meet - continue
= 0.109 ,
expect 0549 —— want
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Christopher Manning



Word2Vec Overview

Word2vec (Mikolov et al. 2013) is a framework for learning
word vectors

|dea:

We have a large corpus of text
Every word in a fixed vocabulary is represented by a vector

Go through each position t in the text, which has a center word
¢ and context (“outside’) words o

Use the similarity of the word vectors for c and o to calculate
the probability of o given c (or vice versa)

Keep adjusting the word vectors to maximize this probability

Christopher Manning



Word2Vec Overview

 Example windows and process for computing P(Wt+j/Wt)

problems  turning banking crises  as

‘ Y S e Y ’
outside contextwords center word outside contextwords
in window of size?2 at positiont in window of size2

Christopher Manning



Word2Vec Overview

 Example windows and process for computing P(Wt+j/Wt)

crises as

problems  turning

\ Y J L Y J \ ]

|
outside contextwords centerword outside contextwords
in window of size2 at positiont in window of size2

Christopher Manning



Word2Vec: objective function

For each positiont=1, ..., T, predict context words within a
window of fixed size m, given center word w,.

1—[ P(WHj | we; 9)

t=1 —-m<j<m

Jj#0
6 is all variables

to be optimized
l sometimes called cost or /oss function

Likelihood = L(8) =

1=

The objective function is the (average) negative log
likelihood:

1
](9)———10gL(9)——TZ Z log P(weyj | we; 8)

—-ms<j<m
J#0

Minimizing objective function < Maximizing predictive
accuracy

Christopher Manning



Word2Vec: objective function

We want to minimize the objective function:

T
1 1
J©) =—=logL(®) === > > logP(wes; |we; 0)

t=1-m<j<m
Jj#0

[w,; 6)?

Question: How to calculate P(w,,;

Answer: We will use two vectors per word w:

v ,» when w is a center word

u,, when w is a context word

Then for a center word ¢ and a context word o:
exp(Up Vc)

P(o|c) =
( ) ZWEV CXp (ulTVUC)

Christopher Manning



Word2Vec: prediction function

Exponentiation makes anything positive

1 Dot product compares similarity of o and c.
s ] an — . o n . L
T ‘_//- u v u.v i=1 U;jl;
P(olc) — E‘Xp Larger dot product = larger probability
ZWEV exp(uwvc)

Normalize over entire vocabulary
to give probability distribution

 This is an example of the softmax function R"—>R"
exp(x;)
=1 exp(x))

softmax(x;) = i

Christopher Manning



Recall: Recurrent Neural Networks (RNNs)

= negative log prob
of “students”

Loss > | T () J@(6) J3)(9) J(0)
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Issues with recurrent models:
Linear interaction distance

* O(sequence length) steps for distant word pairs to interact means:
* Hard to learn long-distance dependencies (because gradient problems!)

* Linear order of words is “baked in”; not necessarily the right way to think about
sentences...

—'.'C —_— — 00 — —>I

T
—>000 ——H> ——> o000 > —>-

The chef who ...

Info of chef has gone through
O(sequence length) many layers!

Adapted from John Hewitt



Issues with recurrent models:
Lack of parallelizability

* Forward and backward passes have O(sequence length) unparallelizable operations
* GPUs can perform a bunch of independent computations at once!

e But future RNN hidden states can’t be computed in full before past RNN
hidden states have been computed

* Inhibits training on very large datasets!

”jﬂ . ...aiﬂE

hy h;

Numbers indicate min # of steps before a state can be computed

John Hewitt



If not recurrence, then what?
How about word windows?

* Word window models aggregate local contexts
* Also known as 1D convolution
* Number of unparallelizable operations not tied to sequence length!

window

window

embedding . . . . . . . .

hl h2 hT

Numbers indicate min # of steps before a state can be computed

Adapted from John Hewitt



If not recurrence, then what?
How about word windows?

 Word window models aggregate local contexts
* What about long-distance dependencies?

 Stacking word window layers allows interaction between farther words

* But if your sequences are too long, you'll just ignore long-distance context

window (size=5) . . . .
window (size=5) . .

embedding . . . .

/ hl hk hT

Too far from h, to be considered

Adapted from John Hewitt

Red states
indicate those
“visible” to h




If not recurrence, then what?
How about attention?

* Attention treats each word’s representation as a query to access and
incorporate information from a set of values.
* We saw attention from the decoder to the encoder; today we’ll also think
about attention within a single sentence.
* |f attention gives us access to any state... maybe we can just use
attention and don’t need the RNN?
* Number of unparallelizable operations not tied to sequence length.
* All words interact at every layer!

All words attend
attention .

to all words in

attention previous layer;

most arrows here

embedding . . . . . . . . are omitted

h; h,

Adapted from John Hewitt



Recall: Sequence-to-sequence with attention

Attention
distribution

Scores

Attention

Encoder
RNN

Abigail See

Attention
output

P
<

Usethe attention distribution to take a
weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden statesthat
received high attention.

N\

-

Y — 0000

entarté

S

J

v
Source sentence (input)

<START>

NN J9po2ad



Recall: Attention in equations

- We have encoder hidden states hq,...,hy € R?
- On timestep t, we have decoder hidden state s; € R"
. We get the attention score e’ for this step:

el =[s'hy,...,s] hy] € RY

«  We take softmax to get the attention distribution ot for this step (this is
a probability distribution and sums to 1)

o' = softmax(e’) € RY

- Weuse o' totake a weighted sum of the encoder hidden states to
get the attention output a;

a; — Z Ckfhz < Rh
=1

- Finally we concatenate the attention output a; with the decoder
hidden state s: and proceed as in the non-attention seg2seq model

las; s;] € R?P
Abigail See



Attention Notation: Queries, Keys, Values

* Attention operates on queries, keys, and values.
 We have some queries ¢4, (5, ..., qr. Each query is g, € R4
« We have some keys k1, ko, ..., k7. Each keyisk; € R4
» We have some values vy, vy, ..., vr. Each valueis v; € R4

The number of queries
can differ from the
number of keys and
values in practice.

In self-attention, the queries, keys, and values are drawn from the same source.

* For example, if the output of the previous layer is x4, ..., X7, (one vec per word)
we could let v; = k; = q; = x; (that is, use the same vectors for all of them!)

* The (dot product) self-attention operation is as follows:

— @y =5 ezz(eu.).
j' p(el]')
Compute key- Compute attention
query affinities weights from affinities
(softmax)

Adapted from John Hewitt

output; = 2 ; aij vj

Compute outputs as
weighted sum of values




Key-Query-Value Attention

* We saw that self-attention is when keys, queries, and values come from the same
source. The Transformer does this in a particular way:

* Let x1, ..., x7 be input vectors to the Transformer encoder; x; € R4

* Then keys, queries, values are:
« k; = Kx;, where K € R%%4 js the key matrix.
* q; = Qx;, where Q € R%%? s the query matrix.

« v;= Vx;, where V € R%%4 js the value matrix.

* These matrices allow different aspects of the x vectors to be used/emphasized in
each of the three roles.

John Hewitt



Key-Query-Value Attention

* Let’s look at how key-query-value attention is computed, in matrices.
* Let X = [x4; ...; xr | € RT*4 be the concatenation of input vectors.
* First, note that XK € RT*4, XQ € RT*4, XV € RTxq,
* The output is defined as output = softmax(XQ(XK)") x XV.

First, take the query-key dot All pairs of
products in one matrix X0 = XQKTXT attention scores!
multiplication: XQ (XK T yT

(XK) KT X e RTXT

Next, softmax, and

compute the weighted softmax| xokTxT | xy =
average with another

. T . Txd
matrix multiplication. output € R

John Hewitt



Multi-headed attention

John Hewitt

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xTQTKxj is high, but maybe we want
to focus on different j for different reasons?

We’'ll define multiple attention “heads” through multiple Q,K,V matrices
Let, Qp, Kp, Vp € ]Rdx%, where h is the number of attention heads, and P ranges
from 1 to h.
Each attention head performs attention independently:
« outputp = softmax(XQpK'XT) * XVp, where outputp € R4/%
Then the outputs of all the heads are combined!
- output = Y[outputy; ...; output,], where Y € R4xd

Each head gets to “look” at different things, and construct value vectors
differently.



Multi-headed attention

John Hewitt

What if we want to look in multiple places in the sentence at once?

* For word i, self-attention “looks” where xTQTKxj is high, but maybe we want

to focus on different j for different reasons?
We’'ll define multiple attention “heads” through multiple Q,K,V matrices

d
Let, Qp, Kp,Vp € ]Rdxﬁ, where h is the number of attention heads, and P ranges

from 1 to h.

Single-head attention
(just the query matrix)

X XQ
Q=

Multi-head attention

(just two heads here)

X XQ1 XQ>
1Q2 =

Same amount of
computation as
single-head self-
attention!



Dot-Product Attention (alternative slide)

Inputs: a query q and a set of key-value (k-v) pairs to an output
* Query, keys, values, and output are all vectors

« Output is weighted sum of values, where

« Weight of each value is computed by an inner product of query and
corresponding key

« Queries and keys have same dimensionality d, value have d,

q-ki

Alq, K, V) :Z -

q""&jvi
;D€

Christopher Manning



Dot-Product Attention — Matrix notation (alternative slide)

« When we have multiple queries ¢, we stack them in a matrix Q

GQ'ki

2 ed'" K

Alg, K, V)=

(

- becomes: A(Q,K.,V)= wftma:v(QKT)V
Q] xdi] x [dux[K[] x [IK] xdy]

=[1Q[ xd]

softmax e ‘ ‘ ‘ ‘
row-wise

Christopher Manning



Barriers and solutions for Self-Attention as a
building block

John Hewitt

Barriers

Doesn’t have an inherent
notion of order!

No nonlinearities for deep
learning magic! It’s all just
weighted averages

Need to ensure we don’t
“look at the future” when
predicting a sequence

* Like in machine translation
* Or language modeling

Solutions

Add position
representations to the
inputs

Easy fix: apply the same
feedforward network to each
self- attention output.

Mask out the future by
artificially setting attention
weights to 0!



Fixing the first self-attention problem:
Sequence order

e Since self-attention doesn’t build in order information, we need to encode the order of the
sentence in our keys, queries, and values.

* Consider representing each sequence index as a vector

p; € R4, fori € {1,2,...,T} are position vectors

* Don’t worry about what the p; are made of yet!
* Easy to incorporate this info into our self-attention block: just add the p; to our inputs!

« Letwv; k; q;‘beouroldvalues, keys, and queries.

v, =v; + Di In deep self-attention
g =q;'+ p; n.etworks, we do this at the
ki = k' + p first layer! You could
' l l concatenate them as well,
but people mostly just add...

John Hewitt



Position representation vectors through sinusoids

* Sinusoidal position representations: concatenate sinusoidal functions of varying periods:

(sin(i/100002%1/d)
cos(i/100002*1/d)

d
sin(i/100002*5/d)

Di

(€0s(i/10000%°2/¢) )

1.0

0.8

embedding
=]
=]

Image: https://timodenk.com/blog/linear-relationships-in-the-transformers-positional-encoding/

‘Jj -'f
T _j- E
"'_r-"":

"_{J'"'_,.s‘-”-l'.p 37§
éf’f"‘{j

Dimension

Index in the sequence

Image: http://nlp.seas.harvard.edu/annotated-transformer/

dimension
—4
—5
— 5
—7

0o 5 10

{5 20 25 30 35 4 45 50 55 60 65 70 75 80 8 90 95 100

position

Pros: Periodicity indicates that maybe “absolute position” isn’t as important; maybe can

extrapolate to longer sequences as periods restart.

Adapted from John Hewitt

Cons: Not learnable.



Stacking self-attention

* In the diagram at the right, we
have stacked self-attention
blocks, like we might stack LSTM
layers.

e The different layers capture a
hierarchy of relationships within
the data, similar to how
convolutional networks capture
a hierarchy of patterns that
range from low- to high-level.

Adapted from John Hewitt

—
—

! I

self-attention

ki @1 v1 k; q2 v2 k3 q3 v3 kr qr vr
! f . !
self-attention
ki g1 vi ko q2 v k3 q3 V3 kr qr vr
N N N N
w1 w» w3 wr
The chef who food



Adding nonlinearities in self-attention

* Note that there are no elementwise
nonlinearities in self-attention;
stacking more self-attention layers
just re-averages value vectors

* Easy fix: add a feed-forward network
to post-process each output vector.

m; = MLP (output;)
= W, * ReLU Wy X output; + by ) + b,

FF
!

self-attention

— T
-
— T

'|'|
— il

L b 4
FF
! ! ! !

self-attention

W1 1'% w3 wr

The chef who food

Intuition: the FF network processes the result of attention

John Hewitt




Masking the future in self-attention

We can look at these
(not greyed out) words

* To use self-attention in |
decoders, we need to ensure BN \
, '\Pg\ (2 é\ \(\0
we can’t peek at the future. © a\} o W
[START]

* To enable parallelization, we

mask out attention to future —
words by setting attention The
scores to —oo. For encoding
€ij = these words
_J chef
who
q' ki j<i
—00,j =1

Adapted from John Hewitt



Necessities for a self-attention building block:

* Self-attention:
 the basis of the method.
* Position representations:

 Specify the sequence order, since self-attention is an unordered function of its
inputs.

* Nonlinearities:
* At the output of the self-attention block
* Frequently implemented as a simple feed-forward network.
* Masking:
* In order to parallelize operations while not looking at the future.
* Keeps information about the future from “leaking” to the past.

* That’s it! But this is not the Transformer model we’ve been hearing about (yet).

Adapted from John Hewitt



Recall: Image Captioning with RNNs and Attention

Alignment scores:  Attention: This entire process is differentiable.
Hx W Hx W - Model chooses its own
attention weights. No attention
€100| €101 | €102 [Aigp| 101 | A1

supervision is required.

€110( €111| €L Q10| Q111|311

person wearing hat [END]
e1,2,0 e1,2,1 el,z,z alz’o alm ";\.1'2'2
T I Y1 Y2 Y3 Y4
Z Z Z
0,0/ €0,1 | 0,2 h, h, > h, h, h
CNN | %0 %41 %2
A
Zy0| 221 | 222 T T
Extract spatial Features:
C Y C y C y c
features from a HXxW x D =50 2 = . 4| Y
retrained CNN Y
P : 4 t t 4
Xu et al, “Show, Attend and Tell: Neural Image Caption Generation with Visual Attention”, ICML 2015 [START] person wearing hat

Justin Johnson, Yunzhu Li, Ruohan Guo



Attention we saw in image captioning

Cc
¥ Outputs:

[ mul+add | context vector: ¢ (shape: D)

Operations:

Alignment: e;; = f,(h, z,)
Attention: a = softmax(e)
| Output: ¢ = 3, 8,7,

Attention

g 5
2 £
3 5
L <
! Inputs:
Features: z (shape: Hx W x D)

Query: h (shape: D)

Justin Johnson, Yunzhu Li, Ruohan Guo



General attention layer (alternative slide)

c

7 Outputs:
[ mul+add | context vector: ¢ (shape: D)
f
> aO -
ko)
a < Operations:
a, £  Alignment: e, =f_(h, x)
t Attention: a = softmax(e)
| softmax | Output: ¢ = 3; ;X
& f
S
§ %o ° S Attention operation is permutation invariant.
2% | & £ - Doesn't care about ordering of the features
= 2 - StretchH x W = N into N vectors
— X2 > e2 <
1 Inputs:
h linput vectors: x (shape: N x D) |

Query: h (shape: D)

Justin Johnson, Yunzhu Li, Ruohan Guo



General attention layer (alternative slide)

c

7 Outputs:
[ mul+add | context vector: ¢ (shape: D)
f
> @
IS Change f_,(.) to a simple dot product
a = i . i
: < Operations: - only works well with key &
a, < |Allgnment: e, =h "X, | value transformation trick (will
: Attention: a = softmax(e) mention in a few slides)
| softmax | Output: ¢ = }; a X,
(72
2 f
g Xo | %o %
i Y-
£ X, - e, <
1 Inputs:
h Input vectors: x (shape: N x D)

Query: h (shape: D)

Justin Johnson, Yunzhu Li, Ruohan Guo



General attention layer (alternative slide)

Yo || Y1 |l Y2
f t 1

| mul(—) + add () |

Outputs:
[context vectors: y (shape: D) |

tt 1
[l ]
|

w miin

Attention

| softmax () |

% tt

S

8 XO > €00 €o1 €02 -E

> (O]

"5 — Xl > e €11 €12 g

2 =)

E XZ > €5 €1 €2 | <C
Qo | 93 | 9,

Justin Johnson, Yunzhu Li, Ruohan Guo

Operations:

Alignment: e, = ¢ - X, / VD
Attention: a = softmax(e)
Output:y, = 2 &;X,

Inputs:

Input vectors: X (shape: N x D)
Queries: q (shape: M x D) |

Multiple query vectors
- each query creates a new

output context vector

Notice that the input vectors are
used for both the alignment as well
as the attention calculations.

- We can add more expressivity
to the layer by adding a
different FC layer before
each of the two steps.

Multiple query vectors



General attention layer (alternative slide)

Yo

Y1

Yo

f

1

mul(—) + add ()

f
|

Input vectors

tt
- vo (] ST
A
v el
tt
| softmax () |
tt
XO —> kO —>| €oo €o1 €02
— Xl — kl > € €11 €12
X2 —> k2 —>| €20 €1 €2
1 |
Qo || 91 | 92

Justin Johnson, Yunzhu Li,

Ruohan Guo

Outputs:
context vectors: y (shape:| |)

Operations:

Key vectors: k = x\W,
Value vectors: v = X
Alignment: e = ¢ - k / VD
Attention: a = softmax(e)
Output:y, = 2, &,

Attention

Alignment

Inputs:
Input vectors: x (shape: N x D)
Queries: q (shape: M x@

The input and output dimensions
can now change depending on
the key and value FC layers



Self attention layer (alternative slide)

Operations:
Key vectors: k = x\W,
Value vectors: v = X

Query vectors: g = x\W,_

g Alignment: e;; = o - k /\D
§ %0 Attention: a = softmax(e)
5 M % Output:y, = 3, &,
o
= X,
Inputs:
qQ || 9 | 9 Input vectors: x (shape: N x D)

Justin Johnson, Yunzhu Li, Ruohan Guo

==p

We can calculate the query vectors
from the input vectors, therefore,
defining a "self-attention” layer.

Instead, query vectors are
calculated using a FC layer.

No input query vectors anymore



Self attention layer (alternative slide)

Yo | %1 || %2 Outputs:
t 1t _ _
ETETIE context vectors: y (shape: 1)
t t
o]
"V _’-!!g Operations:
v, _..!! Z  Keyvectors: k = xW,
: T Value vectors: v = x
| softmax (@) | Query vectors: ¢ = x\\/,
2 ot T Alignment: e, = q - k, /\D
Sl e e 1[e "o, |_. Attention:a= softmax(e)
8 0 0 0,0 0,1 ! 0,2 = ]
3 H- X, — k. —| e e e GEJ OUtpUt yJ - Zi ai’j
: 1 1 1,0 11 ! 1,2 C
a =)
E X2 —> k2 —>| €y €, €22 <_E
| [ Inputs:
Ao || 95 | G Input vectors: x (shape: N x D)

Justin Johnson, Yunzhu Li,

Ruohan Guo



Positional encoding

Yo Il Y1 |l Yo
i 1. Learnalookup table:

o Learn parameters to use for pos(t) for t €0, T)
o  Lookup table contains T x d parameters.

Options for pos(.)

self-attention
4

Xo || X || X5

Po || Py || P,
|
position encoding

! Desiderata of pos(.) :
Xo || %1 || X2 1. It should output a unique encoding for each
time-step (word’s position in a sentence)

Concatenate special positional 2. Distance between any two time-steps should be
encoding p, to each input vector x, consistent across sentences with different lengths.

3.  Our model should generalize to longer sentences
We use a function pos: N —R¢ without any efforts. Its values should be bounded.
to process the position j of the 4. It must be deterministic.
vector into a d-dimensional vector
So, P = pos()) Vaswani et al, “Attention is all you need”, NeurlPS 2017

Justin Johnson, Yunzhu Li, Ruohan Guo



Positiona

| encoding

Vo LY, 1LY
t -

self-attention
¢

Xo || Xp || X5

Po || Py || P2

t

position encoding

i

Xo

Xy

X,

Concatenate special positional
encoding p, to each input vector x,

We use a function pos: N —Rd
to process the position j of the
vector into a d-dimensional vector

S0, p, = pos()

Justin Johnson, Yunzhu Li, Ruohan Guo

Options for pos(.)

1. Learnalookup table:
o Learn parameters to use for pos(t) for t 0, T)
o  Lookup table contains T x d parameters.

2. Design a fixed function with the desiderata

p(t) =

_cos(wd/z. t) |

sin(w;. t)
cos(w. t)

sin(ws. t)
cos(ws. t)

sin(wgs- t)

Intuition:
0 000 82 000
1: 001 9: 1001
2: 010 10: 1010
3: 314 11 011
4: 1.0:0 1.2 100
5: 0101 13: 101
6: 110 14: 110
7: 111 15: 141

here w.— —

WRETe = {00027

image source
Vaswani et al, “Attention is all you need”, NeurlPS 2017


https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Transformer Overview

Attention is all you need. 2017. Aswani,
Shazeer, Parmar, Uszkoreit, Jones,
Gomez, Kaiser, Polosukhin
https://arxiv.org/pdf/1706.03762.pdf

« Non-recurrent sequence-to-
sequence encoder-decoder model

 Task: machine translation
with parallel corpus

 Predict each translated word

« Final cost/error function is
standard cross-entropy error
on top of a softmax classifier

This and related figures from paper 1

Christopher Manning

Output
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Input Output
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(shifted right)


https://arxiv.org/pdf/1706.03762.pdf
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Attention visualization: Implicit anaphoraresolution

application
should

The
Law
will
never
be
perfect
but

its

be

just
this

is

what
we

are
missing
in

my
opinion
<EQOS>
<pad>

The

be

just
this

is

what
we

are

my
opinion

should
<EOS>
<pad>

application
missing

In 5t layer. Isolated attentions from just the word ‘its’ forattention heads 5 and 6.

Note that the attentions are very sharp for this word.
Christopher Manning



Parallel attention heads

Ashish Vaswani



The Transformer Encoder-Decoder
[Vaswani et al., 2017]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]
t
Transformer
Decoder
[decoder attends t
to encoder states] *

+
Transformer

Decoder

[input sequence] [output sequence]

John Hewitt


https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder

Next, let’s look at the Transformer Encoder and Decoder Blocks

What'’s in a Transformer Encoder Block?
1. Key-query-value attention: How do we get the k, g, v vectors from a single word embedding?
2. Multi-headed attention: Attend to multiple places in a single layer!
3. Tricks to help with training! (see hidden slides)
1. Residual connections
2. Layer normalization
3. Scaling the dot product
4. These tricks don’t improve what the model is able to do; they help improve the training process

Adapted from John Hewitt


https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder
[Vaswani et al., 2017]

Looking back at the whole model, zooming in on an Encoder block:

[predictions!]
t

Transformer
Decoder
Residual + LayerNorm [decoder attends %
Feed-Forward 0 encoder states] :
o
Residual + LayerNorm t
_ : Transformer
Multi-Head Attention Decoder

[input sequence] [output sequence]

John Hewitt


https://arxiv.org/pdf/1706.03762.pdf

The Transformer Encoder-Decoder
[Vaswani et al., 2017]

[predictions!]
t

zooming in on a Decoder block: , Transformer
Decoder
t
Residual + LayerNorm

Looking back at the whole model,

Feed-Forward

T
Residual + LayerNorm
T
Multi-Head Cross-Attention
T
I Residual + LayerNorm
T

- + - Masked Multi-Head Self-Attention
e R
[input sequence]

[output sequence]

I

John Hewitt


https://arxiv.org/pdf/1706.03762.pdf

The Transformer Decoder:
Cross-attention (details)

John Hewitt

We saw self-attention is when keys, queries, and values come from the same source.
In the decoder, we have attention that looks more like what we saw last week.
Let h, ..., h be output vectors from the Transformer encoder; x; € R¢
Let z1, ..., zr be input vectors from the Transformer decoder, z; € R4
Then keys and values are drawn from the encoder (like a memory):
* ki =Kh;, vi=Vh,.
And the queries are drawn from the decoder, q; = Qz;.



What would we like to fix about the Transformer?

* Quadratic compute in self-attention:

* Computing all pairs of interactions means our computation grows
guadratically with the sequence length!

* For recurrent models, it only grew linearly!

* Position representations:
* Are simple absolute indices the best we can do to represent position?
 Relative linear position attention

* Dependency syntax-based position

John Hewitt


https://arxiv.org/abs/1803.02155
https://arxiv.org/pdf/1909.00383.pdf

Quadratic computation as function of seq. length

One of the benefits of self-attention over recurrence was that it’s highly
parallelizable.

« However, its total number of operations grows as O (T?d), where T is the
sequence length, and d is the dimensionality.

Need to compute all
XQ = XQKTXT pairs of interactions!

KT XT e RTXT 0(T?d)

* Think of d as around 1, 000.
* So, for a single (shortish) sentence, T < 30; T2 < 900.
* In practice, we set a bound like T = 512.

* But what if we'd like T > 10,0007? For example, to work on long documents?

John Hewitt



Recent work on improving on quadratic self-

attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O (T?) all-pairs self-attention cost?

* For example, Linformer [Wang et al., 2020]

Key idea: map the
sequence length
dimension to a lower-
dimensional space for
values, keys

John Hewitt

£
V-
Scaled Dot-Product
Attention «

) =) =)
F 7 71

\'% K Q

Inference time (s)

120
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L ——— Linformer, k=2048
—e— Linformer, k=1024
—&— Linformer, k=512

| === Linformer, k=256

—-= Linformer, k=128

—— Transformer

S il v s

- —————————————— -

512/128 1024/64 2048/32 4096/16 8192/8 16384/4 32768/2 65536/1
Sequence length / batch size


https://arxiv.org/pdf/2006.04768.pdf

Recent work on improving on quadratic self-
attention cost

* Considerable recent work has gone into the question, Can we build models like
Transformers without paying the O (T?) all-pairs self-attention cost?

* For example, BigBird [Zaheer et al., 2021]

Key idea: replace all-pairs interactions with a family of other interactions, like local
windows, looking at everything, and random interactions.

] . ]
B ] ] ]
I [] ]
M
O O
] [ O]

1 I [

(a) Random attention (b) Window attention (c) Global Attention (d) BIGBIRD

John Hewitt


https://arxiv.org/pdf/2007.14062.pdf

Pretraining models

In modern NLP:

e All (or almost all) parameters in NLP y
networks are initialized via pretraining. g
* Pretraining methods hide parts of the input IHIHIHIHIHI
from the model, and train the model to | Pretrained jointly
reconstruct those parts. M M D -
* This has been exceptionally effective at ! _
building strong: ... the movie was ...

* representations of language

* parameter initializations for strong NLP

[This model has learned how to represent
models.

entire sentences through pretraining]

Adapted from John Hewitt



Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

Adapted from John Hewitt

Encoders

Decoders

Encoder-
Decoders

Gets bidirectional context — can condition on future!
Wait, how do we pretrain them?

Language models! What we’ve seen so far.
Nice to generate from; can’t condition on future words

Good parts of decoders and encoders?
What’s the best way to pretrain them?



Pretraining through language modeling
[Dai and Le, 2015]

Recall the language modeling task:

e Model pg(W|w1.t—1), the probability
distribution over words given their past goes to make tasty tea END
contexts.

* There’s lots of data for this! (In English.)

Pretraining through language modeling:

* Train a neural network to perform language I I
modeling on a large amount of text. roh  goes to make tasty tea

* Save the network parameters.

John Hewitt


https://arxiv.org/pdf/1511.01432.pdf

The Pretraining / Finetuning Paradigm

Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END @/@

Iroh  goes to make tasty tea ... the movie was ...

John Hewitt



Capturing meaning via context:
What kinds of things does pretraining learn?

There’s increasing evidence that pretrained models learn a wide variety of things about
the statistical properties of language:

Stanford University is located in , California. [Trivia]

| put___fork down on the table. [syntax]

The woman walked across the street, checking for traffic over____shoulder. [coreference]
| went to the ocean to see the fish, turtles, seals, and . [lexical semantics/topic]
Overall, the value | got from the two hours watching it was the sum total of the popcorn
and the drink. The movie was__. [sentiment]

Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his
destiny. Zuko left the . [some reasoning — this is harder]

| was thinking about the sequence thatgoes 1, 1, 2, 3,5, 8, 13,21, [some basic

arithmetic; they don’t learn the Fibonnaci sequence]
Models also learn — and can exacerbate racism, sexism, all manner of bad biases.

Adapted from John Hewitt



Pretraining encoders:
What pretraining objective to use?

So far, we've looked at language model pretraining. But encoders get bidirectional
context, so we can’t do language modeling!

Idea: replace some fraction of words in the
input with a special [MASK] token; predict
these words. I

hi, ..., hy = Encoder(wy, ..., wy)
yi~Aw;+ b

Only add loss terms from words that are
“masked out.” If x” is the masked version of x,
we’re learning pg(x|x”). Called Masked LM.

I  [M] to the [M]

John Hewitt


https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from
Tranformers

Devlin et al., 2018 proposed the “Masked LM” objective and released the weights of a
pretrained Transformer, a model they labeled BERT.

Some more details about Masked LM for BERT:

e Predict a random 15% of (sub)word tokens. [Predict these!] went to store
* Replace input word with [MASK] 80% of the time ! ! !
* Replace input word with a random token 10% of Transformer
the time Encoder

* Leave input word unchanged 10% of the time (but

still predict it!) } | | ,|7 l\}
*  Why? Doesn’t let the model get complacent and not pizza to the [I I

build strong representations of non-masked words.

(No masks are seen at fine-tuning time!)
[Replaced] [Notreplaced] [Masked]

John Hewitt


https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from
Tranformers

« Mask out k% of the input words, and then predict the masked words
- They always use k = 15%

store gallon

T T
the man went to the [MASK] to buy a [MASK] of milk

« Too little masking: Too expensive to train
« Too much masking: Not enough context

Christopher Manning



BERT: Bidirectional Encoder Representations from
Tranformers

« Additional task: Next sentence prediction
« To learn relationships between sentences, predict whether

Sentence B is actual sentence that proceeds Sentence A, or a
random sentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

Adapted from Christopher Manning



BERT: Bidirectional Encoder Representations from
Tranformers

* The pretraining input to BERT was two separate
contiguous chunks of text:

Input [CLS] | my dog is (cute | [SEP] he | likes || play | ##ing | [SEP]

Token

Embeddings E[CLS] Emy Edog t s Ecute E[SEP] Ehe EIikes Eplay E“ing E[SEP]
= = L ] L L ] e == = g = L ]

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
L ] L 5= = = £ L ] %= £ L L ]

Position

Embeddings EO El EZ E3 E4 ES E6 E7 E8 E9 E10

 |n addition to masked input reconstruction, BERT was trained to predict
whether one chunk follows the other or is randomly sampled.
 Later work has argued this “next sentence prediction” is not necessary.

Adapted from John Hewitt


https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/abs/1907.11692

BERT: Bidirectional Encoder Representations from
Tranformers

Details about BERT

 Two models were released:
* BERT-base: 12 layers, 768-dim hidden states, 12 attention heads, 110 million params.
* BERT-large: 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params.
* Trained on:
* BooksCorpus (800 million words)
* English Wikipedia (2,500 million words)
* Pretraining is expensive and impractical on a single GPU.
* BERT was pretrained with 64 TPU chips for a total of 4 days.
* (TPUs are special tensor operation acceleration hardware)
e Finetuning is practical and common on a single GPU
* “Pretrain once, finetune many times.”

John Hewitt


https://arxiv.org/pdf/1810.04805.pdf

BERT: Bidirectional Encoder Representations from
Tranformers

BERT was massively popular and hugely versatile; finetuning BERT led to
new state-of- the-art results on a broad range of tasks.

* QQP: Quora Question Pairs (detect . ColLA: corpus of linguistic acceptability

paraphrase questions) (detect whether sentences are grammatical.)
e QNLI: natural language inference over ®  STS-B: semantic textual similarity
question answering data . MRPC: microsoft paraphrase corpus

- SST-2: sentiment analysis . RTE: small natural language inference corpus

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 350 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 133 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 823 56.0 75.1
BERTgAsE 84.6/83.4 1.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

John Hewitt


https://arxiv.org/pdf/1810.04805.pdf

Extensions of BERT

You’ll see a lot of BERT variants like ROBERTa, SpanBERT, +++

Some generally accepted improvements to the BERT pretraining formula:
* RoBERTa: mainly just train BERT for longer and remove next sentence prediction!

* SpanBERT: masking contiguous spans of words makes a harder, more useful pretraining task

It’s bly irr##  esit#t stit# bly
f i

BERT SpanBERT

BHEERE NN

. . It’
[MASK] irri## esititf  sti## [MASK] good [MASK] [MASK] [MASK] [MASK] ~ good

John Hewitt


https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

Extensions of BERT

A takeaway from the RoBERTa paper: more compute, more data can improve pretraining
even when not changing the underlying Transformer encoder.

SQuAD

v1.1/2.0) MNLI-m SST-2

Model data  bsz steps

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT | Arce

with BOOKS + WIKI 13GB 256 IM  90.9/81.8 86.6 93.7

John Hewitt


https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.10529

Pretraining decoders

It’s natural to pretrain decoders as language models and then

use them as generators, finetuning their pg (W;|w1.t_1)!

This is helpful in tasks where the output is a
sequence with a vocabulary like that at
pretraining time!

 Dialogue (context=dialogue history)

* Summarization (context=document)

hi,..., ht = Decoder(wy, ..., wr)
W¢ ~ AWt—l +b

Where A, b were pretrained in the language
model!

John Hewitt

W1 Wy W3 W4 Wpg

[Note how the linear layer has been pretrained.]



Pretraining decoders

When using language model pretrained decoders, we can ignore

that they were trained to model p (w¢w1.t—1).

We can finetune them by training a classifier
on the last word’s hidden state.

hi,..., ht = Decoderwy, ..., wr)
y ~ AWT + b

Where A and b are randomly initialized and
specified by the downstream task.

Gradients backpropagate through the whole
network.

John Hewitt

@/C?)
Linear ADb
|
hi, ..., hr

[Note how the linear layer hasn’t been
pretrained and must be learned from scratch.]



Generative Pretrained Transformer (GPT)

[

]

2018’s GPT was a big success in pretraining a decoder!

Transformer decoder with 12 layers.
768-dimensional hidden states, 3072-dimensional feed-forward hidden layers.
Byte-pair encoding with 40,000 merges
Trained on BooksCorpus: over 7000 unique books.
* Contains long spans of contiguous text, for learning long-distance dependencies.

The acronym “GPT” never showed up in the original paper; it could stand for
“Generative PreTraining” or “Generative Pretrained Transformer”

John Hewitt


https://arxiv.org/pdf/1810.04805.pdf
https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Generative Pretrained Transformer (GPT)

[ ]

How do we format inputs to our decoder for finetuning tasks?
Natural Language Inference: Label pairs of sentences as entailing/contradictory/neutral
Premise: The man is in the doorway i

} entailment

Hypothesis: The person is near the door

Radford et al., 2018 evaluate on natural language inference.
Here’s roughly how the input was formatted, as a sequence of tokens for the decoder.

[START] The man is in the doorway [DELIM] The person is near the door [EXTRACT]

The linear classifier is applied to the representation of the [EXTRACT] token.

John Hewitt


https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Generative Pretrained Transformer (GPT)
[Radford et al., 2018]

GPT results on various natural language inference datasets.

Method MNLI-m MNLI-mm SNLI SciTail QNLI RTE
ESIM + ELMo [44] (5x) - - 89.3 - - -
CAFE [58] (5x) 80.2 79.0 89.3 - - -
Stochastic Answer Network [35] (3x) 80.6 80.1 - - - -
CAFE [58] 78.7 77.9 88.5 83.3

GenSen [64] 71.4 71.3 - - 823 59.2
Multi-task BiLSTM + Attn [64] 72.2 72.1 - - 82.1 61.7
Finetuned Transformer LM (ours) 82.1 81.4 89.9 88.3 88.1 56.0

John Hewitt


https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Increasingly convincing generations (GPT2)
[Radford et al., 2018]

We mentioned how pretrained decoders can be used in their capacities as language models.
GPT-2, a larger version of GPT trained on more data, was shown to produce relatively
convincing samples of natural language.

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living
in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the
researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These
four-horned. silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is fi-
nally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several com-
panions, were exploring the Andes Mountains when they found a small valley, with no other animals
or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by
two peaks of rock and silver snow.

John Hewitt


https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf

Aside: Word structure and subword models

Let’s take a look at the assumptions we’ve made about a language’s vocabulary.

We assume a fixed vocab of tens of thousands of words, built from the training set.

All novel words seen at test time are mapped to a single UNK.

word vocab mapping embedding

Common hat pizza (index)

words learn tasty (index)

laern UNK (index)
Transformerify UNK (index)

misspellings

novel items

Variations { taaaaasty UNK (index)

John Hewitt



Aside: Word structure and subword models

Finite vocabulary assumptions make even less sense in many languages.

* Many languages exhibit complex morphology, or word structure.

* The effect is more word types, each occurring fewer times.

Example: Swahili verbs can have
hundreds of conjugations, each
encoding a wide variety of
information. (Tense, mood,
definiteness, negation, information
about the object, ++)

Here’s a small fraction of the
conjugations for ambia — to tell.

John Hewitt

_Non-finite forms )
Form Positive Negative
Infinitive kuambia . kutoambia
= __Simple finite forms
Positive form Sng_lar Plural |
Imperative ambia ) ambieni
ual huambia
Complex finite forms
i Persons Fersons | Classes
Polarity 1st 2nd 3rd  M-w M-mi Ma Ki-vi N ] Ku Pa Mu
Sg. Pl Sg. PI. $g./1  PL/2 3 4 5 6 7t 8 9 10 1/14 15/17 16 18
—— — —— v Past [less A]
Positive ;‘;"';‘,“"';’; &;‘;‘ﬁ;‘;‘:&?ﬁ \_y;‘;a""'ﬁ‘)?a m@';ﬁirgga aliambia  waliambia  uliambia iliambia liliambia  yaliambia  kiliambia  viliambia iliambia ziliambia uliambia  kuliambia = paliambia = muliambia
Negative | sikuambia ia hukuambia hakuambia = haikuambia _ hali i z il ia havil haikuambia hazi i g x b
‘ . Present [less A]
Positive "‘"aa;";’?f tunaambia = unaambia ~mnaambia anaambia wanaambia unaambia = inaambia = linaambia = yanaambia kinaambia = vinaambia = inaambia = zinaambia unaambia = kunaambia panaambia 'munaambia
Negative  siambii  hatuambii  huambii | hamambii  haambii hawaambii hauambii  haiambii haliambii hayaambii hakiambii haviambii  haiambii | haziambii hauambii hakuambii hapaambii hamuambii
uture [less A]
Positive  nitaambia | tutaambia utaambia mtaambia = ataambia  wataambia utaambia itaambia ltasmbia yataambia  kitaambia vitasmbia = itaambia | zitaambia utaambia | kutaambia pataambia mutaambia
Negative  sitaambia ja  hutaambia ia hataambia i ia | haitaambia | halitaambia ia hakitaambi ia haitaambia i i i i 1
Subjunctive [less A]
Positive  niambie  tuambie  uambie  mambie  aambie  waambie  uambie iambie liambie  yaambie  kiambie  viambie  iambie  ziambie  uambie | kuambie  paambie  muambie
Negative | nisiambie tusiambie usiambie msiambie asiambie | wasiambie usiambie _isiambie | lisiambie  yasiambie kisiambie visiambie isiambie  zisiambie usiambie  kusiambie pasiambie  musiambie
Present Conditional [less A]
Positive _ ningeambia ia ungeambia ia angeambia ungeambia _ ingeambia _ lingeambia  yangeambia | kingeambia vingeambia ingeambia | zingeambia ungeambia kungeambia pangeambia mungeambia
Negatvel| L L - i (] i 1 2 : i i ia ‘ a i a o8 i i a . 4 a a la
sgeambia| s a bia a g ia a a a a ia bia bia
X Past Conditional - : [less A]
Positive  ningaliambi fambi i lambi 2 flambia  ingaliambia  fingali ol i ia vingali ingaliambia zi flambi el o a1
o M fa a a a bia a_[oingabambk a bia a a  [oingalambia ETES a bla bia bia
Negatval "0 hawangalia i & g i ingali i 4 ingali i i i
bia a bia a mbia ia ia bia bia bia bia ia bia bia mbia
Conditional Contrary to Fact o [less A]
Positive ! fambia ingeliambia i el i i i ingeliambia zi lambi o o o
Gnomic [less A]
Positive  naambia  twaambia = waambia mwaambia aambia  waambia waambia  yaambia  laambia  yaambia chaambia vyaambia  yaambia | zaambia  waambia kwaambia paambia  mwaambia
Perfect lless Al

[Wiktionary]


https://en.wiktionary.org/wiki/ambia

Aside: The byte-pair encoding algorithm

Subword modeling in NLP encompasses a wide range of methods for reasoning about
structure below the word level. (Parts of words, characters, bytes.)

* The dominant modern paradigm is to learn a vocabulary of parts of words (subword tokens).
* At training and testing time, each word is split into a sequence of known subwords.

Byte-pair encoding is a simple, effective strategy for defining a subword vocabulary.

1. Start with a vocabulary containing only characters and an “end-of-word” symbol.

2. Using a corpus of text, find the most common adjacent characters “a,b”; add “ab” as a subword.
3. Replace instances of the character pair with the new subword; repeat until desired vocab size.

Originally used in NLP for machine translation; now a similar method (WordPiece) is used in pretrained
models.

John Hewitt


https://www.aclweb.org/anthology/P16-1162.pdf
https://arxiv.org/pdf/1609.08144.pdf

Aside: Word structure and subword models

Common words end up being a part of the subword vocabulary, while rarer words are split
into (sometimes intuitive, sometimes not) components.

In the worst case, words are split into as many subwords as they have characters.

word vocab mapping embedding
c hat hat
ommon I
words { learn learn
I
Variations { taaaaasty taa## aaa#t# sty
misspellings laern latt# erntt
novel items Transformerify Transformer# ify —

John Hewitt



Pretraining encoder-decoders:
What pretraining objective to use?

What found to work best was span corruption. Their model: T5.

Targets

<x> for inviting <v> last <7~
Replace different-length spans from the input 9

with unique placeholders; decode out the

spans that were removed!

Original text

Thank you fef m?n%m@,me to your party I%st week. [ % ]

This is implemented in text
preprocessing: it’s still an objective

that looks like language modeling at g v v
the decoder side. Thank you <X> me to your party <Y> week.

John Hewitt


https://arxiv.org/pdf/1910.10683.pdf

Pretraining encoder-decoders:
What pretraining objective to use?

A fascinating property
of T5: it can be

President Franklin D.

. Pre-training Roosevelt was born
finetuned to answer a e L in January 1882, J= = = = == = = = = =
. Fine-tuning
wide range of o/
questions, retrieving [""e,;‘og‘;’;ve"{:";:}n“? > 11 T5 o=
knowledge from its —
parameters.
NQ WQ TQA
dev test
NQ: Natural Questions Karpukhin et al. (2020) 41.5 424 579 -
WQ: WebQuestions T5.1.1-Base 257 282 242 306 220millionparams
TQA: Trivia QA T5.1.1-Large 273 29.5 285 37.2 770 million params
T5.1.1-XL 2905 324 36.0 45.1 3billionparams
T5.1.1-XX1. 328 356 429 525 11 billion params
All “open-domain” T5.1.1-XXL + SSM 352 428 519 61.6
versions

[Raffel et al., 2018]

John Hewitt


https://arxiv.org/pdf/1910.10683.pdf

GPT-3, in-context learning, very large models

So far, we’ve interacted with pretrained models in two ways:
« Sample from the distributions they define (maybe providing a prompt)
* Fine-tune them on a task we care about, and take their predictions.

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

GPT-3 is the canonical example of this. The largest T5 model had 11 billion parameters.
GPT-3 has 175 billion parameters.

John Hewitt



GPT-3, in-context learning, very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

The in-context examples seem to specify the task to be performed, and the conditional
distribution mocks performing the task to a certain extent.

Input (prefix within a single Transformer decoder context):
“ thanks -> merci
hello -> bonjour
mint -> menthe
otter -> "
Output (conditional generations):

loutre...”

John Hewitt



GPT-3, in-context learning, very large models

Very large language models seem to perform some kind of learning without gradient
steps simply from examples you provide within their contexts.

Learning via SGD during unsupervised pre-training

WV

John Hewitt

- : =
S+ 8="13 O a0t = cat (2] thanks => percl (2]
- 3 * g o c -
- - 3
- — —
7¢2=9 g sakne => snake 2 hello => bonjour ;3
— el —
o 3 ®
1+8 1 t_‘J‘ brid => bird g mint s> menthe g
3, = 3.
= = - =
3+4=7 o fsih => fish (7= wall => mur o
5+9=14 deuk => duck otter => loutre
9 +8=17 cmihp => chimp bread => pain
A 4 y Y

sequence #1

sequence #2

sequence #3




Transformers in vision

Transformer Encoder

A
L x (:>
MLP
A

Norm

Vision Transformer (ViT)

Bird
Blall B e

Car Head

Transformer Encoder

o SAADSLDI0D | |(EE

* Extra learnable 2 G

fclass] embedding Linear Projection of Flattened Patches Q_f_’

= - - . S
- o

Embedded
Patches

Dosovitskiy, ICLR 2021, https://github.com/google-research/vision transformer https://www.youtube.com/watch?v=TrdevFK_am4



https://www.youtube.com/watch?v=TrdevFK_am4
https://github.com/google-research/vision_transformer

Cross-modal transformers

(image Embedder ) UNITER Model
- feature r Tra nsformer \
Op

.

0

B

(Text Embedder

Text Feature
<

o)

Emb
)

-

| Emb
4

[ Token ] [Posiﬁon]

.

N\

J

R.CNN Location “ \“- ﬁ : : “ i ‘ ‘ i ! ‘ ‘ ! ‘ ‘ 4 ! i
J man with his dog on a couch
UNITER

UNITER

UNITER

4 4

.. man with his [MAsK] - [ﬁ.

Masked Language Modeling (MLM)

- 3 B “ 4 A]
man with his dog ---

Masked Region Modeling (MRM)

Figure 1: Overview of the proposed UNITER model (best viewed in color), consisting of an Image Embedder,

7 —— 4 - 1
.[CLS] the bus is

Image-Text Matching (ITM)

a Text Embedder and a multi-layer self-attention Transformer, learned through three pre-training tasks.

Chen et al., “UNITER: Learning UNiversal Image-TExt Representations”, arxiv 2019
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Cross-modal transformers

g RolFear  Nwx Nxx
7 . | T y
& 2 i '; Vision
’ ; St }-(OH_FF O+ Cross ] OH el O FF_HO-——F  outpur
=7 P
Pos Feat Object-Relationship Encoder Cmss.-
X @ Modality
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L g Word Emb NIX _________________________________ : g
ridil‘zome Eé ¥ Language
iwithadoginai E; Self ]_QH FF ] ; P @Qﬁ Self ]_Qr[ FF ] Q : E? Output
basket. i ; a2
Idx Emb Language Encoder Cross-Modality Encoder

Figure 1: The LXMERT model for learning vision-and-language cross-modality representations. ‘Self” and
‘Cross’ are abbreviations for self-attention sub-layers and cross-attention sub-layers, respectively. ‘FF’ denotes
a feed-forward sub-layer.

Tan and Bansal, “LXMERT: Learning Cross-Modality Encoder Representationsfrom Transformers”, EMNLP 2019



Cost of training

ULMfit

Jan 2018
Training: 1
GPU day

Christopher Manning

GPT

June 2018
Training

240 GPU days

BERT

Oct 2018
Training

256 TPU days

~320-560
GPU days

@ OpenAI Google Al

GPT-2
Feb 2019

Training
~2048 TPU v3
days according to

©

OpenAl
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