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Course Info

• Course website: https://people.cs.pitt.edu/~kovashka/cs1678_sp24

• Instructor: Adriana Kovashka (kovashka@cs.pitt.edu )

→ Use "CS1678" at the beginning of your Subject 

• Office: 5325 Sennott Square

• Class: Mon/Wed, 9:30am-10:45am

• Office hours: Mon/Wed, 11am-12:30pm

• TA: Cagri Gungor (cagri.gungor@pitt.edu) 

• TA’s office: 5501 Sennott Square

• TA’s office hours: TBD (Do Doodle by end of Jan. 12: 
https://www.when2meet.com/?22476313-7WWAU)

https://people.cs.pitt.edu/~kovashka/cs1678_sp24
mailto:kovashka@cs.pitt.edu
mailto:cagri.gungor@pitt.edu
https://www.when2meet.com/?22476313-7WWAU


Course Goals

• To develop intuitions for machine learning techniques 
and challenges, in the context of deep neural networks

• To learn the basic techniques, including the math 
behind basic neural network operations

• To become familiar with advances/specialized neural 
frameworks (e.g. convolutional/recurrent/transformer)

• To understand advantages/disadvantages of methods
• To practice implementing and using these techniques 

for simple problems
• To develop practical solutions for one real problem via 

course project (CS 2078 section)



Textbooks

• Ian Goodfellow, Yoshua Bengio, Aaron Courville. 
Deep Learning. online version

• Richard Szeliski. Computer Vision: Algorithms and 
Applications. online version (second edition)

• Aston Zhang, Zack C. Lipton, Mu Li, and Alex J. 
Smola. Dive into Deep Learning. online version

• Additional readings from papers
• Important: Your notes from class are your best 

study material, slides are not complete with 
notes

http://www.deeplearningbook.org/
http://szeliski.org/Book/
https://d2l.ai/index.html


Programming

• Languages/frameworks: Python, NumPy, PyTorch

• NumPy tutorial (go through at home): 
http://cs231n.github.io/python-numpy-tutorial/

• NumPy for Matlab users: 
https://docs.scipy.org/doc/numpy/user/numpy-
for-matlab-users.html

• The TA will do a PyTorch tutorial

• Computing resource: Google Colab (free tier; can 
reimburse higher tier for course projects)

http://cs231n.github.io/python-numpy-tutorial/
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html


Course Structure

• Lectures 

• Five programming assignments 

• Exams

• Course project (teams of 2-3 students)

– Proposal, two reports, presentation

– Check course website for detailed description

• Participation (incl. quizzes on Canvas)



Tips for a successful project

• From your perspective:

– Learn something

– Try something out for a real problem



Tips for a successful project

• From your classmates’ perspective:

– Hear about a niche of DL we haven’t covered, or 
learn about a niche of DL in more depth

– Hear about challenges and how you handled 
them, that they can use in their own work

– Listen to an engaging presentation



Tips for a successful project

• From my perspective:

– Hear about the creative solutions you came up 
with to handle challenges

– Hear your perspective on a topic that I care about

– Co-author a publication with you, potentially with 
a small amount of follow-up work – looks good on 
your CV!



Tips for a successful project

• Overall

– Don’t reinvent the wheel – your audience will be 
bored

– But it’s ok to adapt an existing method to a new 
domain/problem…

– If you show interesting experimental results…

– You analyze them and present them in a clear and 
engaging fashion



Policies and Schedule 

See course website!



Should I take this class?

• It will be a lot of work!

– I expect you’ll spend 6-8 hours on homework or the 
project each week

– But you will learn a lot

• Some parts will be hard and require that you pay 
close attention!

– Quizzes help ensure we’re on the same page

– Use instructor’s and TA’s office hours!



Your Homework

• Read entire course website

• Fill out poll for TA’s office hours

• Do first reading

• Go through NumPy tutorial, ask TA if 
questions



Questions?



Plan for Today

• Blitz introductions

• What is deep learning 
– Example problems and challenges

• Machine learning overview
– ML framework

– Linear classifiers

– Elements of a ML algorithm

– Evaluation and generalization

• Review: Linear algebra and calculus



Blitz introductions (10 sec)

• What is your name?

• What one thing outside of school are you 
passionate about?

• Have you taken an artificial intelligence class 
before? Which one(s)?

• What do you hope to get out of this class?

• When you speak, always say your name



What is deep learning?

• One approach to finding patterns and 
relationships in data

• Finding the right representations of the data, 
that enable correct automatic performance of 
a given task

• Examples: Learn to predict the category (label) 
of an image, learn to translate between 
languages



Example deep learning tasks

• Face recognition

https://towardsdatascience.com/an-intro-to-deep-learning-for-face-recognition-aa8dfbbc51fb 

https://towardsdatascience.com/an-intro-to-deep-learning-for-face-recognition-aa8dfbbc51fb


Example deep learning tasks

• Image captioning

http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_MSCap_Multi-
Style_Image_Captioning_With_Unpaired_Stylized_Text_CVPR_2019_paper.pdf 
http://openaccess.thecvf.com/content_CVPR_2019/papers/Kim_Dense_Relational_Captioning_Triple-
Stream_Networks_for_Relationship-Based_Captioning_CVPR_2019_paper.pdf 

http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_MSCap_Multi-Style_Image_Captioning_With_Unpaired_Stylized_Text_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_MSCap_Multi-Style_Image_Captioning_With_Unpaired_Stylized_Text_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Kim_Dense_Relational_Captioning_Triple-Stream_Networks_for_Relationship-Based_Captioning_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Kim_Dense_Relational_Captioning_Triple-Stream_Networks_for_Relationship-Based_Captioning_CVPR_2019_paper.pdf


Example deep learning tasks

• Image generation

Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018

https://arxiv.org/abs/1711.09020


Example deep learning tasks

• Fake news generation

https://www.youtube.com/watch?v=-QvIX3cY4lc 

https://www.youtube.com/watch?v=-QvIX3cY4lc


Example deep learning tasks

• Machine translation

Slide credit: Carlos Guestrin



Example deep learning tasks

• Speech recognition

Slide credit: Carlos Guestrin



Example deep learning tasks

• Text generation

Andrej Karpathy



Example deep learning tasks

• Fake news generation and detection

https://grover.allenai.org/detect 

https://grover.allenai.org/detect


Example deep learning tasks

• Art?



Example deep learning tasks

• Question answering

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html


https://visualcommonsense.com/ 

https://visualcommonsense.com/


Example deep learning tasks

• Robotic pets

https://www.youtube.com/watch?v=wE3fmFTtP9g 

https://www.youtube.com/watch?v=wE3fmFTtP9g


Example deep learning tasks

• Artificial general intelligence?

https://www.dailymail.co.uk/sciencetech/article-5287647/Humans-robot-second-self.html 

https://www.dailymail.co.uk/sciencetech/article-5287647/Humans-robot-second-self.html


Example deep learning tasks

• Why are these tasks challenging?

• What are some problems from everyday life 
that can be helped by deep learning?

• What are some ethical concerns about using 
deep learning?



Klingon vs Mlingon Classification

• Training Data

– Klingon: klix, kour, koop

– Mlingon: moo, maa, mou

• Testing Data: kap

• Which language? Why?

Slide credit: Dhruv Batra



“I saw her duck”

Slide credit: Dhruv Batra, figure credit: Liang Huang



“I saw her duck”

Slide credit: Dhruv Batra, figure credit: Liang Huang



“I saw her duck”

Slide credit: Dhruv Batra, figure credit: Liang Huang



“I saw her duck with a telescope…”

Slide credit: Dhruv Batra, figure credit: Liang Huang



What humans see

Slide credit: Larry Zitnick



What computers see
243 239 240 225 206 185 188 218 211 206 216 225

242 239 218 110 67 31 34 152 213 206 208 221

243 242 123 58 94 82 132 77 108 208 208 215

235 217 115 212 243 236 247 139 91 209 208 211

233 208 131 222 219 226 196 114 74 208 213 214

232 217 131 116 77 150 69 56 52 201 228 223

232 232 182 186 184 179 159 123 93 232 235 235

232 236 201 154 216 133 129 81 175 252 241 240

235 238 230 128 172 138 65 63 234 249 241 245

237 236 247 143 59 78 10 94 255 248 247 251

234 237 245 193 55 33 115 144 213 255 253 251

248 245 161 128 149 109 138 65 47 156 239 255

190 107 39 102 94 73 114 58 17 7 51 137

23 32 33 148 168 203 179 43 27 17 12 8

17 26 12 160 255 255 109 22 26 19 35 24

Slide credit: Larry Zitnick



Challenges

• Some challenges: ambiguity and context

• Machines take data representations too 
literally

• Humans are much better than machines at 
generalization, which is needed since test data 
will rarely look exactly like the training data



Machine Learning Overview

• Deep learning is a specific group of algorithms 
falling in the broader realm of machine learning

• All ML/DL algorithms roughly match schema:

– Learn a mapping from input to output f: x → y

– x: image, text, etc.

– y: {cat, notcat}, {1, 1.5, 2, …}, etc.

– f: this is where the magic happens



Machine Learning Overview

y' = f(x)

• Training: given a training set of labeled examples {(x1,y1), 

…, (xN,yN)}, estimate the prediction function f by minimizing 

the prediction error on the training set

• Testing: apply f to a never before seen test example x and 

output the predicted value y’ = f(x)

output prediction 

function

input

Slide credit: L. Lazebnik



Machine Learning Overview

• Example:

– Predict whether an email is spam or not:

Figures from Dhruv Batra

vs



Machine Learning Overview

• Example:
– Predict whether an email is spam or not.

– x = words in the email, multi-hot representation of 
size |V|x1, where V is the full vocabulary and x(j) = 1 
iff word j is mentioned

– y = 1 (if spam) or 0 (if not spam)

– y’ = f(x) = wT x
• w is a vector of the same size as x

• One weight per dimension of x (i.e. one weight per word)

• Weight can be positive, zero, negative…

• What might these weights look like? 



Simple strategy: Let’s count!

This is X

Adapted from Dhruv Batra, Fei Sha

This is Y

= 1 оr 0? 



Where do the weights 
come from?

Weigh counts and sum to get prediction 

Adapted from Dhruv Batra, Fei Sha

This is a linear classifier



Machine Learning Overview

• Example: 

– Apply a prediction function to an image to get 

the desired label output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. Lazebnik



Machine Learning Overview

• Example: 

– x = pixels of the image (concatenated to form 

a vector)

– y = integer (1 = apple, 2 = tomato, etc.)

– y’ = f(x) = wT x

• w is a vector of the same size as x

• One weight per each dimension of x (i.e. one 

weight per pixel)



Feature representation (x)

• A vector representing measurable characteristics 
of a data sample we have

• E.g. a glass of juice can be represented via its 
color = {yellow=1, red=2, green=3, purple=4} and 
taste = {sweet=1, sour=2} 

• For a given glass i, this can be represented as a 
vector: xi = [3 2] represents green sour juice

• For D features, this defines a D-dimensional space 
where we can measure similarity between 
samples



Example: Feature representation

0 1 2 3 4

2

1

color

taste

E.g. a glass of juice can be represented via its 
color = {yellow=1, red=2, green=3, purple=4} 
and taste = {sweet=1, sour=2} 

x2 = [3 2]x1 = [1 2]

x3 = [1 1]

Which is the yellow sour juice:
x1, x2 or x3?



• L1 norm

• L2 norm

• Lp norm (for real numbers p ≥ 1)

Norms



• L1 (Manhattan) distance 

• L2 (Euclidean) distance

Distances



Example: Feature representation

0 1 2 3 4

2

1

color

taste

E.g. a glass of juice can be represented via its 
color = {yellow=1, red=2, green=3, purple=4} 
and taste = {sweet=1, sour=2} 

x2 = [3 2]x1 = [1 2]

x3 = [1 1]

L2 distance:
d(x1, x2) = sqrt(4+0) = 2
d(x1, x3) = sqrt(0+1) = 1
d(x2, x3) = sqrt(4+1) = 2.2

L1 distance:
d(x1, x2) = 2+0 = 2
d(x1, x3) = 0+1 = 1
d(x2, x3) = 2+1 = 3



Linear classifier

• Find a linear function to separate the classes

f(x) = sgn(w1x1 + w2x2 + … + wDxD) = sgn(wx)

= sgn(wTx)
Slide credit: L. Lazebnik



• What should the weights be?

x1

x2

(0, 0)

• Decision = sign(wTx) = sign(w1*x1 + w2*x2)

Linear classifier

(1, 0)

w



Lines in R2

0=++ bcyax

mx + r = y?

ax + cy + b = 0
ax + b = -cy
(-a/c) x + (-b/c) = y

m = -a/c
r = -b/c

y-intercept = r = -b/c

https://www.mathsisfun.com/equation_of_line.html

(x, y)

x

y



Lines in R2
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Lines in R2
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Linear classifiers

• Find linear function to separate positive and 

negative examples

0:negative

0:positive

+

+

b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

A

B
C

D

Not seen until test time, 

of class blue

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Linear classifiers

• Find linear function to separate positive and 

negative examples

0:negative

0:positive

+

+

b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

B

D

Not seen until test time, 

of class blue

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines 

• Discriminative 

classifier based on 

optimal separating 

line (for 2d case)

• Maximize the 

margin between the 

positive and 

negative training 

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive

−+−=

+=

by

by

iii

iii

wxx

wxx

Support vectors

For support, vectors, 1=+ bi wx

Distance between point 

and line: ||||

||

w

wx bi +

www

211
=

−
−=M

For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

Margin ww

xw 1
=

+ bΤ

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to  yi(w·xi+b) ≥ 1

wwT

2

1

1:1)(negative

1:1)( positive

−+−=

+=

by

by

iii

iii

wxx

wxx

One constraint for each 

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

= i iii y xw 

( )by

xf

ii +=

+=

 xx

xw

i isign         

b)(sign   )(



If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Inner product

Adapted from Milos Hauskrecht

( )by
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b)(sign   )(
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• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs



Φ:  x → φ(x)

• General idea: the original input space can 

always be mapped to some higher-dimensional 

feature space where the training set is 

separable:

Andrew Moore

Nonlinear SVMs



Nonlinear kernel: Example

• Consider the mapping ),()( 2xxx =

22

2222

),(

),(),()()(

yxxyyxK

yxxyyyxxyx

+=

+==

x2

Svetlana Lazebnik



• The linear classifier relies on dot product between 

vectors K(xi , xj) = xi · xj

• If every data point is mapped into high-dimensional 

space via some transformation Φ:  xi → φ(xi ), the dot 

product becomes: K(xi , xj) = φ(xi ) · φ(xj)

• A kernel function is similarity function that 

corresponds to an inner product in some expanded 

feature space

• The kernel trick: instead of explicitly computing the 

lifting transformation φ(x), define a kernel function K 

such that: K(xi , xj) = φ(xi ) · φ(xj)

Andrew Moore

The “Kernel Trick”



Examples of kernel functions

◼ Linear:

◼ Polynomials of degree up to d:

◼ Gaussian RBF:

◼ Histogram intersection:

)
2

exp()(
2

2



ji

ji

xx
,xxK

−
−=

=
k

jiji kxkxxxK ))(),(min(),(

j

T

iji xxxxK =),(

Andrew Moore / Carlos Guestrin

𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑



The benefit of the “kernel trick”

• Example: Polynomial kernel for 2-dim features

• … lives in 6 dimensions 

• With the kernel trick, we directly compute an 

inner product in 2-dim space, obtaining a 

scalar that we add 1 to and exponentiate 

71



Hard-margin SVMs

Maximize margin

The w that minimizes…

72



Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification 
cost

# data samples

Soft-margin SVMs

Figure from Chris Bishop

73



Deep Learning in a Nutshell

• Input → network → outputs

• Input X is raw (e.g. raw image, 

one-hot representation of text)

• Network extracts features: abstraction of input 

(e.g. not pixels, but edges)

• Output is the labels Y

• All parameters of the network learned (during 

training) by checking how well predicted/true Y 

agree, using labels in the training set



Elements of Machine Learning

• Every machine learning algorithm has:

– Data representation (x, y)

– Problem representation (network)

– Evaluation / objective function

– Optimization (solve for parameters of network)

Adapted from Pedro Domingos



Data representation

• Let’s brainstorm what our “X” should be for 
various “Y” prediction tasks…

• Weather prediction?

• Movie ratings predictions?



Problem representation

• Instances

• Decision trees

• Sets of rules / Logic programs

• Support vector machines

• Graphical models (Bayes/Markov nets)

• Neural networks

• Model ensembles

• Etc.

Slide credit: Pedro Domingos



• Accuracy
• Precision and recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
• Etc.

Slide credit: Pedro Domingos

Evaluation / objective function



Loss functions

• Measure error

• Can be defined for discrete or continuous 
outputs

• E.g. if task is classification – could use cross-
entropy loss

• If task is regression – use L2 loss i.e. ||y-y’||



Optimization

• Optimization means we need to solve for the 
parameters w of the model 

• For a (non-linear) neural network, there is no 
closed-form solution to solve for w; cannot set up 
linear system with w as the unknowns 

• Thus, optimization solutions look like this:
1. Initialize w (e.g. randomly)

2. Check error (ground-truth vs predicted labels on 
training set) under current model

3. Use gradient (derivative) of error wrt w to update w

4. Repeat from 2 until convergence 



Types of Learning

• Supervised learning
– Training data includes desired outputs

• Unsupervised learning
– Training data does not include desired outputs

• Weakly or Semi-supervised learning
– Training data includes a few desired outputs, or contains labels 

that only approximate the labels desired at test time (noisy)

• Reinforcement learning
– Rewards from sequence of actions

Adapted from: Dhruv Batra



Types of Prediction Tasks

82

Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx x' Discrete ID

Dimensionality
Reduction

x x' Continuous

Supervised Learning

Unsupervised Learning

Adapted from Dhruv Batra



• Ultimately, for our application, what do we want? 
– High accuracy on training data? 
– No, high accuracy on unseen/new/test data!
– Why is this tricky?

• Training data
– Features (x) and labels (y) used to learn mapping f

• Test data
– Features used to make a prediction
– Labels only used to see how well we’ve learned f!!!

• Validation data
– Held-out set of the training data
– Can use both features and labels to tune model hyperparameters
– Hyperparameters are “knobs” of the algorithm tuned by the designer: 

number of iterations for learning, learning rate, etc.
– We train multiple model (one per hyperparameter setting) and choose 

the best one, on the validation set

Validation strategies



Validation strategies

Idea #1: Choose hyperparameters  

that work best on the data

BAD: Overfitting; e.g. in K-

nearest neighbors, K = 1 always 

works perfectly on training data

Idea #2: Split data into train and test, choose  

hyperparameters that work best on test data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose  

hyperparameters on val and evaluate on test

train validation test

Adapted from Fei-Fei, Johnson, Yeung

BAD: No idea how algorithm will 

perform on new data; cheating

Better!



Validation strategies

Adapted from Fei-Fei, Johnson, Yeung

Your Dataset

fold 1 fold 2 fold 3 fold 4 fold 5 test

Idea #4: Cross-Validation: Split data into folds,  

try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test

fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning



Why do we hope this would work?

• Statistical estimation view:

– x and y are random variables

– D = (x1,y1), (x2,y2), …, (xN,yN) ~ P(X,Y)

– Both training & testing data sampled IID from P(X,Y)

• IID: Independent and Identically Distributed

– Learn on training set, have some hope of 
generalizing to test set

Adapted from Dhruv Batra



Generalization

• How well does a learned model generalize from 

the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



• Underfitting: Models with too 

few parameters are 

inaccurate because of a large 

bias (not enough flexibility).

• Overfitting: Models with too 

many parameters are 

inaccurate because of a large 

variance (too much sensitivity 

to the sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model  Blue curve = our predicted model/fit

Purple dots = possible test points

Generalization



• Components of generalization error 

– Noise in our observations: unavoidable

– Bias: due to inaccurate assumptions/simplifications by model

– Variance: models estimated from different training sets differ 

greatly rom each other

• Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Generalization



Generalization

Dataset subset 1

Dataset subset 2

Dataset subset 3

Dataset subset 4

Dataset subset 5

Model 1

Model 2

Model 3

Model 4

Model 5

Average model

True model?

…

Variance

Bias



Polynomial Curve Fitting

Slide credit: Chris Bishop



Sum-of-Squares Error Function

Slide credit: Chris Bishop



0th Order Polynomial

Slide credit: Chris Bishop



1st Order Polynomial

Slide credit: Chris Bishop



3rd Order Polynomial

Slide credit: Chris Bishop



9th Order Polynomial

Slide credit: Chris Bishop



Over-fitting

Root-Mean-Square (RMS) Error:

Slide credit: Chris Bishop



Data Set Size: 

9th Order Polynomial

Slide credit: Chris Bishop



Data Set Size: 

9th Order Polynomial

Slide credit: Chris Bishop



Regularization

Penalize large coefficient values

(Remember: We want to minimize this expression.)

Adapted from Chris Bishop



Regularization: 

Slide credit: Chris Bishop



Regularization: 

Slide credit: Chris Bishop



Polynomial Coefficients   

Slide credit: Chris Bishop



Polynomial Coefficients   

Adapted from Chris Bishop

No regularization           Huge regularization



Regularization:           vs. 

Slide credit: Chris Bishop



Training vs test error

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem



The effect of training set size

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t 
E

rr
o
r

Slide credit: D. Hoiem



Choosing the trade-off between 

bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Apply this model to test set



Summary of generalization

• Try simple classifiers first

• Better to have smart features and simple 

classifiers than simple features and smart 

classifiers

• Use increasingly powerful classifiers with more 

training data

• As an additional technique for reducing variance, 

try regularizing the parameters

Slide credit: D. Hoiem



Linear algebra review

See http://cs229.stanford.edu/section/cs229-linalg.pdf for more

http://cs229.stanford.edu/section/cs229-linalg.pdf


Vectors and Matrices

• Vectors and matrices are just collections of 
ordered numbers that represent something: 
movements in space, scaling factors, word 
counts, movie ratings, pixel brightnesses, etc. 

• We’ll define some common uses and standard 
operations on them.

Fei-Fei Li 3



Vector

• A column vector                    where

• A row vector                    where

denotes the transpose operation

• You need to keep track of orientation
Fei-Fei Li 112



Vectors have two main uses

• Vectors can represent an 
offset in 2D or 3D space

• Points are just vectors 
from the origin

Fei-Fei Li 113

• Data can also be treated 
as a vector

• Such vectors don’t have a 
geometric interpretation, 
but calculations like 
“distance” still have value



Matrix

• A matrix                is an array of numbers with 
size 𝑚 ↓ by  𝑛 →, i.e.  m rows and n columns.

• If               , we say that       is square.

Fei-Fei Li 114



Matrix Operations
• Addition

– Can only add a matrix with matching dimensions, 
or a scalar. 

• Scaling

10-Jan-24 115



Inner vs outer 
vs matrix vs element-wise product

• x, y = column vectors (nx1)
• X, Y = matrices (mxn)
• x, y = scalars (1x1)

• x · y = xT y = inner product (1xn x nx1 = scalar)
• x ⊗ y = x yT = outer product (nx1 x 1xn = matrix)

• X * Y = matrix product 
– Watch out: could also be element-wise product in 

NumPy, if class is array rather than matrix– see tutorial



Inner Product

• Multiply corresponding entries of two vectors 
and add up the result

• x·y is also |x||y|Cos( angle between x and y )

• If B is a unit vector, then A·B gives the length 
of A which lies in the direction of B (projection)

Fei-Fei Li 117

(if B is unit-length hence norm is 1)



• Let X be an axb matrix, Y be an bxc matrix

• Then Z = X*Y is an axc matrix

• Second dimension of first matrix, and first 
dimension of second matrix have to be the 
same, for matrix multiplication to be possible

• Practice: Let X be an 10x5 matrix. Let’s 
factorize it into 3 matrices…

Matrix Multiplication



Matrix Multiplication
• The product AB is:

• Each entry in the result is (that row of A) dot 
product with (that column of B)

Fei-Fei Li 119



Matrix Multiplication
• Example:

Fei-Fei Li 120

– Each entry of the 
matrix product is 
made by taking the 
dot product of the 
corresponding row in 
the left matrix, with 
the corresponding 
column in the right 
one.



Matrix Operation Properties

• Matrix addition is commutative and 
associative 
– A + B = B + A

– A + (B + C) = (A + B) + C 

• Matrix multiplication is associative and 
distributive but not commutative 
– A(B*C) = (A*B)C 

– A(B + C) = A*B + A*C

– A*B != B*A



Matrix Operations

• Transpose – flip matrix, so row 1 becomes 
column 1

• A useful identity: 

Fei-Fei Li 122



• Given a matrix A, its inverse A-1 is a matrix such 
that AA-1 = A-1A = I

• E.g.

• Inverse does not always exist. If A-1 exists, A is 
invertible or non-singular. Otherwise, it’s singular.

Fei-Fei Li 123

Inverse



Special Matrices

• Identity matrix I
– Square matrix, 1’s along 

diagonal, 0’s elsewhere
– I ∙ [another matrix] = [that 

matrix]

• Diagonal matrix
– Square matrix with numbers 

along diagonal, 0’s elsewhere
– A diagonal ∙ [another matrix] 

scales the rows of that matrix

Fei-Fei Li 124



Special Matrices

• Symmetric matrix

Fei-Fei Li 125



• L1 norm

• L2 norm

• Lp norm (for real numbers p ≥ 1)

Norms



• MATLAB example   // linalg.solve or lingalg.lstsq in Python 

Fei-Fei Li 127

System of Linear Equations

>> x = A\B

x =

1.0000

-0.5000



Matrix Rank

• Column/row rank

• Column rank always equals row rank

• Matrix rank

• If a matrix is not full rank, inverse doesn’t exist

– Inverse also doesn’t exist for non-square matrices

Fei-Fei Li 128



Linear independence

• Suppose we have a set of vectors v1, …, vn

• If we can express v1 as a linear combination of 
the other vectors v2…vn, then v1 is linearly 
dependent on the other vectors. 
– The direction v1 can be expressed as a combination of 

the directions v2…vn. (E.g. v1 = .7 v2 -.5 v4)

• If no vector is linearly dependent on the rest of 
the set, the set is linearly independent.
– Common case: a set of vectors v1, …, vn is always 

linearly independent if each vector is perpendicular to 
every other vector (and non-zero) 

Fei-Fei Li 129



Linear independence

Not linearly independent

Fei-Fei Li 130

Linearly independent set



Singular Value Decomposition (SVD)
• There are several computer algorithms that 

can “factor” a matrix, representing it as the 
product of some other matrices

• The most useful of these is the Singular Value 
Decomposition

• Represents any matrix A as a product of three 
matrices: UΣVT

Fei-Fei Li 131



Singular Value Decomposition (SVD)

UΣVT = A
• Where U and V are rotation matrices, and Σ is 

a scaling matrix. For example:

Fei-Fei Li 132



Singular Value Decomposition (SVD)

• In general, if A is m x n, then U will be m x m, Σ
will be m x n, and VT will be n x n. 

Fei-Fei Li 133



Singular Value Decomposition (SVD)
• U and V are always rotation matrices. 

– Geometric rotation may not be an applicable 
concept, depending on the matrix. So we call 
them “unitary” matrices – each column is a unit 
vector. 

• Σ is a diagonal matrix
– The number of nonzero entries = rank of A

– The algorithm always sorts the entries high to low

Fei-Fei Li 134



Singular Value Decomposition (SVD)

M = UΣVT

Illustration from Wikipedia



Calculus review



Differentiation

The derivative provides us information about the  

rate of change of a function.

The derivative of a function is also a function.  

Example:

The derivative of the rate function is the

acceleration function.

Texas A&M Dept of Statistics



Derivative = rate of change

Image: Wikipedia



Derivative = rate of change

• Linear function y = mx + b

• Slope 

Image: Wikipedia



Ways to Write the Derivative

dx

Given the function f(x), we can write its  

derivative in the following ways:

- f '(x)

-
d

f(x)

The derivative of x is commonly written dx.

Texas A&M Dept of Statistics



Differentiation Formulas

The following are common differentiation  

formulas:

- The derivative of a constant is 0.

- The derivative of a sum is the sum of the  

derivatives.

du

d
c = 0

du

d
( f (u)+ g(u)) = f '(u)+ g'(u)

Texas A&M Dept of Statistics



Examples

- The derivative of a constant is 0.

- The derivative of a sum is the sum of the  

derivatives.

du

d
7 =

dt

d
(t + 4)=

Texas A&M Dept of Statistics



More Formulas

du

d
un = n*un−1du

- The derivative of u to a constant power:

- The derivative of e:

du

d
eu = eudu

- The derivative of log:

d
log(u) =

1
du  

du u
Texas A&M Dept of Statistics



More Examples

dx

d
3x3 =

- The derivative of u to a constant power:

- The derivative of e:
d

e4 y=
dy

- The derivative of log:

dx

d
3log(x) =

Texas A&M Dept of Statistics



Product and Quotient

The product rule and quotient rules are  

commonly used in differentiation.

- Product rule:

- Quotient rule:

du

d
( f (u)*g(u)) = f (u)g'(u) + g(u) f '(u)

2(g(u))

g(u) f '(u) − f(u)g'(u)

du   g(u) 

d  f (u) 

Texas A&M Dept of Statistics

    =



Chain Rule

The chain rule allows you to combine any of the  

differentiation rules we have already covered.

- First, do the derivative of the outside and  

then do the derivative of the inside.

du

d
f (g(u)) = f '(g(u))* g'(u)* du

Texas A&M Dept of Statistics



Try These

g( y) = 4y3+ 2y

f (z) = z+11

h(x) =e3x

x

log(x2)
p(x) =

q(z) = (ez − z)3

s(y) = 4ye2 y

Texas A&M Dept of Statistics



Solutions

g'( y) =12y2 + 2

f '(z) =1

h'(x) =3e3x

x2

2− log(x2)
p'(x) =

q'(z) = 3(ez − z)2(ez −1)

+ 4e2ys'( y) = 8ye2 y

Texas A&M Dept of Statistics
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