
CS 1678/2078: Deep Learning

Introduction

Prof. Adriana Kovashka
University of Pittsburgh

January 8, 2024

About the Instructor

Born 1985 in
Sofia, Bulgaria

Got BA in 2008 at
Pomona College, CA
(Computer Science &
Media Studies)

Got PhD in 2014
at University of
Texas at Austin
(Computer Vision)

Course Info

• Course website: https://people.cs.pitt.edu/~kovashka/cs1678_sp24

• Instructor: Adriana Kovashka (kovashka@cs.pitt.edu)

→ Use "CS1678" at the beginning of your Subject

• Office: 5325 Sennott Square

• Class: Mon/Wed, 9:30am-10:45am

• Office hours: Mon/Wed, 11am-12:30pm

• TA: Cagri Gungor (cagri.gungor@pitt.edu)

• TA’s office: 5501 Sennott Square

• TA’s office hours: TBD (Do Doodle by end of Jan. 12:
https://www.when2meet.com/?22476313-7WWAU)

https://people.cs.pitt.edu/~kovashka/cs1678_sp24
mailto:kovashka@cs.pitt.edu
mailto:cagri.gungor@pitt.edu
https://www.when2meet.com/?22476313-7WWAU

Course Goals

• To develop intuitions for machine learning techniques
and challenges, in the context of deep neural networks

• To learn the basic techniques, including the math
behind basic neural network operations

• To become familiar with advances/specialized neural
frameworks (e.g. convolutional/recurrent/transformer)

• To understand advantages/disadvantages of methods
• To practice implementing and using these techniques

for simple problems
• To develop practical solutions for one real problem via

course project (CS 2078 section)

Textbooks

• Ian Goodfellow, Yoshua Bengio, Aaron Courville.
Deep Learning. online version

• Richard Szeliski. Computer Vision: Algorithms and
Applications. online version (second edition)

• Aston Zhang, Zack C. Lipton, Mu Li, and Alex J.
Smola. Dive into Deep Learning. online version

• Additional readings from papers
• Important: Your notes from class are your best

study material, slides are not complete with
notes

http://www.deeplearningbook.org/
http://szeliski.org/Book/
https://d2l.ai/index.html

Programming

• Languages/frameworks: Python, NumPy, PyTorch

• NumPy tutorial (go through at home):
http://cs231n.github.io/python-numpy-tutorial/

• NumPy for Matlab users:
https://docs.scipy.org/doc/numpy/user/numpy-
for-matlab-users.html

• The TA will do a PyTorch tutorial

• Computing resource: Google Colab (free tier; can
reimburse higher tier for course projects)

http://cs231n.github.io/python-numpy-tutorial/
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html

Course Structure

• Lectures

• Five programming assignments

• Exams

• Course project (teams of 2-3 students)

– Proposal, two reports, presentation

– Check course website for detailed description

• Participation (incl. quizzes on Canvas)

Tips for a successful project

• From your perspective:

– Learn something

– Try something out for a real problem

Tips for a successful project

• From your classmates’ perspective:

– Hear about a niche of DL we haven’t covered, or
learn about a niche of DL in more depth

– Hear about challenges and how you handled
them, that they can use in their own work

– Listen to an engaging presentation

Tips for a successful project

• From my perspective:

– Hear about the creative solutions you came up
with to handle challenges

– Hear your perspective on a topic that I care about

– Co-author a publication with you, potentially with
a small amount of follow-up work – looks good on
your CV!

Tips for a successful project

• Overall

– Don’t reinvent the wheel – your audience will be
bored

– But it’s ok to adapt an existing method to a new
domain/problem…

– If you show interesting experimental results…

– You analyze them and present them in a clear and
engaging fashion

Policies and Schedule

See course website!

Should I take this class?

• It will be a lot of work!

– I expect you’ll spend 6-8 hours on homework or the
project each week

– But you will learn a lot

• Some parts will be hard and require that you pay
close attention!

– Quizzes help ensure we’re on the same page

– Use instructor’s and TA’s office hours!

Your Homework

• Read entire course website

• Fill out poll for TA’s office hours

• Do first reading

• Go through NumPy tutorial, ask TA if
questions

Questions?

Plan for Today

• Blitz introductions

• What is deep learning
– Example problems and challenges

• Machine learning overview
– ML framework

– Linear classifiers

– Elements of a ML algorithm

– Evaluation and generalization

• Review: Linear algebra and calculus

Blitz introductions (10 sec)

• What is your name?

• What one thing outside of school are you
passionate about?

• Have you taken an artificial intelligence class
before? Which one(s)?

• What do you hope to get out of this class?

• When you speak, always say your name

What is deep learning?

• One approach to finding patterns and
relationships in data

• Finding the right representations of the data,
that enable correct automatic performance of
a given task

• Examples: Learn to predict the category (label)
of an image, learn to translate between
languages

Example deep learning tasks

• Face recognition

https://towardsdatascience.com/an-intro-to-deep-learning-for-face-recognition-aa8dfbbc51fb

https://towardsdatascience.com/an-intro-to-deep-learning-for-face-recognition-aa8dfbbc51fb

Example deep learning tasks

• Image captioning

http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_MSCap_Multi-
Style_Image_Captioning_With_Unpaired_Stylized_Text_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Kim_Dense_Relational_Captioning_Triple-
Stream_Networks_for_Relationship-Based_Captioning_CVPR_2019_paper.pdf

http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_MSCap_Multi-Style_Image_Captioning_With_Unpaired_Stylized_Text_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Guo_MSCap_Multi-Style_Image_Captioning_With_Unpaired_Stylized_Text_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Kim_Dense_Relational_Captioning_Triple-Stream_Networks_for_Relationship-Based_Captioning_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Kim_Dense_Relational_Captioning_Triple-Stream_Networks_for_Relationship-Based_Captioning_CVPR_2019_paper.pdf

Example deep learning tasks

• Image generation

Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018

https://arxiv.org/abs/1711.09020

Example deep learning tasks

• Fake news generation

https://www.youtube.com/watch?v=-QvIX3cY4lc

https://www.youtube.com/watch?v=-QvIX3cY4lc

Example deep learning tasks

• Machine translation

Slide credit: Carlos Guestrin

Example deep learning tasks

• Speech recognition

Slide credit: Carlos Guestrin

Example deep learning tasks

• Text generation

Andrej Karpathy

Example deep learning tasks

• Fake news generation and detection

https://grover.allenai.org/detect

https://grover.allenai.org/detect

Example deep learning tasks

• Art?

Example deep learning tasks

• Question answering

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html

https://visualcommonsense.com/

https://visualcommonsense.com/

Example deep learning tasks

• Robotic pets

https://www.youtube.com/watch?v=wE3fmFTtP9g

https://www.youtube.com/watch?v=wE3fmFTtP9g

Example deep learning tasks

• Artificial general intelligence?

https://www.dailymail.co.uk/sciencetech/article-5287647/Humans-robot-second-self.html

https://www.dailymail.co.uk/sciencetech/article-5287647/Humans-robot-second-self.html

Example deep learning tasks

• Why are these tasks challenging?

• What are some problems from everyday life
that can be helped by deep learning?

• What are some ethical concerns about using
deep learning?

Klingon vs Mlingon Classification

• Training Data

– Klingon: klix, kour, koop

– Mlingon: moo, maa, mou

• Testing Data: kap

• Which language? Why?

Slide credit: Dhruv Batra

“I saw her duck”

Slide credit: Dhruv Batra, figure credit: Liang Huang

“I saw her duck”

Slide credit: Dhruv Batra, figure credit: Liang Huang

“I saw her duck”

Slide credit: Dhruv Batra, figure credit: Liang Huang

“I saw her duck with a telescope…”

Slide credit: Dhruv Batra, figure credit: Liang Huang

What humans see

Slide credit: Larry Zitnick

What computers see
243 239 240 225 206 185 188 218 211 206 216 225

242 239 218 110 67 31 34 152 213 206 208 221

243 242 123 58 94 82 132 77 108 208 208 215

235 217 115 212 243 236 247 139 91 209 208 211

233 208 131 222 219 226 196 114 74 208 213 214

232 217 131 116 77 150 69 56 52 201 228 223

232 232 182 186 184 179 159 123 93 232 235 235

232 236 201 154 216 133 129 81 175 252 241 240

235 238 230 128 172 138 65 63 234 249 241 245

237 236 247 143 59 78 10 94 255 248 247 251

234 237 245 193 55 33 115 144 213 255 253 251

248 245 161 128 149 109 138 65 47 156 239 255

190 107 39 102 94 73 114 58 17 7 51 137

23 32 33 148 168 203 179 43 27 17 12 8

17 26 12 160 255 255 109 22 26 19 35 24

Slide credit: Larry Zitnick

Challenges

• Some challenges: ambiguity and context

• Machines take data representations too
literally

• Humans are much better than machines at
generalization, which is needed since test data
will rarely look exactly like the training data

Machine Learning Overview

• Deep learning is a specific group of algorithms
falling in the broader realm of machine learning

• All ML/DL algorithms roughly match schema:

– Learn a mapping from input to output f: x → y

– x: image, text, etc.

– y: {cat, notcat}, {1, 1.5, 2, …}, etc.

– f: this is where the magic happens

Machine Learning Overview

y' = f(x)

• Training: given a training set of labeled examples {(x1,y1),

…, (xN,yN)}, estimate the prediction function f by minimizing

the prediction error on the training set

• Testing: apply f to a never before seen test example x and

output the predicted value y’ = f(x)

output prediction

function

input

Slide credit: L. Lazebnik

Machine Learning Overview

• Example:

– Predict whether an email is spam or not:

Figures from Dhruv Batra

vs

Machine Learning Overview

• Example:
– Predict whether an email is spam or not.

– x = words in the email, multi-hot representation of
size |V|x1, where V is the full vocabulary and x(j) = 1
iff word j is mentioned

– y = 1 (if spam) or 0 (if not spam)

– y’ = f(x) = wT x
• w is a vector of the same size as x

• One weight per dimension of x (i.e. one weight per word)

• Weight can be positive, zero, negative…

• What might these weights look like?

Simple strategy: Let’s count!

This is X

Adapted from Dhruv Batra, Fei Sha

This is Y

= 1 оr 0?

Where do the weights
come from?

Weigh counts and sum to get prediction

Adapted from Dhruv Batra, Fei Sha

This is a linear classifier

Machine Learning Overview

• Example:

– Apply a prediction function to an image to get

the desired label output:

f() = “apple”

f() = “tomato”

f() = “cow”
Slide credit: L. Lazebnik

Machine Learning Overview

• Example:

– x = pixels of the image (concatenated to form

a vector)

– y = integer (1 = apple, 2 = tomato, etc.)

– y’ = f(x) = wT x

• w is a vector of the same size as x

• One weight per each dimension of x (i.e. one

weight per pixel)

Feature representation (x)

• A vector representing measurable characteristics
of a data sample we have

• E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4} and
taste = {sweet=1, sour=2}

• For a given glass i, this can be represented as a
vector: xi = [3 2] represents green sour juice

• For D features, this defines a D-dimensional space
where we can measure similarity between
samples

Example: Feature representation

0 1 2 3 4

2

1

color

taste

E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4}
and taste = {sweet=1, sour=2}

x2 = [3 2]x1 = [1 2]

x3 = [1 1]

Which is the yellow sour juice:
x1, x2 or x3?

• L1 norm

• L2 norm

• Lp norm (for real numbers p ≥ 1)

Norms

• L1 (Manhattan) distance

• L2 (Euclidean) distance

Distances

Example: Feature representation

0 1 2 3 4

2

1

color

taste

E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4}
and taste = {sweet=1, sour=2}

x2 = [3 2]x1 = [1 2]

x3 = [1 1]

L2 distance:
d(x1, x2) = sqrt(4+0) = 2
d(x1, x3) = sqrt(0+1) = 1
d(x2, x3) = sqrt(4+1) = 2.2

L1 distance:
d(x1, x2) = 2+0 = 2
d(x1, x3) = 0+1 = 1
d(x2, x3) = 2+1 = 3

Linear classifier

• Find a linear function to separate the classes

f(x) = sgn(w1x1 + w2x2 + … + wDxD) = sgn(wx)

= sgn(wTx)
Slide credit: L. Lazebnik

• What should the weights be?

x1

x2

(0, 0)

• Decision = sign(wTx) = sign(w1*x1 + w2*x2)

Linear classifier

(1, 0)

w

Lines in R2

0=++ bcyax

mx + r = y?

ax + cy + b = 0
ax + b = -cy
(-a/c) x + (-b/c) = y

m = -a/c
r = -b/c

y-intercept = r = -b/c

https://www.mathsisfun.com/equation_of_line.html

(x, y)

x

y

Lines in R2

0=+ bxw









=

c

a
w 








=

y

x
x

0=++ bcyax

Let

w

Kristen Grauman

Lines in R2

0=+ bxw









=

c

a
w 








=

y

x
xLet

w

()00 , yx

D

w

xw ||

22

00 b

ca

bcyax
D

+
=

+

++
=


distance from

point to line

Kristen Grauman

0=++ bcyax

Linear classifiers

• Find linear function to separate positive and

negative examples

0:negative

0:positive

+

+

b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

A

B
C

D

Not seen until test time,

of class blue

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Linear classifiers

• Find linear function to separate positive and

negative examples

0:negative

0:positive

+

+

b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

B

D

Not seen until test time,

of class blue

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Discriminative

classifier based on

optimal separating

line (for 2d case)

• Maximize the

margin between the

positive and

negative training

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

Support vectors

For support, vectors, 1=+ bi wx

Distance between point

and line: ||||

||

w

wx bi +

www

211
=

−
−=M

For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

Margin ww

xw 1
=

+ bΤ

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to yi(w·xi+b) ≥ 1

wwT

2

1

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

One constraint for each

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

= i iii y xw 

()by

xf

ii +=

+=

 xx

xw

i isign

b)(sign)(



If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Inner product

Adapted from Milos Hauskrecht

()by

xf

ii +=

+=

 xx

xw

i isign

b)(sign)(



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs

Φ: x → φ(x)

• General idea: the original input space can

always be mapped to some higher-dimensional

feature space where the training set is

separable:

Andrew Moore

Nonlinear SVMs

Nonlinear kernel: Example

• Consider the mapping),()(2xxx =

22

2222

),(

),(),()()(

yxxyyxK

yxxyyyxxyx

+=

+==

x2

Svetlana Lazebnik

• The linear classifier relies on dot product between

vectors K(xi , xj) = xi · xj

• If every data point is mapped into high-dimensional

space via some transformation Φ: xi → φ(xi), the dot

product becomes: K(xi , xj) = φ(xi) · φ(xj)

• A kernel function is similarity function that

corresponds to an inner product in some expanded

feature space

• The kernel trick: instead of explicitly computing the

lifting transformation φ(x), define a kernel function K

such that: K(xi , xj) = φ(xi) · φ(xj)

Andrew Moore

The “Kernel Trick”

Examples of kernel functions

◼ Linear:

◼ Polynomials of degree up to d:

◼ Gaussian RBF:

◼ Histogram intersection:

)
2

exp()(
2

2



ji

ji

xx
,xxK

−
−=

=
k

jiji kxkxxxK))(),(min(),(

j

T

iji xxxxK =),(

Andrew Moore / Carlos Guestrin

𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑

The benefit of the “kernel trick”

• Example: Polynomial kernel for 2-dim features

• … lives in 6 dimensions

• With the kernel trick, we directly compute an

inner product in 2-dim space, obtaining a

scalar that we add 1 to and exponentiate

71

Hard-margin SVMs

Maximize margin

The w that minimizes…

72

Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification
cost

data samples

Soft-margin SVMs

Figure from Chris Bishop

73

Deep Learning in a Nutshell

• Input → network → outputs

• Input X is raw (e.g. raw image,

one-hot representation of text)

• Network extracts features: abstraction of input

(e.g. not pixels, but edges)

• Output is the labels Y

• All parameters of the network learned (during

training) by checking how well predicted/true Y

agree, using labels in the training set

Elements of Machine Learning

• Every machine learning algorithm has:

– Data representation (x, y)

– Problem representation (network)

– Evaluation / objective function

– Optimization (solve for parameters of network)

Adapted from Pedro Domingos

Data representation

• Let’s brainstorm what our “X” should be for
various “Y” prediction tasks…

• Weather prediction?

• Movie ratings predictions?

Problem representation

• Instances

• Decision trees

• Sets of rules / Logic programs

• Support vector machines

• Graphical models (Bayes/Markov nets)

• Neural networks

• Model ensembles

• Etc.

Slide credit: Pedro Domingos

• Accuracy
• Precision and recall
• Squared error
• Likelihood
• Posterior probability
• Cost / Utility
• Margin
• Entropy
• K-L divergence
• Etc.

Slide credit: Pedro Domingos

Evaluation / objective function

Loss functions

• Measure error

• Can be defined for discrete or continuous
outputs

• E.g. if task is classification – could use cross-
entropy loss

• If task is regression – use L2 loss i.e. ||y-y’||

Optimization

• Optimization means we need to solve for the
parameters w of the model

• For a (non-linear) neural network, there is no
closed-form solution to solve for w; cannot set up
linear system with w as the unknowns

• Thus, optimization solutions look like this:
1. Initialize w (e.g. randomly)

2. Check error (ground-truth vs predicted labels on
training set) under current model

3. Use gradient (derivative) of error wrt w to update w

4. Repeat from 2 until convergence

Types of Learning

• Supervised learning
– Training data includes desired outputs

• Unsupervised learning
– Training data does not include desired outputs

• Weakly or Semi-supervised learning
– Training data includes a few desired outputs, or contains labels

that only approximate the labels desired at test time (noisy)

• Reinforcement learning
– Rewards from sequence of actions

Adapted from: Dhruv Batra

Types of Prediction Tasks

82

Classificationx y

Regressionx y

Discrete

Continuous

Clusteringx x' Discrete ID

Dimensionality
Reduction

x x' Continuous

Supervised Learning

Unsupervised Learning

Adapted from Dhruv Batra

• Ultimately, for our application, what do we want?
– High accuracy on training data?
– No, high accuracy on unseen/new/test data!
– Why is this tricky?

• Training data
– Features (x) and labels (y) used to learn mapping f

• Test data
– Features used to make a prediction
– Labels only used to see how well we’ve learned f!!!

• Validation data
– Held-out set of the training data
– Can use both features and labels to tune model hyperparameters
– Hyperparameters are “knobs” of the algorithm tuned by the designer:

number of iterations for learning, learning rate, etc.
– We train multiple model (one per hyperparameter setting) and choose

the best one, on the validation set

Validation strategies

Validation strategies

Idea #1: Choose hyperparameters

that work best on the data

BAD: Overfitting; e.g. in K-

nearest neighbors, K = 1 always

works perfectly on training data

Idea #2: Split data into train and test, choose

hyperparameters that work best on test data

Your Dataset

train test

Idea #3: Split data into train, val, and test; choose

hyperparameters on val and evaluate on test

train validation test

Adapted from Fei-Fei, Johnson, Yeung

BAD: No idea how algorithm will

perform on new data; cheating

Better!

Validation strategies

Adapted from Fei-Fei, Johnson, Yeung

Your Dataset

fold 1 fold 2 fold 3 fold 4 fold 5 test

Idea #4: Cross-Validation: Split data into folds,

try each fold as validation and average the results

fold 1 fold 2 fold 3 fold 4 fold 5 test

fold 1 fold 2 fold 3 fold 4 fold 5 test

Useful for small datasets, but not used too frequently in deep learning

Why do we hope this would work?

• Statistical estimation view:

– x and y are random variables

– D = (x1,y1), (x2,y2), …, (xN,yN) ~ P(X,Y)

– Both training & testing data sampled IID from P(X,Y)

• IID: Independent and Identically Distributed

– Learn on training set, have some hope of
generalizing to test set

Adapted from Dhruv Batra

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

• Underfitting: Models with too

few parameters are

inaccurate because of a large

bias (not enough flexibility).

• Overfitting: Models with too

many parameters are

inaccurate because of a large

variance (too much sensitivity

to the sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model Blue curve = our predicted model/fit

Purple dots = possible test points

Generalization

• Components of generalization error

– Noise in our observations: unavoidable

– Bias: due to inaccurate assumptions/simplifications by model

– Variance: models estimated from different training sets differ

greatly rom each other

• Underfitting: model is too “simple” to represent all the

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Generalization

Generalization

Dataset subset 1

Dataset subset 2

Dataset subset 3

Dataset subset 4

Dataset subset 5

Model 1

Model 2

Model 3

Model 4

Model 5

Average model

True model?

…

Variance

Bias

Polynomial Curve Fitting

Slide credit: Chris Bishop

Sum-of-Squares Error Function

Slide credit: Chris Bishop

0th Order Polynomial

Slide credit: Chris Bishop

1st Order Polynomial

Slide credit: Chris Bishop

3rd Order Polynomial

Slide credit: Chris Bishop

9th Order Polynomial

Slide credit: Chris Bishop

Over-fitting

Root-Mean-Square (RMS) Error:

Slide credit: Chris Bishop

Data Set Size:

9th Order Polynomial

Slide credit: Chris Bishop

Data Set Size:

9th Order Polynomial

Slide credit: Chris Bishop

Regularization

Penalize large coefficient values

(Remember: We want to minimize this expression.)

Adapted from Chris Bishop

Regularization:

Slide credit: Chris Bishop

Regularization:

Slide credit: Chris Bishop

Polynomial Coefficients

Slide credit: Chris Bishop

Polynomial Coefficients

Adapted from Chris Bishop

No regularization Huge regularization

Regularization: vs.

Slide credit: Chris Bishop

Training vs test error

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

The effect of training set size

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Choosing the trade-off between

bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Apply this model to test set

Summary of generalization

• Try simple classifiers first

• Better to have smart features and simple

classifiers than simple features and smart

classifiers

• Use increasingly powerful classifiers with more

training data

• As an additional technique for reducing variance,

try regularizing the parameters

Slide credit: D. Hoiem

Linear algebra review

See http://cs229.stanford.edu/section/cs229-linalg.pdf for more

http://cs229.stanford.edu/section/cs229-linalg.pdf

Vectors and Matrices

• Vectors and matrices are just collections of
ordered numbers that represent something:
movements in space, scaling factors, word
counts, movie ratings, pixel brightnesses, etc.

• We’ll define some common uses and standard
operations on them.

Fei-Fei Li 3

Vector

• A column vector where

• A row vector where

denotes the transpose operation

• You need to keep track of orientation
Fei-Fei Li 112

Vectors have two main uses

• Vectors can represent an
offset in 2D or 3D space

• Points are just vectors
from the origin

Fei-Fei Li 113

• Data can also be treated
as a vector

• Such vectors don’t have a
geometric interpretation,
but calculations like
“distance” still have value

Matrix

• A matrix is an array of numbers with
size 𝑚 ↓ by 𝑛 →, i.e. m rows and n columns.

• If , we say that is square.

Fei-Fei Li 114

Matrix Operations
• Addition

– Can only add a matrix with matching dimensions,
or a scalar.

• Scaling

10-Jan-24 115

Inner vs outer
vs matrix vs element-wise product

• x, y = column vectors (nx1)
• X, Y = matrices (mxn)
• x, y = scalars (1x1)

• x · y = xT y = inner product (1xn x nx1 = scalar)
• x ⊗ y = x yT = outer product (nx1 x 1xn = matrix)

• X * Y = matrix product
– Watch out: could also be element-wise product in

NumPy, if class is array rather than matrix– see tutorial

Inner Product

• Multiply corresponding entries of two vectors
and add up the result

• x·y is also |x||y|Cos(angle between x and y)

• If B is a unit vector, then A·B gives the length
of A which lies in the direction of B (projection)

Fei-Fei Li 117

(if B is unit-length hence norm is 1)

• Let X be an axb matrix, Y be an bxc matrix

• Then Z = X*Y is an axc matrix

• Second dimension of first matrix, and first
dimension of second matrix have to be the
same, for matrix multiplication to be possible

• Practice: Let X be an 10x5 matrix. Let’s
factorize it into 3 matrices…

Matrix Multiplication

Matrix Multiplication
• The product AB is:

• Each entry in the result is (that row of A) dot
product with (that column of B)

Fei-Fei Li 119

Matrix Multiplication
• Example:

Fei-Fei Li 120

– Each entry of the
matrix product is
made by taking the
dot product of the
corresponding row in
the left matrix, with
the corresponding
column in the right
one.

Matrix Operation Properties

• Matrix addition is commutative and
associative
– A + B = B + A

– A + (B + C) = (A + B) + C

• Matrix multiplication is associative and
distributive but not commutative
– A(B*C) = (A*B)C

– A(B + C) = A*B + A*C

– A*B != B*A

Matrix Operations

• Transpose – flip matrix, so row 1 becomes
column 1

• A useful identity:

Fei-Fei Li 122

• Given a matrix A, its inverse A-1 is a matrix such
that AA-1 = A-1A = I

• E.g.

• Inverse does not always exist. If A-1 exists, A is
invertible or non-singular. Otherwise, it’s singular.

Fei-Fei Li 123

Inverse

Special Matrices

• Identity matrix I
– Square matrix, 1’s along

diagonal, 0’s elsewhere
– I ∙ [another matrix] = [that

matrix]

• Diagonal matrix
– Square matrix with numbers

along diagonal, 0’s elsewhere
– A diagonal ∙ [another matrix]

scales the rows of that matrix

Fei-Fei Li 124

Special Matrices

• Symmetric matrix

Fei-Fei Li 125

• L1 norm

• L2 norm

• Lp norm (for real numbers p ≥ 1)

Norms

• MATLAB example // linalg.solve or lingalg.lstsq in Python

Fei-Fei Li 127

System of Linear Equations

>> x = A\B

x =

1.0000

-0.5000

Matrix Rank

• Column/row rank

• Column rank always equals row rank

• Matrix rank

• If a matrix is not full rank, inverse doesn’t exist

– Inverse also doesn’t exist for non-square matrices

Fei-Fei Li 128

Linear independence

• Suppose we have a set of vectors v1, …, vn

• If we can express v1 as a linear combination of
the other vectors v2…vn, then v1 is linearly
dependent on the other vectors.
– The direction v1 can be expressed as a combination of

the directions v2…vn. (E.g. v1 = .7 v2 -.5 v4)

• If no vector is linearly dependent on the rest of
the set, the set is linearly independent.
– Common case: a set of vectors v1, …, vn is always

linearly independent if each vector is perpendicular to
every other vector (and non-zero)

Fei-Fei Li 129

Linear independence

Not linearly independent

Fei-Fei Li 130

Linearly independent set

Singular Value Decomposition (SVD)
• There are several computer algorithms that

can “factor” a matrix, representing it as the
product of some other matrices

• The most useful of these is the Singular Value
Decomposition

• Represents any matrix A as a product of three
matrices: UΣVT

Fei-Fei Li 131

Singular Value Decomposition (SVD)

UΣVT = A
• Where U and V are rotation matrices, and Σ is

a scaling matrix. For example:

Fei-Fei Li 132

Singular Value Decomposition (SVD)

• In general, if A is m x n, then U will be m x m, Σ
will be m x n, and VT will be n x n.

Fei-Fei Li 133

Singular Value Decomposition (SVD)
• U and V are always rotation matrices.

– Geometric rotation may not be an applicable
concept, depending on the matrix. So we call
them “unitary” matrices – each column is a unit
vector.

• Σ is a diagonal matrix
– The number of nonzero entries = rank of A

– The algorithm always sorts the entries high to low

Fei-Fei Li 134

Singular Value Decomposition (SVD)

M = UΣVT

Illustration from Wikipedia

Calculus review

Differentiation

The derivative provides us information about the

rate of change of a function.

The derivative of a function is also a function.

Example:

The derivative of the rate function is the

acceleration function.

Texas A&M Dept of Statistics

Derivative = rate of change

Image: Wikipedia

Derivative = rate of change

• Linear function y = mx + b

• Slope

Image: Wikipedia

Ways to Write the Derivative

dx

Given the function f(x), we can write its

derivative in the following ways:

- f '(x)

-
d

f(x)

The derivative of x is commonly written dx.

Texas A&M Dept of Statistics

Differentiation Formulas

The following are common differentiation

formulas:

- The derivative of a constant is 0.

- The derivative of a sum is the sum of the

derivatives.

du

d
c = 0

du

d
(f (u)+ g(u)) = f '(u)+ g'(u)

Texas A&M Dept of Statistics

Examples

- The derivative of a constant is 0.

- The derivative of a sum is the sum of the

derivatives.

du

d
7 =

dt

d
(t + 4)=

Texas A&M Dept of Statistics

More Formulas

du

d
un = n*un−1du

- The derivative of u to a constant power:

- The derivative of e:

du

d
eu = eudu

- The derivative of log:

d
log(u) =

1
du

du u
Texas A&M Dept of Statistics

More Examples

dx

d
3x3 =

- The derivative of u to a constant power:

- The derivative of e:
d

e4 y=
dy

- The derivative of log:

dx

d
3log(x) =

Texas A&M Dept of Statistics

Product and Quotient

The product rule and quotient rules are

commonly used in differentiation.

- Product rule:

- Quotient rule:

du

d
(f (u)*g(u)) = f (u)g'(u) + g(u) f '(u)

2(g(u))

g(u) f '(u) − f(u)g'(u)

du  g(u) 

d  f (u) 

Texas A&M Dept of Statistics

  =

Chain Rule

The chain rule allows you to combine any of the

differentiation rules we have already covered.

- First, do the derivative of the outside and

then do the derivative of the inside.

du

d
f (g(u)) = f '(g(u))* g'(u)* du

Texas A&M Dept of Statistics

Try These

g(y) = 4y3+ 2y

f (z) = z+11

h(x) =e3x

x

log(x2)
p(x) =

q(z) = (ez − z)3

s(y) = 4ye2 y

Texas A&M Dept of Statistics

Solutions

g'(y) =12y2 + 2

f '(z) =1

h'(x) =3e3x

x2

2− log(x2)
p'(x) =

q'(z) = 3(ez − z)2(ez −1)

+ 4e2ys'(y) = 8ye2 y

Texas A&M Dept of Statistics

	Slide 1: CS 1678/2078: Deep Learning Introduction
	Slide 2: About the Instructor
	Slide 3: Course Info
	Slide 4: Course Goals
	Slide 5: Textbooks
	Slide 6: Programming
	Slide 7: Course Structure
	Slide 8: Tips for a successful project
	Slide 9: Tips for a successful project
	Slide 10: Tips for a successful project
	Slide 11: Tips for a successful project
	Slide 12: Policies and Schedule
	Slide 13: Should I take this class?
	Slide 14: Your Homework
	Slide 15: Questions?
	Slide 16: Plan for Today
	Slide 17: Blitz introductions (10 sec)
	Slide 18: What is deep learning?
	Slide 19: Example deep learning tasks
	Slide 20: Example deep learning tasks
	Slide 21: Example deep learning tasks
	Slide 22: Example deep learning tasks
	Slide 23: Example deep learning tasks
	Slide 24: Example deep learning tasks
	Slide 25: Example deep learning tasks
	Slide 26: Example deep learning tasks
	Slide 27: Example deep learning tasks
	Slide 28: Example deep learning tasks
	Slide 29
	Slide 30: Example deep learning tasks
	Slide 31: Example deep learning tasks
	Slide 32: Example deep learning tasks
	Slide 33: Klingon vs Mlingon Classification
	Slide 34: “I saw her duck”
	Slide 35: “I saw her duck”
	Slide 36: “I saw her duck”
	Slide 37: “I saw her duck with a telescope…”
	Slide 38: What humans see
	Slide 39: What computers see
	Slide 40: Challenges
	Slide 41: Machine Learning Overview
	Slide 42: Machine Learning Overview
	Slide 43: Machine Learning Overview
	Slide 44: Machine Learning Overview
	Slide 45: Simple strategy: Let’s count!
	Slide 46: Weigh counts and sum to get prediction
	Slide 47: Machine Learning Overview
	Slide 48: Machine Learning Overview
	Slide 49: Feature representation (x)
	Slide 50: Example: Feature representation
	Slide 51: Norms
	Slide 52: Distances
	Slide 53: Example: Feature representation
	Slide 54: Linear classifier
	Slide 55: Linear classifier
	Slide 56: Lines in R2
	Slide 57: Lines in R2
	Slide 58: Lines in R2
	Slide 59: Linear classifiers
	Slide 60: Linear classifiers
	Slide 61: Support vector machines
	Slide 62: Support vector machines
	Slide 63: Finding the maximum margin line
	Slide 64: Finding the maximum margin line
	Slide 65: Inner product
	Slide 66: Nonlinear SVMs
	Slide 67: Nonlinear SVMs
	Slide 68: Nonlinear kernel: Example
	Slide 69: The “Kernel Trick”
	Slide 70: Examples of kernel functions
	Slide 71: The benefit of the “kernel trick”
	Slide 72: Hard-margin SVMs
	Slide 73: Soft-margin SVMs
	Slide 74: Deep Learning in a Nutshell
	Slide 75: Elements of Machine Learning
	Slide 76: Data representation
	Slide 77: Problem representation
	Slide 78: Evaluation / objective function
	Slide 79: Loss functions
	Slide 80: Optimization
	Slide 81: Types of Learning
	Slide 82: Types of Prediction Tasks
	Slide 83: Validation strategies
	Slide 84: Validation strategies
	Slide 85: Validation strategies
	Slide 86: Why do we hope this would work?
	Slide 87: Generalization
	Slide 88: Generalization
	Slide 89: Generalization
	Slide 90: Generalization
	Slide 91: Polynomial Curve Fitting
	Slide 92: Sum-of-Squares Error Function
	Slide 93: 0th Order Polynomial
	Slide 94: 1st Order Polynomial
	Slide 95: 3rd Order Polynomial
	Slide 96: 9th Order Polynomial
	Slide 97: Over-fitting
	Slide 98: Data Set Size:
	Slide 99: Data Set Size:
	Slide 100: Regularization
	Slide 101: Regularization:
	Slide 102: Regularization:
	Slide 103: Polynomial Coefficients
	Slide 104: Polynomial Coefficients
	Slide 105: Regularization: vs.
	Slide 106: Training vs test error
	Slide 107: The effect of training set size
	Slide 108: Choosing the trade-off between bias and variance
	Slide 109: Summary of generalization
	Slide 110: Linear algebra review
	Slide 111: Vectors and Matrices
	Slide 112: Vector
	Slide 113: Vectors have two main uses
	Slide 114: Matrix
	Slide 115: Matrix Operations
	Slide 116: Inner vs outer vs matrix vs element-wise product
	Slide 117: Inner Product
	Slide 118: Matrix Multiplication
	Slide 119: Matrix Multiplication
	Slide 120: Matrix Multiplication
	Slide 121: Matrix Operation Properties
	Slide 122: Matrix Operations
	Slide 123
	Slide 124: Special Matrices
	Slide 125: Special Matrices
	Slide 126: Norms
	Slide 127
	Slide 128: Matrix Rank
	Slide 129: Linear independence
	Slide 130: Linear independence
	Slide 131: Singular Value Decomposition (SVD)
	Slide 132: Singular Value Decomposition (SVD)
	Slide 133: Singular Value Decomposition (SVD)
	Slide 134: Singular Value Decomposition (SVD)
	Slide 135: Singular Value Decomposition (SVD)
	Slide 136: Calculus review
	Slide 137: Differentiation
	Slide 138: Derivative = rate of change
	Slide 139: Derivative = rate of change
	Slide 140: Ways to Write the Derivative
	Slide 141: Differentiation Formulas
	Slide 142: Examples
	Slide 143: More Formulas
	Slide 144: More Examples
	Slide 145: Product and Quotient
	Slide 146: Chain Rule
	Slide 147: Try These
	Slide 148: Solutions

