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Plan for this lecture

Alternative representations
— |. Graph networks (pp 3-29)

Alternative learning mechanisms
— |I. Self supervision (pp 30-69)
— [ll. Reinforcement learning (pp 70-111)

Alternative tasks
— V. Generation (pp 112-198)

V. Bias and ethics (pp 199-257)



Part I: Graph Networks

* Types of graph networks
— Graph convolutional networks
— Graph attention networks
* Applications
— Semi-supervised learning
— Visual question answering



Types of data typically handled with Deep Learning
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Speech data

Natural language Sentence

processing (NLP)

Predicate / Verb Phrase

Prepositional Phrase

Noun Phrase

Article Noun Verb Preposition Article Noun

The cat sat on the mat.

Grid games

Thomas Kipf



Graph-structured data
A lot of real-world data does not “live” on grids 0\
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Standard deep learning architectures

like CNNs and RNNs don’t work here!
Road maps
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Graph Neural Networks (GNNSs)

The bigger picture: Notation: G= (A, X)
. . NN
Hidden layer Hidden layer . Adjacency matrix A R !
! . ] ( . ) . Feature matrix X RN™F
Input ¢ ¢ . Output
RelU | o /7 RelLU

Main idea: Pass messages between pairs of nodes & agglomerate
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Graph convolutional networks

Graph: G = (V,€) Adjacency matrix: A

A B C D E
Al o 1 11 0 )
Bl 1 o o 1 1
Cl 1.0 0o 1 0
Dl 1 1 1 o0 1
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X Kipf and Welling, “Semi-supervised learning with deep generative models”, ICLR 2017 (slides by Thomas Kipf)



Recap: Convolutional neural networks (on grids)

Single CNN layer
with 3x3 filter:

0 Update for a single pixel:

« Transform messages individually ‘W ;h;
» Add everything up ». 'W;h;

O h;

hi in RF are (hidden layer) activations of a pixel/node

Full update:

b = o (wg>hg> + W wgmg))

x .
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Graph convolutional networks

Input: Feature matrix X € RV*E , preprocessed adjacency matrix A

Hidden layer Hidden layer
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Graph convolutional networks (GCNSs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

Update ( 1
I+1 (1) L) (Dxxr()
rule: Y=g W+ ST —h/W;
jeN;
Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor Cij: norm. constant

indices (fixed/trainable)
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Graph neural networks with attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Velickovi¢ et al. (ICLR 2018)

concat/avg /.,
~>{ R

[Figure from Veli€kovi¢ et al. (ICLR 2018)]

% exp (LeakyReLU (aT [WﬁiHWﬁj]))

o (L kWkrH. ij =
h; =0 7% Z Z a;; Woh; g > ken; €XD (LeakyReLU <5T [WFLZHWFL]C]))
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A brief history of graph neural nets

“Spatial methods” MoNet
Monti et al.
(CVPR 2017)
Original GNN GG-NN
®m  Gorietal. |- Li et al.
Neural MP
(2005) (ICLR 2016) Gilmer et al.
(ICML 2017)
GCN
Kipf & Welling
(ICLR 2017)
Spectral
ChebNet
n %ﬁﬁg g';llN Defferrard et al. “Spectral methods”
(ICLR 2015) (NIPS 2016)

UNIVERSITEIT VAN AMSTERDAM

Relation Nets

Cantarn_ ot al

5raphSAGE
amilton et al.

NIPS 2017)

Programs as Graphs

Allamanis e
1L D _2°NA1
NRI
o oar (e
Velickovic etal. [ )
(ICLR 2018)

“DL on graph explosion”

Other early work:

- Duvenaud et al. (NIPS 2015)

- Dai et al. (ICML 2016)

- Niepert et al. (ICML 2016)

- Battaglia et al. (NIPS 2016)

- Atwood & Towsley (NIPS 2016)
- Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNSs)

Thomas Kipf



What do learned representations look like?

Forward pass through untrained 3-layer GCN model

Parameters initialized randomly

[Zachary’s Karate Club]

2-dim output per node

What else are graph representations good for?
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Semi-supervised classification on graphs

Setting: o .
Some nodes are labeled (black circle)
All other nodes are unlabeled N
@ @] ®
Task: o ° ® ®
Predict node label of unlabeled nodes e ° .0 ®
. o
@ @
o v « ©
® g

Evaluate loss on labeled nodes only:

F
set of labeled node
L=-Y Y YiyInZy e = |
Y indices label matrix
leyr f=1

Z, GCN output (after softmax)

x .
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Application: Classification on citation networks

Input: Citation networks (nodes are papers, edges are citation links,

optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, ...)

Model: 2-layer GCN Z = f(X, A) = softmax(A ReLU (AXW“))) W<1>)

Classification results (accuracy)

Method Citeseer Cora Pubmed NELL
ManiReg [3] 60.1 59.5 70.7 21.8
SemiEmb [24] 59.6 59.0 71.1 26.7
] LP [27] 45.3 68.0 63.0 26.5 y
no input features  ——_. peepWalk [18] 43.2 67.2 65.3 58.1 <
Planetoid* [25] 64.7(26s) 75.7(13s) 77.2(25s) 61.9 (185s) /
GCN (this paper) 70.3(7s) 81.5(4s) 79.0(38s) 66.0 (48s) 7 (Figure from: Bronstein, Bruna, LeCun,
? Szlam, Vandergheynst, 2016)
GCN (rand. splits) 67.9+0.5 80.1+05 789+0.7 584+£1.7 :

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017
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Visual Question Answering (VQA)

Task: Given an image and a natural language open-ended question,
generate a natural language answer.

What color are her eye? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

Is this person expecting company? Does it appear t be rainy?
What is just under the tree? Does this person have 20/20 vision?

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015



http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html

Visual Question Answering (VQA)

Neural Network
Softmax
4096-dim over top K answers

\ .@ C yeoln

Image Embedding

—> Ply=1]x)

v v v v v
onvolution Layer ooling Layer onvolution Layer ooling Layer ully-Connected
C+ Non_tLineaLritvy Pooling Lay c+ Non-tLineaLri'Zy Pooling Lay Fully-Connect @ —> Ply=2x)
Input Softmax
(Features Il}  classifier
Question Embedding
“How many horses are in this image?” 1024-dim

LSTM

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015



http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html

Visual Question Answering (VQA)

CloudCV: Large Scale Dist x \, | =9

€ 3 C cloudcv.org/vga Q6 =

CloudCV Ima ching )bject Detection De or Classification VIP Train an

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015



Visual Question Answering (VQA)
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Figure 2. Our proposed framework: given an image, a CNN is first applied to produce the attribute-based representation V., (/). The
internal textual representation is made up of image captions generated based on the image-attributes. The hidden state of the caption-
LSTM after it has generated the last word in each caption is used as its vector representation. These vectors are then aggregated as |

with average-pooling. The exiernal knowledge is mined from the KB (in this case DBpedia) and the responses encoded by Doc2Vec, which
produces a vector Vinow (I ) The 3 vectors V are combined into a single representation of scene content, which is input to the VQA LSTM
model which interprets the question and generates an answer.

Wu et al., “Ask Me Anything: Free-Form Visual Question Answering Based on Knowledge From External Sources”, CVPR 2016



http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_Ask_Me_Anything_CVPR_2016_paper.html

Reasoning for VQA

Question:
Which object is a citnic fruit?

o e i

)
-
=
o

[ sec 3.1 Fact Retrieval | [ sec 3.2: Answer Prediction |

/  orange
curss @

Figure 2: Outline of the proposed approach: Given an image and a question, we use a similarity scoring
technique (1) to obtain relevant facts from the fact space. An LSTM (2) predicts the relation from the question to
further reduce the set of relevant facts and its entities. An entity embedding is obtained by concatenating the
visual concepts embedding of the image (3), the LSTM embedding of the question (4), and the LSTM embedding
of the entity (5). Each entity forms a single node in the graph and the relations constitute the edges (6). A GCN
followed by an MLP performs joint assessment (7) to predict the answer. Our approach is trained end-to-end.

Narasimhan and Schwing, “Out of the Box: Reasoning with Graph Convolution Nets for Factual Visual Question Answering”, NeurIPS 2018



raphs for advertisements

Object Detection Visual Patches

Optical Character
Recognition Embedded

v Slogans
Knowledge Retrieval I

: Knowledge
DBPedia Entries

Introducing the NiD

Hyperdunk July 26

ancient Greek religion,
was a goddess who
personified victory ...

A A f
30 isa Inc. is an American-
sizeable asteroid of based sportswear and

the main belt ...

apparel company ...

Figure 2: Overview of the proposed model. Given a single image ad, we first expand the representation using object
detection and OCR, and also retrieve relevant knowledge based on slogan snippets (left). We build a graph-based model to
infer the overall message using all available information (right). For more effective training, we mask query keywords and

np-acuumn-:dmm-n“" e T e B
--ﬂv adair tudor sa design
ac... manufacture , distribut...
s o o 0.43 0.34
e rolex 24 9}
ST G hl i you ded f that a o 3
> | watch red rolex
pempering, watch rd adair
- 0330 o2l
W)
. S

] \/ {
e

I should wear a rolex Because it can stand up to use by tough active guys
= 1 should be wearing Rolex Because | am a Winner
sorex  1should wear a Rolex watch Because Red Adair wears one

o
0.69

4 |should recycle because nature cant
1 should recycle because garbage can harm animals
B 1should recycle because it will ultimately affect our environment

Ye, Zhang and Kovashka

randomly drop certain knowledge pieces (shown in purple). More details are in Sec. 3.



Decoding image advertisements

 What message does the ad convey (action), and
what arguments does it provide for taking the
suggested action (reason)?

 Multiple-choice task: Given k options for action-
reason statements, pick one that matches the image

@ evian
! * | should drink evian because
i it helps you recover
: %\ / * | should drink Evian because
e ! it will keep me like a baby
= * | should buy Evian because
, J/ it keeps us young

Hussain, Zhang, Zhang, Ye, Thomas, Agha, Ong and Kovashka, CVPR 2017



Retrieve the bet tion-reason statement

Triplet training

“I should be careful on the road
sol don’t crash and die.”

___________________________________________________________________

Ye etal.,, TPAMI 2019

200-D image
embedding

200-D text embedding

@)

A black motorcycle
A motorcycle on the road
A large green tree
Aroad
A clear blue sky

@

|LSTM}—-|LSTM}—> »*

black

\

sky j

“I should buy this motorbike

because it’s fast.”




Experimental results (image features only)

* We outperform prior art by a large margin, for both
statement ranking and classification

Rank (Lower | is better)

Recall@3 (Higher 1 is better)

HussAIN-RANKING
ADVISE (ours)

3.85/ (£ 0.088)
3.013 (+ 0.075)

3.093 (£ 0.019)
2.469 (£ 0.015)

1.258 (+ 0.017)
1.509 (£ 0.017)

Method PSA | Product PSA | Product
2-way NETs  [[4.836 (4 0.090) [4.170 (£ 0.023) [ 0.923 (£ 0.016) [ 1.212 (£ 0.004)
VSE 4.155 (£ 0.091) | 3.202 (£ 0.019) || 1.146 (& 0.017) | 1.447 (£ 0.004)
VSE++ 4139 (£ 0.094) [3.110 (£ 0.019) [ 1.197 (£ 0.017) [ 1.510 (£ 0.004)

1.515 (£ 0.004)
1.725 (4 0.004)

* Our methods
accurately capture
the rhetoric, even in
deliberately
confusing ads

Ye and Kovashka, ECCV 2018

VSE++ on Ads: T should

wear Revlon makeup
because it will make
me more attractive”

ADVISE (ours):  “T

should stop smoking
because it doesn't make
me pretty”



Incorporating external knowledge

Object Detection

Optical Character
Recognition

» |Visual Patches

Embedded
Slogans

Knowledge Retrieval I

el
. v f
_____________________________________ i
i b SR

Introducing the NIQ

Hyperdunk July 26

DE &
4 f : _J_‘.
2] DBPedia

Knowledge
Entries

ancient Greek religion,
was a goddess who
personified victory ...

307[Nikelis a
sizeable asteroid of
the main belt ...

Inc. is an American-
hased sportswear and
apparel company ...

* Expand image representation using external
knowledge (from DBPedia); represent regions,
slogans, KB nuggets in a graph

* To prevent overfitting and break non-generalizable
shortcuts, we randomly mask parts of training
samples (e.g. slogan, words in KB nugget)

Ye, Zhang and Kovashka




Incorporating external knowledge

* Training via metric learning: match image to
human-annotated action-reason statements

* Image representation is a graph
* Slogan node updates:

|&(:)
tgl) = O;%‘jgtgoj -+ Z QIJ i,
original meaning —
descriptlons from extra knowledge
* Global node update:
V] VI+HIT]
h = Z Bivi + Y Bt
i=|V|+1

“—v—’ \ /

T
messages from proposals messages from slogans

* Edge weights a, B allow model to choose what
knowledge to use

Ye, Zhang and Kovashka



Incorporating external knowledge

* We stochastically mask aspects of training data, to
prevent model from relying too much on word-
matching or object-matching

* Three strategies; can also learn how to mask:

* M, randomly drops a detected textual (T) slogan, with a
probability of 0.5

* M, randomly sets the KB query words (e.g. “WWF” or
“Nike”) in the human-annotated statements (S) to the
out-of-vocabulary token, with probability 0.5

* M, replaces the DBpedia queries in the retrieved
knowledge contents with the out-of-vocabulary token

Ye, Zhang and Kovashka



Incorporating external knowledge

* Qutperform prior state of the art

Methods Accuracy (%)
VSE[3]] 62.0
ADNET [0] 65.0
ADVISE [ 1] 69.0
CYBERAGENT [ 14] 82.0
RHETORIC [3”] 83.3
OURS 87.3

e Using external knowledge

nelps when data masked

Method Pal P@3 P@5 P@l0

Min Aveg Med
Rank Rank Rank

R@l R@3 R@5 R@10)

Results on the Challenge-15 task

V. T 87.3 76.6 55.1
V. T+K 87.3 76.6 55.1
V. T+K(M;,M.,M)|87.3 77.5 55.9

30.6
30.6
30.8

28.4
28.4
28.4

74.2
74.3
75.2

97.5
97.6
98.2

1.26
1.25
1.23

3.02
3.02
2.91

o o
=] =1
-] =]

(=2}
d=]

Results on the Sampled-100 task

V.T 708 66.5 46.0
V. T+K 80.0 67.0 47.0
V, T+K(M,, M, M;)[80.2 67.9 47.9

26.2
26.1
26.8

26.0
26.0
26.1

64.4
64.9
65.8

9 835
83.4
85.4

238 T.
229 74
2.14

[uly |
= oo oo
=T

[ B |

Results on the Sampled-500 task

V., T 65.5 52.3 378
V. T+K 65.4 52.3 38.0
V. T+K(M;,M: M) 64.8 52.4 38.3

21.7
21.9
22.1

21.3
21.3
21.1

50.5
50.6
50.7

69.0
69.6
70.6

8.18
7.60
6.89

21.6
214
18.2

Ye, Zhang and Kovashka



Incorporating external knowledge

Image and annotated statements Learned graph w/o masking Learned graph w/ masking
. . R % chanel s.a. (
Qua ntltatlvely: I should buy Chanel because ”flfﬂ';f mc::

french , privately

- 3l | will be fashionable
| held company o...

Without masking we

. . A 0.88
retrieve relevant info I should wear Chanel
] o because it will make me
with accuracy 25%, vs | look classy

54% with masking.

I should get Chanel because

CHANEL s it is sexy . \ . ﬂ

I should recycle because it nature,, in the IR

) - broadest sense ,is i

will ultimately affect our the natural, coxiveating maks
R nhysical , or materials into
environment materialworld o reusable objects to
unl... PIEVE...
0.66

.i I should recycle because “ rbbishcanbe

nature cant - eain Tiot,
'L" - 0l

I should recycle because
% garbage can harm animals

Fig.4: Examples of the learned graphs (best with zoom). We show the
ad image and annotated action-reason statements on the left, the graph learned
without masking in the middle, and that learned with masking (our approach) on
the right. We show slogans in blue, DBpedia comments in orange, and the global
node as a star. Arrow thickness is correlated with learned weights a, 3.
For visualization we removed all edges with small weights (threshold=0.05). We
see our method more effectively leverages external information.

Ye, Zhang and Kovashka



Part Il: Self-Supervised Learning

* Learn representations from context in raw data

* Language — predict nearby words [already covered]
— Word2Vec
— Transformers, BERT

e Vision — predict pixels from other pixels
— Predict nearby patches in an image
— Predict order of frames in a video
— Predict what you will see as you move
— Predict physics

Jitendra Malik: "Supervision is the opium of the Al researcher”
Alyosha Efros: "The Al revolution will not be supervised"
Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the
cake, reinforcement learning is the cherry on the cake"



Unsupervised Visual Representation
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta
ICCV 2015



ImageNet + Deep Learning

» Beagle

- Image Retrieval

- Detection (RCNN)

- Segmentation (FCN)
- Depth Estimation

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning
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Geometry? Boundaries?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and



E"'Colntext_i_@l 1{ n_for Images

l _— — _— — _— 1
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Relative Position Task

{aad bk [] & 8 possible locations

ndoly Smpl Pach
Sample Second Patch

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Patch Embedding

CNN Note: connects across instances!

Doersch et aI. ’Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Architecture

Softmaxloss | i (]
Fully connected L e
‘ Taas” ----: Taas”
Fully connected
i, -

Fully connected

Max Pooling

Fully connected

Convolution

Max Pooling

Convolution

Convolution

Convolution

Convolution

LRN

Convolution

Max Pooling

LRN

Convolution

Max Pooling

LRN

Convolution

Max Pooling

LRN

Max Pooling

[

. Tied Weights .
Convolution fF=-===—=—=- Convolution
-, -,

Patch 1 / / Patch 2

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015




What is learned?

ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Pre-Training for R-CNN

Y NG
1. Input 2. Extract region
Image proposals (~2k)

=] warped region

P aeroplane? no.
, .

person? yes.

tvmonitor? no.

3. Compute
CNN features

!

4. Classify
regions

Pre-train on relative-position task, w/o labels

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

[Girshick et al. 2014]



VOC 2007 Performance

(pretraining for R-CNN)

54.2
46.3

40.7

% Average Precision

ImageNet Labels Ours No Pretraining

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Which will be better?

* Option 1: pretrain (unsup) on dataset B
* Option 2: pretrain (sup) on dataset A
* Test on dataset B



Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert
ECCV 2016



(a)

Positive Tuples (b) Negative Tuples
Temporally Correct order ' :

Original video

Temporally Incorrect order

Fig.1: (a) A video imposes a natural temporal structure for visual data. In many
cases, one can easily verify whether frames are in the correct temporal order (shuffied
or not). Such a simple sequential verification task captures important spatiotemporal
signals in videos. We use this task for unsupervised pre-training of a Convolutional
Neural Network (CNN). (b) Some examples of the automatically extracted positive
and negative tuples used to formulate a classification task for a CNN.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



(a) Data Sampling (b) Triplet Siamese network for sequence

verification
Input Tuple Pt AlexNet architecture

D

Frame Motion

awry,

Positive Tuples

fe8

fi D

concatenation
classification

fo fe fa

Bias the \:
sampling |
to high |

motion |

windows \

Y

Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form
positive and negative tuples based on whether the three input frames are in the correct
temporal order. (b) Our triplet Siamese network architecture has three parallel network
stacks with shared weights upto the £c7 layer. Each stack takes a frame as input, and
produces a representation at the f£c7 layer. The concatenated fc7 representations are
used to predict whether the input tuple is in the correct temporal order.

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51
datasets. We compare different initializations and finetune them for action recognition.

Dataset Initialization Mean Accuracy
UCF101 Random 38.6
(Ours) Tuple verification 50.2
HMDB51 Random 13.3
UCF Supervised 15.2
(Ours) Tuple verification 18.1

Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Learning image representations tied to
ego-motion

Dinesh Jayaraman and Kristen Grauman
ICCV 2015



The kitten carousel experiment
[Held & Hein, 1963]
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Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Problem with today’s visual learning

Status quo: Learn from
“disembodied” bag of
labeled snapshots.

Our goal: Learn in the
context of acting and moving
In the world.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Our idea: Ego-motion < vision

Goal: Teach computer vision system the connection:
“*how | move” & “how my visual surroundings change”

Ego-motion motor signals Unlabeled video

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision: view prediction

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion < vision for recognition

Learning this connection requires:

—_—

» Depth, 3D geometry Also key to
» Semantics — recognition!
» Context

Can be learned without manual labels!

Our approach: unsupervised feature learning
using egocentric video + motor signals

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of
transformations

z(gx) = z(X)
\ _J
/Equivariant features : predictably responsive to N

some classes of transformations, through simple
mappings (e.d., linear)

“‘equivariance map”
z(gx) =~ M,z(X)

e %

Invariance discards information;
equivariance organizes lit.

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach idea: Ego-motion equivariance

Training data Equivariant embedding

Unlabeled video + organized by ego-motions
motor signals

Pairs of frames related by
similar ego-motion should
be related by same
feature transformation

motor signal

time -

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Approach overview

Our approach: unsupervised feature learning using
egocentric video + motor signals

1. Extract training frame pairs from video
2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Training frame pair mining

Discovery of ego-motion clusters

yaw change

forward distance

e

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Ego-motion equivariant feature learning

Given: Desired: for all motions g and all images x,
Zo(gX) =~ M,Zg(X)

Unsupervised training

»
- Al
: |
r % o
g ’
By
B : 4

| Myzg(X;) — Zo(gX;) Il2

nuu:"u:unQ

ax loss L. (Xy, Vi)

class yy e\,M andéW' intly trained

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Learn from unlabeled car video (KITTI)

s % Bl -

’, Geiger et al, IJRR '13

Exploit features for static scene classification
(SUN, 397 classes)

Xiao et al, CVPR 10

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



Results: Recognition

Do ego-motion equivariant features improve recognition?

DU o B

1.5 397 classes ! 121
£ 1.02 ;

6 labeled training
examples per class

0.70 i

recognition accuracy (%)

0.5}
0.25 . . :
: Invariance :
(0]
< e & Y <2
RSN S\ES oﬁ’i\@\ o®
s \)Qe e\\ «e
S R

Up to 30% accuracy increase
over state of the art!

Jayaraman and Grauman, “Learning image representations tied to ego-motion”, ICCV 2015



The Curious Robot: Learning Visual
Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han,
Yong-Lae Park, and Abhinav Gupta

ECCV 2016



Embodied representations

Conv Layer1 Filters Conv3 Neuron Activations Convjs Neuron Activations

Learned Visual Representation

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Grasping

Successful grasps Unsuccessful grasps

Fig. 2. Examples of successful (left) and unsuccesful grasps (right). We use a patch
based representation: given an input patch we predict 18-dim vector which represents
whether the center location of the patch is graspable at 0°, 10°, ...170°.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pushing

Objects and push action pairs

a * o

1
-

> )\
u\ \bu ‘
Initial state Final state Initial state Final state Initial state Final state

Fig. 4. Examples of initial state and final state images taken for the push action. The
arrows demonstrate the direction and magnitude of the push action.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Poking

Objects and poke tactile response pairs

-

Fig. 6. Examples of the data collected by the poking action. On the left we show the
object poked, and on the right we show force profiles as observed by the tactile sensor.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Pose/viewpoint invariance

Fig. 7. Examples of objects in different poses provided to the embedding network.

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Representations from interactions
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|:| Push Net |:| Poke Net

4096
o0
convl conv2 conv3 convd / / Iw
96x11x11 256X5x5 384x3x3 384X3%3 gr fc2

1024 & @

convs

256%3%3
fco fc7 1
4096 4036

pu_convl —-——— ﬁ
48x3x3 =~ -
N

u fel po_fcl P LA
pu_ & 512 g _/ A}
1024 ﬂ \ | Embedding
1 I similarity
7| ¥ A _Byy
I 1
ou_fc2 4 po_fc2 =

T y 4
T
€=

Fig. 8. Our shared convolutional architecture for four different tasks.

shared

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Fig. 10. The first column corresponds to query image and rest show the retrieval. Note
how the network learns that cups and bowls are similar (row 5).

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Classification/retrieval performance

Table 1. Classification accuracy on ImageNet Household, UW RGBD and Caltech-256

Household UW RGBD Caltech-256

Root network with random init. 0.250 0.468 0.242
Root network trained on robot tasks (ours) 0.354 0.693 0.317
AlexNet trained on ImageNet 0.625 0.820 0.656

Table 2. Image Retrieval with Recall@k metric

Instance level Category level
k=1 k=5 k=10 k=20| k=1 k=5 k=10 k=20
Random Network 0.062 0.219 0.331 0.475 | 0.150 0.466 0.652 0.800
Our Network 0.720 0.831 0.875 0.909 | 0.833 0.918 0.946 0.966
AlexNet 0.686 0.857 0.903 0.941 | 0.854 0.953 0.969 0.982

Pinto et al., “The Curious Robot: Learning Visual Representations via Physical Interactions”, ECCV 2016



Part Ill: Reinforcement Learning

e Basics: actions, states, rewards, MDP

* Different techniques (Q learning, policy
gradients, actor-critic, etc.)

* Example applications



Reinforcement Learning

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity
Action: horizontal force applied on the cart
Reward: 1 at each time step if the pole is upright

—
M —F >

F77 77777777 777777777 7777777777

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Go

A BCDEFGH )] KLMNUOPOQRST

19 19

18 /R 18

17 () 17

16 i 16

15 ‘.qi(}_(/ 15

i: ‘ i: Objective: Win the game!

12 12

- hd ., State: Position of all pieces

9 s Action: Where to put the next piece down
; i > Reward: 1 if win at the end of the game, 0 otherwise
6 & £ ] 6

5 & 5

4 HC ﬁ 4

3 3
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1 1
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Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



How can we mathematically formalize the RL problem?

State s, Reward r,

Action a,
Next state st+1

Environment

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

- Mathematical formulation of the RL problem
- Markov property: Current state completely characterises the state of the

world

Defined by: (S, A, R, P,~)

. set of possible states

. set of possible actions

. distribution of reward given (state, action) pair

. transition probability i.e. distribution over next state given (state, action) pair
. discount factor

LEFAE 0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Markov Decision Process

- At time step t=0, environment samples initial state s, ~ p(s,)
- Then, for t=0 until done:

- Agent selects action a,

- Environment samples reward r,~ R(. | s,, &)

- Environment samples next state s,,, ~ P(. | s, a,)

- Agent receives reward r,and next state s, ,

- Anpolicy u is a function from S to A that specifies what action to take in
each state

t
- Objective: find policy u* that maximizes cumulative discounted reward: Z"f Tt
t=>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

actions = { states
1. right — *
2. left <— Set a negative “reward”
3. u I o for each transition
- (e.9.r=-1)
4. down 1
}

Objective: reach one of terminal states (greyed out) in
least number of actions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A simple MDP: Grid World

* 1]

SEGERSE IEE

SRR D

Random Policy Optimal Policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*™
We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



The optimal policy u*™

We want to find optimal policy u* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7* = argmaxE
T

Z’Yt?‘tlﬂ'] W|th 8p NP(S[}),ﬂt i W('|St)53t—|—l Np('|3t,,[1t)

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s, a,, Iy, Sy, a5, I, .-

How good is a state?
The value function at state s, is the expected cumulative reward from following the policy

from state s:

VT(s) = Zf}f Ti|So = 8, T

>0

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from

taking action a in state s and then following the policy:

Q" (s,a) =E Z'ytms[} =8,0y)=a,T

t>0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Bellman equation

The optimal Q-value function Q*
is the maximum expected cumulative reward achievable from a given (state, action) pair:

Q*(s,a) = maxE | 3" 'rilso = 5,00 = a,m
>0

Q* satisfies the following Bellman equation:

Q*(s,a) =Eg g ['r‘ + ymax Q*(s',a’)|s, a,]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+~Q* (s, a’)

The optimal policy u* corresponds to taking the best action in any state as specified by Q*

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Solving for the optimal policy:
Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Qe a0 Q" (3,0)

function parameters (weights)

If the function approximator is a deep neural network => deep g-learning!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Q(s,a;0):
neural network
with weights §

A single feedforward pass
to compute Q-values for all
actions from the current
state => efficient!

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture

Last FC layer has 4-d

FC-256

R

output (if 4 actions),
corresponding to
Q(s, a,), Q(s, a,),
Q(s, a;), Q(s,a,)

Number of actions between 4-18
depending on Atari game

Current state s,: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N - Initialize replay memory, Q-network
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights

for episode = 1, M do - Play M episodes (full games)
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a; )

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do

Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;) *
fort =1,T do

With probability € select a random action a;,

otherwise select a; = max, Q*(¢(s¢),a; )

Execute action a; in emulator and observe reward r; and image z;

Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (@, ay, 7y, ¢re1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Initialize state
(starting game
screen pixels) at the
beginning of each
episode

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
for iv?thl’ Tl‘)iobili ; . _ - For each timestep t
ith probability € select a random action a;
otherwise select a; = max, Q*(¢(s¢),a; ) of the game
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

S _..) Ty for terminal ¢,
et y] — p /. .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory D to capacity NV

Initialize action-value function () with random weights

for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do

With probability € select a random action a;, <
otherwise select a; = max, Q*(¢(s¢),a; )

Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)

Store transition (¢, @y, 7y, ¢¢+1) in D

Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D

Skl T3 for terminal ¢,
g r; +ymaxy Q(¢j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 0))2 according to equation 3
end for
end for

With small probability,
select a random
action (explore),
otherwise select
greedy action from
current policy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;

Set 8,1 = 84, a4, Ty and preprocess @y.1 = P(S141) - Take the action (a,),
Store transition (@, ay, 7y, ¢re1) in D and observe the
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D reward r,and next
Sety, = Tj , for terminal (.bj+1 state s, ,
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,
Perform a gradient descent step on (y; — Q(¢;, a;; 6) )? according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set 841 = 84, a4, Ty41 and preprocess @1 = (841 e
Store transition (@, az, 7¢, G141 ) in D ( ) < Store transition in
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D replay memory
S . { Tj for terminal ¢,
ety; = . : . ’. : .
T + ymaxy Q(@j+1,a’;0) for non-terminal ¢;.,

Perform a gradient descent step on (y; — Q(¢;, a;; 6) )2 according to equation 3
end for
end for

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Mnih et al. NIPS Workshop 2013; Nature 2015]

Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z;} and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;,
otherwise select a; = max, Q*(¢(s¢),a; )
Execute action a; in emulator and observe reward r; and image z;
Set s;.1 = 84, a4, T441 and preprocess @1 = P(S¢41)
Store transition (@, ay, 7y, ¢re1) in D _
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) fromD <« EXperience Replay:

Setq: — { T for terminal ¢, ; Sample a random
Yi r; + ymax, Q(¢j+1,a’;0)  for non-terminal ¢, , minibatch of transitions
Perform a gradient descent step on (y; — Q(¢;, a;; 9))2 according to equation 3 from replay memory
end for and perform a gradient
end for descent step

https://arxiv.org/pdf/1312.5602.pdf

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung


https://arxiv.org/pdf/1312.5602.pdf

Policy Gradients

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard
to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand

Can we learn a policy directly, e.g. finding the best policy from a collection of
policies?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

Formally, let's define a class of parameterized policies: IT = {7y,0 € R™}

For each policy, define its value:

J(@) =E Z Yire|me

t>0

We want to find the optimal policy 6* = arg max J(6)

How can we do this?
Gradient ascent on policy parameters!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



REINFORCE Algorithm (Williams 1992)

Gradient estimator: ~ VyJ(0) ~ ZT‘(T)VQ log mo(a|st)

t>0
Interpretation:
- If r(7) is high, push up the probabilities of the actions seen

- If r(7) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Policy Gradients

UP DOWN DOWN DOWN
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Andrej Karpathy



REINFORCE Algorithm (Williams 1992)

Gradient estimator: ~ VyJ(0) ~ Z r(7)Ve log mg(at|st)

t>0
Interpretation:
- If r(7) is high, push up the probabilities of the actions seen

- If r(7) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment
Is really hard. Can we help the estimator?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Variance Reduction

Gradient estimator: Vg J(8) & ZT‘(T)VQ log mo(a|st)

t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Ved(0) = Z (Z “rtr) Vo log me(as|st)

>0 \t/'>t

Second idea: Use discount factor y to ignore delayed effects

Vo J (6 Z (Z S ) Vo log me(as|st)

t>0 \t'>t

Fei-Fei Li, Ranjay Krishna, Danfei Xu



Variance Reduction: Baseline

Problem: The raw value of a trajectory isn’t necessarily meaningful. For
example, if rewards are all positive, you keep pushing up probabilities of
actions.

What is important then? Whether a reward is better or worse than what you
expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

VoJ (0 Z (Z fyt e, — b(s¢) ) Vo log mg(a|st)

t>0 \t'>t

Fei-Fei Li, Ranjay Krishna, Danfei Xu



How to choose the baseline?

Want to push up the probability of an action from a state, if this action was
better than the expected value of what we should get from that state.

Intuitively, we are happy with an action a. in a state s,if Q" (s¢;a¢) — V7™ (sy)
Is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator:

VoJ(0) ~ Z(Q“f" (s¢,at) — V7™ (s¢)) Vg logme(at|st)

t>0

Fei-Fei Li, Ranjay Krishna, Danfei Xu



Policy Gradients tl;dr

* Objective: YiAilog p(yilxi)
* X, = state
* y. = sampled action

* A = “advantage” e.g. +1/-1 for win/lose in
simplest version, or discounted, or
improvement over “baseline”

Adapted from Andrej Karpathy



Policy Gradients vs Q-Learning

Policy gradients suffers from high variance and
instability; might want to make gradients smaller (e.g.
relative to a baseline)

Policy gradients can handle continuous action spaces
(Gaussian policy)

Estimating exact value of state-action pairs vs choosing
what actions to take (value not important)

Step-by-step (did | correctly estimate the reward at this
time) vs delayed feedback (run policy and wait until
game terminates)



Actor-Critic Algorithm

We can combine Policy Gradients and Q-learning by training both an
actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor
how good its action was and how it should adjust

- Also alleviates the task of the critic as it only has to learn the values
of (state, action) pairs generated by the policy

- Can also incorporate Q-learning tricks e.g. experience replay
- Define by the advantage function how much an action was better

than expected A (s,a) = Q™ (s,a) — V™ (s)

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



RL for navigation

target-driven visual navigation

\J update
observation

— | act < target 1

i
y
o

Fig. 1. The goal of our deep reinforcement learning model is to navigate
towards a visual target with a minimum number of steps. Our model takes
the current observation and the image of the target as input and generates
an action in the 3D environment as the output. Our model learns to navigate
to different targets in a scene without re-training.

Zhu et al., “Target-driven Visual Navigation in Indoor Scenes using Deep Reinforcement Learning”, ICRA 2017



RL for navigation

Figure 1: Our goal is to use scene priors to improve navigation in unseen scenes and towards novel
objects. (a) There is no mug in the field of view of the agent, but the likely location for finding a
mug is the cabinet near the coffee machine. (b) The agent has not seen a mango before, but it infers
that the most likely location for finding a mango is the fridge since similar objects such as apple

appear there as well. The most likely locations are shown with the orange box.

St

p e

History frames l

Actor-Critic Model
Environment
HESNEESUNE—— 1 -~~~ -~~-~-—-=--~ -
) L
'
1
1
Value : at
1
“Television” 1
___________ | Action
% M ' Sampler
:Remote : FC (512) Policy :
1 ' !
g ! Gaph [ B B ’
) i Convolutional
| % - Network
1
e - FC (512)
l\ Television J Joint

__________ Embedding

Figure 2: Overview of the architecture. Our model to incorporate semantic knowledge into se-
mantic navigation. Specifically, we learn a policy network that decides an action based on the visual
features of the current state, the semantic target category feature and the features extracted from the
knowledge graph. We extract features from the parts of the knowledge graph that are activated.

Yang et al., “Visual Semantic Navigation using Scene Priors”, ICLR 2019



RL for question-answering

)&

) ‘»"»& Q: What color is the car?

{
)

il
"\|||IUI

Figure 1: Embodied Question Answering — EmbodiedQA— tasks
agents with navigating rich 3D environments in order to answer
questions. These agents must jointly learn language understand-
ing, visual reasoning, and goal-driven navigation to succeed.

Das et al., “Embodied Question Answering”, CVPR 2018



RL for question-answering

CINN CNN CNN “
0 1 2 0
hess ¥ s e i ., e
gy q At 2 Ay 43
r’ PLNR L & ¥ ¥ v ¥ * ¥ r. PLNR v v - ¥ r’ PLNR
Q CTRL CTRL CTRL CTRL Q CTRL CTRL Q
0 1 1 1 0 1 0
At 41 RETURN Qg 42 0t +3 [ a +2 RETURN ;43 @ 43 RETURN ap 1q
TURN RIGHT FORWARD FORWARD FORWARD FORWARD TURN LEFT TURN LEFT STOF

Figure 4: Our PACMAN navigator decomposes navigation into a planner and a controller. The planner selects actions and the controller
executes these actions a variable number of times. This enables the planner to operate on shorter timescales, strengthening gradient flows.

Das et al., “Embodied Question Answering”, CVPR 2018



RL for object detection

Sequence of attended regions to localize the object

Figure 1. A sequence of actions taken by the proposed algorithm
to localize a cow. The algorithm attends regions and decides how
to transform the bounding box to progressively localize the object.

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015



RL for object detection

Horizontal moves Vertical moves Scale changes Aspect ratio changes
Right Left Down Bigger Smaller Fatter Taller Trigger

Figure 2. Illustration of the actions in the proposed MDP, giving 4
degrees of freedom to the agent for transforming boxes.

Ra(s,s") = sign (IoU (b, g) — IoU (b, g)) R,(s,5) =

—n  otherwise

action
hfstoryl;l
Size: 224 pixels
1024 102 9
units unit action
5 conv 4096
layers units

Layer 6 Layer 1 Layer2 Output

Input region Pre-trained CNN Deep QNetwork

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015

+n it loU(b,g) > T



Part IV: Generation

Motivation and taxonomy of methods
Variational Autoencoders (VAESs)

Generative Adversarial Networks (GANSs)
Applications and variants of GANs

Dealing with sparse data, progressive training



Generative Models

A4

Training data ~ p,,.,(X) Generated samples ~ p,. 4.(X)

Want to learn p,,4¢(X) similar to pg.(X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p_4.,(X)
- Implicit density estimation: learn model that can sample from p . .,(X) w/o explicitly
defining it

Serena Young



Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

W

- Generative models can be used to enhance training datasets with
diverse synthetic data
-  Generative models of time-series data can be used for simulation

Adapted from Serena Young



Taxonomy of Generative Models

Direct
/ GAN
Generative models /
Explicit density Implicit density
Tractable density Approximate density MarkoV Chain
Fully Visible Belief Nets 7 \ SN
- NADE —& _
- MADE Variational Markov Chain
- P'XEIRNN/CNN Variational Autoencoder Boltzmann Machine
Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Serena Young



PixelRNN and PixelCNN



Fully visible belief network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

T
p(z) = Hp(:z:dml, ooy Ti—1)  Will need to define
i=1

ordering of “previous
T T pixels”
Likelihood of Probability of i'th pixel value
Image X given all previous pixels

Then maximize likelihood of training data  Complex distribution over pixel
values => Express using a neural
network!

Serena Young



PixelRNN

[van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!

Serena Young

© 0 0 O

© 0 0 0 O



PixelCNN

[van der Oord et al. 2016]
Softmax loss at each pixel

Still generate image pixels starting from corner i .i

0 255
Dependency on previous pixels now modeled T

using a CNN over context region /
Training: maximize likelihood of training images / / /

T
p(z) = HP($¢|$1, ey Ti—1)
i=1

Figure copyright van der Oord et al., 2016.

Training is faster than PixelRNN (can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially => still slow

Serena Young



Variational Autoencoders (VAEs)



Some background: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)

Later: Deep, fully-connected

Q: Why dimensionality Later: ReLU CNN

reduction?

A: Want features to

_’;' | = "‘
capture meaningful Features & hﬁh
factors of variation in ."‘»Y ' =
data I Encoder ¥ o Aﬁ '
e MRS

Input data T HH <€ .5

Serena Young



Some background: Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Originally: Linear +

Reconstructed % nonlinearity (sigmoid)
input data / Later: Deep, fully-connected
I Decoder Later: ReLU CNN (upconv)
Features [ 2 o R
I Encoder ’v?ﬁlﬁ
el MRS S
Input data T

a7l < ES

Serena Young



Some background: Autoencoders Reconstructed data

e i = T2

Doesn’t use labels!
Train such that features

- - PR L&l
can be used to L2 Loss function: !sgn

reconstruct original data |z — :ﬁ”2 -
T -H: &
Re.conStrUCted If: Encoder: 4-layer conv
input data Decoder: 4-layer upconv
I Decoder 4
Input data
Features 2 .-ﬁ
[ Encoder
Input data T

Serena Young



Some background: Autoencoders

Loss function
(Softmax, etc) bird  plane

/ \ dog deer  truck
Yy

Predicted Label

Train for final task
(sometimes with
small data)

Fine-tune

Encoder can be encoder

Y

I Classifier
used to initialize a Features 2 jointly with

I

supervised model classifier
Encoder

el o R

Input data

Serena Young



Some background: Autoencoders

Reconstructed 2 Features capture factors of
input data variation in training data. Can we
generate new images from an
I Decoder autoencoder?
Features A
I Encoder
Input data T

Adapted from Serena Young



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {x(@}f\;l is generated from underlying unobserved (latent)
representation z

Intuition (remember from autoencoders!):
X Is an image, z is latent factors used to

Sample from _ _ _
T generate X: attributes, orientation, etc.

conditional
po- (x| ()

Sample from
prior

po-(2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Adapted from Serena Young



Variational Autoencoders

Sample from

conditional T

po-(z | 2¥))
Decoder

network
Sample from

prior
po~(2)

Z

Adapted from Serena Young

We want to estimate the true parameters g*
of this generative model.

How should we represent this model?

Choose prior p(z) to be simple, e.g.
Gaussian.

Conditional p(x|z) is complex (generates
image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from

conditional T

po-(z | 29)
Decoder

network
Sample from

prior
po~(2)

Z

Adapted from Serena Young

We want to estimate the true parameters g*
of this generative model.

How to train the model?

Learn model parameters to maximize
likelihood of training data

fpg pe $|Z)
\

Now with latent z

Q: What is the problem with this?

Intractable!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Intractability

Data likelihood: pe(x) = [ pe(2)pe(z|2)dz

Aple Gaussian prior\

Intractable to compute Decoder neural network
p(x|z) for every z!

Posterior density also intractable: Pg(2|z) = po(z|2)pe(z)/po(T)

f

Intractable data likelihood

* Solution: In addition to decoder network modeling p,(x|z), define additional
encoder network q,(z|x) that approximates p(z|x)

* This allows us to derive a lower bound on the data likelihood that is tractable, which
we can optimize — overviewed briefly on next few slides (feel free to skip when reviewing)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Adapted from Serena Young



Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

log pg(¢'”)) = E. g, (zla@) {logpg(:v(i))} (p(z'?) Does not depend on z)

i (¢)
/ =E. |log po(z™ | Z)(Z:)H(Z)] (Bayes’ Rule)
We want to po(z | z)
maximize the [ (%) ()
dat =E. |log po(z™™ | z)pg(z) 42| 2 . ) (Multiply by constant)
ata po(z | ™) gg(z | 2()
likelihood i o (i)) ] (¢)>
=E. |logpg(z | z)} —E, [log M] +E, llog M} (Logarithms)
: po(2) po(z | @)
= E. [logpo(e” | 2)| = Dics(as(= | 27 | po(2)) + Dici(ao = | &) || po(= | 2))
+ + |
Decoder network gives pg(x|z), can This KL term (between Po(z[X) intractable (saw
compute estimate of this term through Gaussians for encoderandz  €arlier), can’t compute this KL
sampling. (Sampling differentiable prior) has nice closed-form tgrm :( But we know KL
through reparam. trick, see paper.) solution! divergence always >=0.

Serena Young



Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
log pg(¢'¥)) = E. g (zla®) {logpg(:v(i))} (pe(z'?) Does not depend on z)

A

We want to
maximize the
data
likelihood

vt

o 20 | 2pal2)

(@) -
po(z | z®)

o 20 | 2)p0(2) gz | 2)

og : :

i po(z | 2®)  gy(z ] 2®)

] (Bayes’ Rule)

] (Multiply by constant)

po(2) po(z | z®

r : (4) (4)
log pp (=" | 2)} —E, [log M] + E, [log 4 | T )} (Logarithms)
(4)

)Hpe(ZIw )))

10gpo(2) | 2)| = Drcr(ao(z | ) || po(2))|+ Dicr(gs(= | @

£(z9.0,¢) >0

Serena Young

Tractable lower bound which we can take
gradient of and optimize! (py(x|z) differentiable,
KL term differentiable)



Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:
log po (z'?) = E. g, (zla@) {logpg(:v(i))} (po(x?) Does not depend on z)

[ po(z™ | 2)po(2) :
=E, |log 2oz [20)) (Bayes” Rule) Make approximate
Reconstruct posterior distribution

. i (2) (2)
the input data— g, |log Po(z | 2)po(2) 4s(2 | 2™ )] (M y by constant) close to prior
) po(z | z®)  gy(z | z®)

_ | (4)
=E. |logpolz® | z)] —E, [log ] +E, [log M} (Logarithms)

po(z | z()
= B. [logpp( | 2)] = Dreslas(z | #) [1po(2) + Drcr o= | 2 I po(z | o))
) LD, 0,¢) >0
0%, p* —argmaxZ[, )6, $)

log pg(2V) > L(2, 6, ¢)
Variational lower bound (“ELBQO”) Training: MaX|m|ze Iower bound

Serena Young



Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Mean and covariance of z | X Mean and covariance of X | z
\\. \\.
Mz Zz|m K|z 23:|z
Encoder network Decoder network
9 (2|) po(z|2)
(parameters ¢) (parameters 0)
X 2

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Adapted from Serena Young



Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic

Sample zfrom z|x ~ N (42, 2 |z) Sample x|z from x|z ~ N (pz|,, Xz|2)
Hz|x z|:c Hzx|z a:|z
Encoder network Decoder network
94(2|z) po(z|2)
(parameters ¢) (parameters 0)

Encoder and decoder networks also called
“recognition”/“inference” and “generation” networks  Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Serena Young



Variational Autoencoders

Pt

T
Maximize
likelihnood of  Sample x|z from |z ~ N (g2, Xalz)

likelihoogHtower bound o
original input
being / \

~maximizing the

E, [logpg(a:(i) | z)] — Dkr1(q5(z | #9) || pe(2)) reconstructed Hz|z Eﬂ:|z

E(m(i‘f, 6, 9) Decoder network \/
po(x|z)

V4
Sample z from z|:1: ~ N(,uz|;c, 2.e:|ac)

T

Make approximate
posterior distribution

close to prior Hz|x Ez|a:
. : Encoder network
For every minibatch of input \/
data: compute this forward q¢(z|.’£)
pass, and then backprop! Input Data i

Serena Young



Data

ing

. Generatli

VAEs

Sample z from prior

Data manifold for 2-d z

Use decoder network

QDA NANNANANANNN N SNNNNS
QAN ELLLLLWN NN~
QAWK LLLLVVYYY N~
QAVVDINInnlygto o WYOVVY W -~~~
QAVOVHIHINNKR W BVIVIYY W - ——
QAOAOOOHINININMNHEBPIBDIYOIVIY W - - —
QAQOQOMIMNN NN WMODIYOIY D @ = ——
QOODOMMNMMMNNME®OD DD — —
QODOMMM MM MNP DD e e e —
QOMME MMM N D000 W W e on o e = —
QAN 202 0P 000000 00 n o~ o~ 0~ 1~ o~
R N N N N N ol ol U
it~
A ddogororroorrraaaaon~N
Sdadadaddocrrrrr T TITTIIINN
SAddddgorrrrrrdIITIRIXINN
SAdTTTrTrrrrrrrrrI™22RNN
Sy MR RNNN

< >

Zl
g
>

E:Izlz

N

Hzx|z

Sample x|z from :E|z ~ N(Ju':c|z7 Zm|z)

Decoder network
po(x|z)

Sample z from z ~ A(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,

Adapted from Serena Young



VAEs: Generating Data

Diagonal prior on z
=> independent :

: Degree of smile
latent variables

" -
Different \ |
ﬁﬁ

dimensions of z Vary z,
encode

interpretable factors

of variation v

\

Also good feature representation that
can be computed using g,(z[x)!

- Head pose
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary z, —

Serena Young



VAEs: Generating Data

32x32 CIFAR-10

Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Serena Young



Generating with little data for ads

* Faces are persuasive and carry meaning/sentiment

Domestic Human

Chocolate Violence Rights

Safet Self Esteem

s

Y

* We learn to generate faces appropriate for each ad
category

* Because our data is so diverse yet limited in count,
standard approaches that directly model pixel
distributions don’t work well

Thomas and Kovashka, BMVC 2018



Generating with little data for ads

* Instead we model the distribution over attributes for
each category (e.g. domestic violence ads contain
“black eye”, beauty contains “red lips”)

* Generate an image with the attributes of an ad class
* Model attributes w/ help from external large dataset

Encoder Sampling Decoder

100 (p) 128x128x3
128x128x3  32x32x16  8x8x64 512

étﬁ*ﬁ*ﬁ»ﬁ»ﬁ»mﬁ@»kl *F%ix:;ﬁiﬁfﬁxfﬁ*g

1024
64x64x8  16x16x32  4x4x128 100 (o) 150 4x4x128 16x16x32 64x64x8

Indino

Externally Enforced Semantics
i ( Latent (100-D) Facial Attributes (40-D) Facial Expressions (10-D)

150 Latent captures non-
semantic appearance
properties (colors, etc.)

Facial attributes: <Attractive, Baggy eyes, Big
lips, Bushy eyebrows, Eyeglasses, Gray hair,
Makeup, Male, Pale skin, Rosy cheeks, etc.>

Facial expressions: <Anger, Contempt,
Disgust, Fear, Happy, Neutral, Sad, Surprise>
+Valence and Arousal scores

Embedding

Thomas and Kovashka, BMVC 2018



Generating with Iittle data for ads

Original
Transform Face
Reconstruction Alcohol Beauty Clothing D.V. Safety Soda k

“

4

StarGAN (T)StarGAN (C) Latent Conditional Ours

&

Thomas and Kovashka, BMVC 2018



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a lower bound

Pros:
- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANS)

Adapted from Serena Young



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

po(z) = | [ po(zilz1, .., zi-1)
=1

VAESs define intractable density function with latent z:

po(o) = [ po(2)pa(ale)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution

through 2-player game

Serena Young



Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?

Serena Young



Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from
represent this complex training distribution
transformation?
A: A neural network! Generator
Network
Input: Random noise z

Serena Young



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Serena Young



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

T

Discriminator Network

Fake Images Real Images
(from generator) , 5 ‘ : (from training set)
A

Generator Network

f

Random noise Z

Serena Young



Adversarial Networks Framework

D tries to D tries to
output 1 output O
Differentiable Differentiable
function D function D
I x sampled X sampled b.
from data from model ;
Differentiable
function G

Input noise > X~ G(Z)

Generator

Discriminator

Real vs. Fake

/\/\

)

lan Goodfellow



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

min max

1in ma [Empdm log Do, (%) + Esp(z) log(1 — Dy, (G, (2)))

Serena Young



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

minfmax [Emwpdam log Dy, (37) + Ezmp(z) log(l — Dy, (G9g (z)))]
Og | Od L ; '

Discriminator output Discriminator output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(2)) is close to O (fake)

- Generator (Gg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Serena Young



Training GANs: Two-player game

Adversarial Nets”, NIPS 2014
Minimax objective function:

min max [Emm log Do, () + Ep(x log(1 — Dg,(Go, (z)))]

0, 604

Alternate between:
1. Gradient ascent on discriminator

Héa‘x [EmNPdata log Dy, (37) + Ezwp(z) log(l — Dg, (Gé}g (z)))]

2. Gradient descent on generator

minE, <y log(1 — Day(Go, 2)

Serena Young



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Emm log Do, () + Ep(x log(1 — Dg,(Go, (z)))]

0, 604

Alternate between:

1. Gradient ascent on discriminator

max [Emdiam log Dy, () + E,.p») log(1 — Dg,(Go, (z)))} Gradient signal
04 dominated by region

where sample is

2. Gradient descent on generator already good

min B, p(z) log(1 — Do, (Go, (2)))

+a
l—

In practice, optimizing this generator objective 2|
does not work well!

When sample is likely °

fake, wanttolearn -1t

from it to improve Pt

generator. But .

gradient in this region

iS relatively ﬂatl _40.0 o.lz 0.I4 O.IG 018 1.0
Adapted from Serena Young D(G(=))




Training GANs: Two-player game

Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Emm log Do, () + Ep(x log(1 — Dg,(Go, (z)))]

0, 604

Alternate between:
1. Gradient ascent on discriminator

Héa’x [E-TNPdam log Dy, (37) + IE‘:zwp(z) ]Og(l - D9d(G99 (z)))}
d
2. Instead: Gradient ascent on generator, different

objective High grad/ient signal Low gradient signal
4 U T T

T
/ — log(1\D(G(2)) ||
—  —logD(&(2))

mgas,x Ezwp(z) log( Dy, (Gﬁig (2)))

Instead of minimizing likelihood of discriminator
being correct, now maximize likelihood of
discriminator being wrong.

Same objective of fooling discriminator, but now
higher gradient signal for bad samples => works
much better! Standard in practice.

Adapted from Serena Young D(G(2))



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(z).

e Sample minibatch of m examples {z(),... , £(™} from data generating distribution

pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

1 & i i
Vi 2 [ 10g Dy, (2) + log(1 — D, (Go, (z)))]
1=

end for
e Sample minibatch of m noise samples {z(%), ..., z(™)} from noise prior p,(z).

e Update the generator by ascending its stochastic gradient (improved objective):

Vo, - 3" 10g(Do, (G, ()

i=1

end for

Serena Young



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

T

Discriminator Network

/
Fake Images Real Images
(from generator) , 5 ‘ : (from training set)
A

Generator Network o
A After training, use generator network to

generate new images

Random noise Z

Serena Young



Alternative loss functions

Name Paper Link  Value Function

LW = Eflog(D(x))] + E[log(1 — D(G(2)))]

GAN Al N _ Ellog(D(6(2))))]

[E564N — E[(D(x) — 1)?] + E[D(G(2) )?]

LSGAN Arxiv LESEAN — B[(D(G(2)) - 1))
LWEAN — E[D(x)] — E[D(G(2))]

WGAN Anxiv LYEAY — E[D(G(2))]
Wy « clip_by_value(Wp, —0.01,0.01)

LWGANGP — [WGAN 4 JAE[(IVD (ax — (1 — aG(2)))| — 1)?]

WGAN_GP Arxiv [WEANGP _ [ WGAN
& = MG
. LBRAGAN — [GAN 4 AE[(|VD(E(I — (1 —axy))| - 1)2]
DRAGAN Andv LDRAGAN _ [GAN
G = Lg
LEFN = E[log(D(x, c))] + E[log(1 — D(G (), ¢))]
CGAN Arxiv -G
o LESAN = E[log(D(G(2),0))]
L:].EMMN = 187N _ 3L, (c,¢")
infoGAN Arxiv i "N X ,
LgTOoAN = LGAN — AL (c, ')
LACGAN = 1AV + E[P(class = c|x)] + E[P(class = c|G(z2))]
ACGAN Arxiv
LACOAN = [GAN 4+ E[P(class = ¢|G(2))]
LEPSAN = D, - (x) + max(0,m — D, (G (2) ))
EBGAN Arxiv

LEPCAN = D,y (G(2) ) + A+ PT

LEFOAN = Dy (x) — kD (G(2) )
BEGAN Arxiv LEFN = D, (6(2))
kpyr = ke + ArDpp(x) — Dyp(G(2) )

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aalb490



https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

GAN training is challenging

Vanishing gradient — when discriminator is very good

Mode collapse — too little diversity in the samples
generated

Lack of convergence because hard to reach Nash
equilibrium

Loss metric doesn’t always correspond to image
quality; Frechet Inception Distance (FID) is a decent
choice



Tips and tricks

e Use batchnorm, RelLU

* Regularize norm of gradients

* Use one of the new loss functions

* Add noise to inputs or labels

* Append image similarity to avoid mode collapse
e Use labels, extra info when available (CGAN)

https://github.com/soumith/talks/blob/master/2017-ICCV_Venice/How_To_Train_a_GAN.pdf
https://towardsdatascience.com/gan-ways-to-improve-gan-performance-acf37f9f59b



Conditional GANs

D
Discriminator
X y X
(real image & label) T
Generator
z y

(latent space & label)

https://medium.com/@jonathan_hui/gan-cgan-infogan-using-labels-to-improve-gan-8ba4de5f9c3d



piniy
G

q

LIL

Generator

GANS

G(x)

piniy
D

—> real or fake?

L

Discriminator

(:: generate fake samples that can fool D
D: classify fake samples vs. real images

Jun-Yan Zhu

[Goodfellow et al. 2014]



Conditional GANSs

G(x)

Adapted from Jun-Yan Zhu

| |
—
b
|
b

pinin

—> real or fake pair ?

LI



Edges - Images

Input Output

Edges from [Xie & Tu, 2015]

Pix2pix / CycleGAN



Sketches - Images

Output

Trained on Edges - Images
Data from [Eitz, Hays, Alexa, 2012]

Pix2pix / CycleGAN



#edges2cats  [Christopher Hesse]

INPUT

OUTPUT

piX2pix

@gods_tail

OUTPUT

- piX2pix
00T Ham)

vy Tasi @ivymyt

Pix2pix / CycleGAN

edges2cats
TOOL INPUT OUTPUT
Ilnoi
eraserO
X pix2pix
-
LT

@matthematician

Vitaly Vidmirov @vvid

https://affinelayer.com/pixsrv/




Jun-Yan Zhu

Pair
£Lj
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Y

L

Unpaired
X




Cycle Consistency

~— 7
l F

Dx

Discriminator Dy: Lo n (G (X),y)
\ e | Real zebras vs. generated zebras

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017



http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Cycle Consistency

Discriminator Dy: Lo n (G (X),y)
\ « Real zebras vs. generated zebras
Discriminator Dy: Loy (F(y), x)
Real horses vs. generated horses

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017



http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Cycle Consistency

Forward cycle loss: ||F(G(x)) — x||

reconstruction | ..«
error - S\.f\

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017



http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Cycle Consistency

Forward cycle loss: ||F(G(X)) — X” BangH cycle loss

reconstruction | ..«
error - S\k

Helps cope with mode collapse

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017



http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Training Details: Objective

»CGAN(G7 DY7 Xa Y) :Eywpdam(y) [log DY (y)]
+]Ea:~pdaw(x) [log(l _ DY (G(:C»]?

Leye(GLF) =Eyop (@) [I1F(G () — 1]
"‘Eywpdm(y)[”G(F(y)) — y”l]

L(G, F, Dx, Dy) =Loan(G, Dy, X,Y)
+ EGAN(FaDX:YaX)
+ ALy (G F),

* = i F. Dx,Dy).
G*, argrgﬂlgDrg%Yﬁ(G’ ,Dx,Dy)

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017



http://openaccess.thecvf.com/content_iccv_2017/html/Zhu_Unpaired_Image-To-Image_Translation_ICCV_2017_paper.html

Cezanne

Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Pix2pix / CycleGAN



Celebrities Who Never Existed

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018



Creative Adversarial Networks

lan Goodfellow



StarGAN

Input Blond hair Gender
7 =~ —-sw. | =

= -

Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018



SInGAN

Single training image Random samples from a single image
e e R o S —n S o, R — e — O ]

=

Harmonization
v " e L d:

P _-_}'c..»’,"

|

s B
X 'vw?'_\“ -

Shaham et al., “SinGAN: Learning a Generative Model from a Single Natural Image”, ICCV 2019



Stagewise generation

Background code
6&

if VA
Parent code

6‘
0@ VA

&

Child code

B
N

Singh et al., “FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery”, CVPR 2019



https://arxiv.org/abs/1811.11155

Stagewise generation

Graph Layout prediction

Convolution
Downsample

man <= right of <= man

v \ .
throwing boy <= behind — .‘ \
frisbee on == patio
|| Noise Conv Upsample Conv
Input: Scene graph Object .
Cascaded Refinement Network Output: Image
features layout i

Johnson et al., “Image Generation from Scene Graphs”, CVPR 2018



https://arxiv.org/abs/1804.01622

Progressive generation

Latent —>»]

Generated image

4x4

64 x 64
Y

64 x64

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

4x4

—> Real or fake

184



Progressive generation

. &

Generated image

Latent —>»]

4x4

64 x 64
Y

64 x64

\VAVAV

4x4

—> Real or fake

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

185



Progressive generation

< <

N N

o o

< — —

Latent —>» x X . X
< S, pnerated ima|

o o

i i

4x4

—> Real or fake

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

< <
N o
o o
< — — <
Latent —>»| x X X x —>» Real or fake
< < < <
o o
o o
— —
There’s waves But

everywhere! where’s

he shor

?

187
Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018



Progressive generation

G _ D
< <
N o
< o o <
< (e} — —i (Vo]
Latent —>» x X > B x
< <t < N 3
(o] o o (Vo]
o o
— —
— [T

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

4x4

—> Real or fake

188



Progressive generation

Latent >

4x4

4x4

>» Real or fake

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

Latent >

4x4

4x4

>» Real or fake

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

Latent —>»]

4x4
8x 8
Y

8x 8

4x4

—> Real or fake

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

< <

N o

o o

< — =

Latent —>»| x X X
< < <

o o

o o

— —

4x4

—> Real or fake

-
A\

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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4x4

4x4

Progressive generation

2X

8x8

8x8

} Replicated block

2X

-— Nearest-neighbor upsampling

16x16

16x16

—

3x3 convolution

2X

32x32

32%x32

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

4x4
4x4

1x1 convolution

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

4x4
4x4

2X
8x8
8x8

Linear crossfade

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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Progressive generation

4x4
4x4

2X
8x8
8x8

8x8

8x8

0.5x

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018

4x4

4x4
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Part V: Ethics (Politics, Privacy, Bias)

* Deep fakes

* Privacy

e Security and adversarial perturbations
* Bias

* Al for the people



“Deepfakes”

https://www.technologyreview.com/s/611726/the-defense-department-has-produced-the-first-tools-for-catching-deepfakes/
https://www.niemanlab.org/2018/11/how-the-wall-street-journal-is-preparing-its-journalists-to-detect-deepfakes/



You can be anyone you want...

source

destination

Coarse styles copied

>

Karras et al., “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019, https://arxiv.org/pdf/1812.04948.pdf



Detection methods

FaceForensics++: Learning to Detect Manipulated Facial Images
Andreas Rossler! Davide Cozzolino? Luisa Verdoliva? Christian Riess?
Justus Thies! ~ Matthias NieBner!

!Technical University of Munich  2University Federico Il of Naples  *University of Erlangen-Nuremberg

Srce Target

Replacement

Source  Target Output

Collection . Manipﬁliﬁbn_

‘  Detection

Figure 1: FaceForensics++ is a dataset of facial forgeries that enables researchers to train deep-learning-based approaches
in a supervised fashion. The dataset contains manipulations created with four state-of-the-art methods, namely, Face2Face,
FaceSwap, DeepFakes, and NeuralTextures.

Rossler et al.. “FaceForensics++: Learning to Detect Manipulated Facial Images”, ICCV 2019



Detection methods

Intensity
[\] <t
T 1

100 150 200
Time (frames)
Figure 1. Shown above are five equally spaced frames from a 250-frame clip annotated with the results of OpenFace tracking. Shown
below is the intensity of one action unit AUO1 (eye brow lift) measured over this video clip.

0 50

“We describe a forensic technique that models facial expressions and

movements that typify an individual’s speaking pattern. Although not
visually apparent, these correlations are often violated by the nature of
how deep-fake videos are created and can, therefore, be used for

authentication.

Agarwal et al., “Protecting World Leaders Against Deep Fakes”, CVPR Workshops, 2019



Incredible Pace of Synthetic Media Generation

2018 2019 Legend:
- Single modality
May June July Aug Sep Nov Dec May Multi-modality
] 1 1 1 l
T T >

.\I -l- .

Interactive audio

Attribute-guided

Unsupervised Video d lalog\
face generation text generation Fake resumes replacement Fake dating

Matt Turek

Scenes profiles

Fake rental ads Randhciilicn

ENTIRE GUEST SUITE

Luxury Condo 3 Bed + 3 Bath
Port Melbourne Anne

o 8 guests o 3 bedrooms o 4beds o 2 baths

Bathroom (with seating for 2 more people), basin and eclectic French garden
and kitchen. 24/7 carpeted charc. Laundrymemberly : More balcony - Garden
- Metro, Liverpool Street (15 min walk) Walking distance to Wyckofferdon



State of the Art Detection is Statistically Based, Narrow, or Both

Audio: ASVspoof

—

-
.

Hand- Neural Temporal
crafted Networke Neural
Features Networks

Fusion

(Lavrentyeva et al. 2017)

Matt Turek

Text: GLTR
Input text
|
Word Prediction
Probability

weeamme] HEre's a pop quiz for you |.
NY Times: Lo

lity to compara

jetly, based an previcus pEtEpesitions. But belore you pat yourself on the back toa much, you sheukd
ow that this kil was recently demenstrated by anotherEfeature: the hUmBl paparWag: that might ba liing in
ur bactyard night now.

Al:l I've been a gamer for over ten years.

e IE reeaty
1w ik that

High Low
Word Predictability

AI methods choose more predictable
next-words than humans, statistically

(MIT-IBM Watson Al lab, HarvardNLP 2019)

Image/Video: DARPA MediFor

Noise
Fingerprint
Network

'

Manipulation detection
heatmap

(MediFor: USC/ISI, Univ. Naples 2019)



@ Expected Threats

Targeted Personal Attacks Generated Events at Scale Ransomfake concept: Identity
Peele 2017

Attacks as a service (IAaaS$)
Bricman 2019

Al Multimedia AL Multimedia
Algorithms Algorithms
1 O
Al Multimedia c . -orged
. vidence
Algorithms q 9 ' 1
o
G qf On a rain i
y spring
q ¢ day, a vast, violent Identity
1] group gathered in Attacks
] front of the US
- Capitol to protest Examples of possible fakes:
— recen!: cuts in Social » Substance abuse
100 Security. .
Co Text Video & Audio Image Foreign contacts
% - * Compromising events
Believable fake events « Social media postings

* Financial inconsistencies

Highly realistic video * Forging identity

Undermines key individuals and organizations

Matt Turek



GANs for Privacy (Action Detection

Identity: Jessica Identity: 2??
Action: Applying Make-up on Lips Action: Applying Make-up on Lips

Ren et al., “Learning to Anonymize Faces for Privacy Preserving Action Detection”, ECCV 2018



Adversarial Attacks

https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/



https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/

Adversarial Attacks

https://www.theverge.com/2019/4/23/18512472/fool-ai-surveillance-adversarial-example-yolov2-person-detection



https://www.theverge.com/2019/4/23/18512472/fool-ai-surveillance-adversarial-example-yolov2-person-detection

Adversarial Attacks

Tom Goldstein https://www.cs.umd.edu/~tomg/projects/invisible/



https://www.cs.umd.edu/~tomg/projects/invisible/

Adversarial Attacks

NEWS  VIDEO = SOCIAL FOLLOW MIT @ v

Il Massachusetts Institute of Technology

MIT News

o
ON CAMPUS AND AROUND THE WORLD

ObjectNet, a dataset of photos created
by MIT and IBM researchers, shows
objects from odd angles, in multiple
orientations, and against varied
backgrounds to better represent the
complexity of 3D objects. The
researchers hope the dataset will lead to
new computer vision techniques that
perform better in real life.

Photo collage courtesy of the researchers.

This object-recognition dataset stumped the world’s

best computer vision models

Objects are posed in varied positions and shot at odd angles to spur new Al
techniques.

http://news.mit.edu/2019/object-recognition-dataset-stumped-worlds-best-computer-vision-models-1210



http://news.mit.edu/2019/object-recognition-dataset-stumped-worlds-best-computer-vision-models-1210

Bias in the Vision and Language
of

Artlfl C I al Intel I I g ence Seni'\g?geasree;rl\éwcsr::ie;tist

Google Al

Deb Timnit Gebru
Raji

Andrew Me
Zaldivar

‘c
-g
l,‘: ‘

Adrian Brian Hartwig Blaise
Benton Zhang Hovy Lovejoy Beutel Lemoine Ryu Adam Aglieray
Arcas

Margaret Mitchell



What do you see?

Bananas

Stickers

Dole Bananas
Bananas at a store
Bananas on shelves
Bunches of bananas

Bananas with stickers on them
Bunches of bananas with stickers on

them on shelves in a store

...We don’t tend to say
Yellow Bananas

Margaret Mitchell



\‘
What do you see? ' P

Green Bananas

Unripe Bananas

\Y/ aret Mitchell



What do you see?

CERELRERS

Bananas with

Bananas good for

Margaret Mitchell



What do you see?

Yellow Bananas?

Yellow is prototypical
for bananas

Margaret Mitchell



Prototype Theory

One purpose of categorization is to reduce the infinite differences
among stimuli to behaviourally and cognitively usable proportions

There may be some central, prototypical notions of items that arise from stored
May also store exemplars (Wu & Barsalou, 2009)
> e ¢

typical properties for an object category (Rosch, 1975)
r }

ERERER Unripe Bananas,
“Basic Level” Cavendish Bananas

Margaret Mitchell



A man and his son are in a terrible
accident and are rushed to the hospital
In critical care.

The doctor looks at the boy and
exclaims "l can't operate on this boy,
he's my son!"

How could this be?

Margaret Mitchell



A man and his son are in a terrible
accident and are rushed to the hospital
In critical care.

The doctor looks at the boy and
exclaims "l can't operate on this boy,
he's my son!"

How could this be?

/
“Female doctor”

Margaret Mitchell



“Doctor” “Female doctor”

v

/8 )
,/
L4 A

Margaret Mitchell



The majority of test subjects
overlooked the possibility that the
doctor is a she - including men,
women, and self-described feminists.

Margaret Mitchell


https://www.bu.edu/today/2014/bu-research-riddle-reveals-the-depth-of-gender-bias/

Human Reporting Bias

The frequency with which people write
about actions, outcomes, or properties is not a
reflection of real-world frequencies or
the degree to which a property is characteristic

of a class of individuals

Margaret Mitchell




Bias in Language

Extreme she occupations

1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist

10. housekeeper 11. interior designer 12. guidance counselor

Extreme he occupations

1. maestro 2. skipper 3. protege

4. philosopher 5. captain 6. architect

7. financier 8. warrior 9. broadcaster
10. magician 11. figher pilot 12. boss

Figure 1: The most extreme occupations as projected on to the she—he gender direction on g2vNEWS.
Occupations such as businesswoman, where gender is suggested by the orthography, were excluded.

Gender stereotype she-he analogies.

sewing-carpentry  register-nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
gigele-chuckle vocalist-guitarist petite-lanky

Sassy-snappy diva-superstar charming-affable
volleyball-football  cupcakes-pizzas hairdresser-barber

Gender appropriate she-he analogies.
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 2: Analogy examples. Examples of automatically generated analogies for the pair she-he using the
procedure described in text. For example, the first analogy is interpreted as she:sewing :: he:carpentry in the
original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are
to whether or not. it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically
generated from w2vINEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated
gender-appropriate analogies.

Bolukbasi et al., “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings”, NIPS 2016



Bias in Language
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Bias in Vision

Right for the Right Right for the Wrong Right for the Right
Reasons Reasons Reasons

Baseline: Our Model: Baseline: Our Model:
A man sitting at a desk with A woman sitting in front of a A man holding a tennis A man holding a tennis
a laptop computer. laptop computer. racquet on a tennis court. racquet on a tennis court.

Fig. 1. Examples where our proposed model (Equalizer) corrects bias in image cap-
tions. The overlaid heatmap indicates which image regions are most important for pre-
dicting the gender word. On the left, the baseline predicts gender incorrectly, presum-
ably because it looks at the laptop (not the person). On the right, the baseline predicts
the gender correctly but it does not look at the person when predicting gender and is
thus not acceptable. In contrast, our model predicts the correct gender word and cor-
rectly considers the person when predicting gender.

Burns et al., “Women also Snowboard: Overcoming Bias in Captioning Models”, ECCV 2018



Bias In

Reduce Bias Adversarial Gender Loss

Task Specific Loss

. umbrella
‘ cow

dog

® o

Mask Prediction

Figure 2. In our bias mitigation approach, we learn a task-specific
model with an adversarial loss that removes features correspond-
ing to a protected variable from an intermediate representation in
the model — here we illustrate our pipeline to visualize the removal
of features in image space through an auto-encoder network.

Figure 3. Images after adversarial removal of gender when applied
to the image space. The objective was to preserve information
about objects and verbs, e.g. scissors, banana (COCO) or vaulting,
lifting (imSitu) while removing gender correlated features.

Wang et al., “Balanced Datasets Are Not Enough: Estimating and Mitigating Gender Bias in Deep Image Representations”, ICCV 2019



Media are
filtered, ranked, People see

Training data are
collected and Model is trained

aggregated, or output
annotated

generated

Margaret Mitchell



Biases in Data

Margaret Mitchell



Biases in Data
Selection Bias: Selection does not reflect a random sample

Map of Amazon
Mechanical Turk Workers

CREDIT

Margaret Mitchell


http://turktools.net/crowdsourcing/

Biases in Data
Out-group homogeneity bias: Tendency to see

outgroup members as more alike than ingroup members

Margaret Mitchell



Biases in Data —
Biased Data Representation

It's possible that you have an
appropriate amount of data for
every group you can think of but
that some groups are
represented less positively than
others.

Margaret Mitchell



Biases in Data — Biased Labels

Annotations in your
dataset will reflect the
worldviews of your
annotators.

ceremony, ceremony,

wedding, bride, bride, wedding, person, people
man, groom, man, groom,

woman, dress woman, dress

Margaret Mitchell


https://ai.googleblog.com/2018/09/introducing-inclusive-images-competition.html

Predicting Future Criminal Behavior

Margaret Mitchell



Predicting Policing

e Algorithms identify
potential crime
hot-spots

e Based on where
crime is previously
reported, not where it
Is known to have
occurred

e Predicts future

events from past
CREDIT

Margaret Mitchell


https://www.smithsonianmag.com/innovation/artificial-intelligence-is-now-used-predict-crime-is-it-biased-180968337/

Predicting Sentencing

e Prater (who is white) rated low risk after shoplifting, despite two
armed robberies; one attempted armed robbery.

e Borden (who is black) rated high risk after she and a friend took
(but returned before police arrived) a bike and scooter sitting outside.

e Two years later, Borden has not been charged with any new crimes. Prater
serving 8-year prison term for grand theft.

CREDIT

Margaret Mitchell


https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Predicting Criminality

Israeli startup,

“Faception is first-to-technology and first-to-market with proprietary
computer vision and machine learning technology for profiling people
and revealing their personality based only on their facial image.”

Offering specialized engines for recognizing “High 1Q", “White-Collar Offender”
“Pedophile”, and “Terrorist” from a face image.

Main clients are in homeland security and public safety.

Margaret Mitchell


http://www.faception.com/

Predicting Criminality

(1]

" Wu and Zhang, 2016.

arxiv

1,856 closely cropped images of faces;
Includes “wanted suspect” ID pictures
from specific regions.

“[...] angle 6 from nose tip to two
mouth corners is on average 19.6%

smaller for criminals than for
non-criminals ...”

See our longer piece on Medium, §

Margaret Mitchell


https://arxiv.org/abs/1611.04135
https://medium.com/%40blaisea/physiognomys-new-clothes-f2d4b59fdd6a

It's up to usto influence how Al
evolves.

Margaret Mitchell



Positive outcomes for
humans and their

environment. .
Get paper award, 15 minutes of
fame for___thing___
. Get paper published,

. product launched

Find local optimum

given task, data, etc

Today
Short-term Longer-term

Margaret Mitchell



The development of
Al should beguided
by a concern for its
impact on human
society.

Fei-Fei Li

Al should augment
human skills, not
replace them.

Al mustincorporate
more of the
versatility, nuance,
and depth of the
human intellect.



From academic backwater to center of attention in 5 years

- B f IMAGE

What happened?

Classification Error
o

2010 2011 2012 2013 2014 2015 2016 2017

?
cooe

The Deep Learning Revolution

Fei-Fei Li



Hello, hurt!

The limits of chatbot conversation

Fei-Fei Li
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for damage
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Curiosity-based Learning

- Ababy’s learning is exploratory,
curiosity-driven, multi-modal,
active and social.

- Can we model this process and
apply it in machines?

Mrowca, Haber, Fei-Fei & Yamins, CogSci, 2018

Fei-Fei Li



“Thinking slow”
Commonsense knowledge
and reasoning

- Reasoning requires combining
previously acquired knowledge to
address new tasks

- Can a neural network reason more
like @ human?

Fei-Fei Li

He served chicken.

Not like serving a He probably
tennis ball cooked it first!

The trophy wouldn't fit in the
suitcase because it was too big.

The suitcase?

—_ P

Control Control Control Control

Memory Memory Memory Memory

Hudson and Manning, 2018



Data Signal Control Computer

Optimization Structures Processing Theory Security
Sociology Algorithms Statistics Neuroscience Biology
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Linguistics C:S%?Qri]tgée Neurobiology =— Sggﬁie
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Education -~ Logic Bgzz\gggal Sensors Inézrtw:\fgn
/ |
Medicine / Psychology Philosophy Robotics Optics

Fei-Fei Li



~50% 100%

current work activities can be current work activities can be
theoretically automated now potentially enhanced by intelligent
technology

Fei-Fei Li






Hospital-Acquired Infections Unmonitored Elderly Fall Injuries

99.000 Deaths $36.4 Billion

Annually Annually

A Fs, -

A. Houser, W. Fox-Grage & K. Ujvari, AARP Public Policy Institute, 2012) Airtek Indoor Air Solutions. Annual Review of
2014. Calfee. Medicine 2012

Fei-Fei Li



Lucile Packard
g Children's Hospital

To: Intelligent monitors placed

From: Inconsistent hand hygiene throughout hospitals

A. Haque, A. Singh, A. Alahi, S. Yeung, M. Guo, A. Luo, J. Jopling, L. Downing, W. Beninati, T, Platchek, A. Milstein & L. Fei-Fei, Under review
A. Haque, E. Peng, A. Luo, A. Alahi,S. Yeung & L. Fei-Fei, ECCV, 2016

Fei-Fei Li
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From: Ineffective wearables, lack To: Intelligent monitors placed
of human caretakers throughout senior living homes

A. Luo, T. Hsieh, R. Rege, A. Mehra,G. Pusiol, L. Downing, A. Milstein & L. Fei-Fei. In preparation.

Fei-Fei Li



Giving human specialists more time

Fei-Fei Li



Lowers costs

A
DT e N

Improves safety and outcomes
T N

Reduces burden on human caregivers

Fei-Fei Li



An algorithm for
automating simple
radiology analysis

P .
Q)

More time for human specialists to do what they do best

Google

Z. Li, C. Wang, M. Han, Y. Xue, W. Wei, Li-J. Li, L. Fei-Fei, CVPR, 2018

Fei-Fei Li



