CS 1678: Intro to Deep Learning
Recurrent Neural Networks

Prof. Adriana Kovashka
University of Pittsburgh
March 16, 2021

Plan for this lecture

* Recurrent neural networks
— Basics
— Training (backprop through time, vanishing gradient)
— Recurrent networks with gates (GRU, LSTM)

* Applications in NLP and vision
— Neural machine translation (beam search, attention)
— Image/video captioning

Recurrent neural networks

Some pre-RNN captioning results

This is a picture of one sky,

one road and one sheep. Here we see one féad,
The gray sky is over the one sky and one bicycle.
gray road. The gray sheep The road is near the blue

sky, and near the colorful
bicycle. The colorful
bicycle is within the blue
sky.

IS by the gray road.

This is a f to
dogs. The first dog is near

Kulkarni et al., CVPR 2011 the Second furry dog

Results with Recurrent Neural Networks

o~

» . o e
— = \':
. {

“‘construction worker in orange “two young girls are playing with v"boy is doing backflip on
guitar.” safety vest is working on road.” lego toy.” wakeboard.”

Karpathy and Fei-Fei, CVPR 2015

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ vanilla neural networks

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. image captioning
image -> sequence of words

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. sentiment classification
sequence of words -> sentiment

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. machine translation
seq of words -> seq of words

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

y

e.g. video classification on frame level

Andrej Karpathy

Recurrent Neural Network

-

Andrej Karpathy

Recurrent Neural Network

usually want to
output a prediction
at some time steps

Adapted from Andrej Karpathy

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

he|=|fw (ht—h xt)

new state / old state input vector at
some time step

some function
with parameters W

Andrej Karpathy

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fw (ht—h xt)

Notice: the same function and the same set «
of parameters are used at every time step.

Andrej Karpathy

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la wt)

|
¢> h, = tanh(Wpph, 1 + Wopxy)

X Yt — Whyht

Andrej Karpathy

Example

Character-level y
language model

example

Vocabulary:

[h,e,l,0] X

Example training
sequence:
“hello”

Andrej Karpathy

Example

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence: input layer
“hello”

S [eloioi=

input chars: ¢

Andrej Karpathy

o |loo-ao
= |5 ee

“~|lo~0co0o

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Andrej Karpathy

Example

hi = tanh(Wprhi—1 + Wapat)

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
“h"

A4

\

0.1

-0.5
-0.3

W_hh| -

= |loa0co0O

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Example

target chars:

output layer

hidden layer

input layer

input chars: ¢

“n
e

1.0
2.2

-3.0

4.1

|

0.3

-0.1

0.9

S, [Feiearenisss .

A4

\

W_hh| -

What do we still need to specify, for this to work?

What kind of loss can we formulate?

Andrej Karpathy

Training a Recurrent Neural Network

e Get a big corpus of text which is a sequence of words =™ ... 2™
* Feed into RNN; compute output distribution g(f> for every step t.
* i.e. predict probability distribution of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution rg(t), and true next word y® (one-hot); V is vocabulary

JO®O) = CE@®,§0) =— 3 y®log g = —log g

LTt41
weV

e Average this to get overall loss for entire training set:

Ja

T

1 1
= 13500 = 23— log g
thlj (6) = 7 >_—log i),

t=1

Adapted from Abigail See

The vanishing/exploding gradient problem

 The error at a time step ideally can tell a previous time step
from many steps away to change during backprop
* Multiply the same matrix at each time step during backprop

Vi

iy
=
<
¥
=

ol w
0
0

D N’ e/
Xt-1 Xt Xt+1

(0000 (0000

——

——
)
[J
o
®
®
—

Richard Socher

The vanishing gradient problem

* Total erroris the sum of each error at time stepst
OF _ N~ O
oW = oW

e Chainrule:

8Et Z aEt ayt aht ahk

 More chain rule: .

oh; Oh,;

th k41 8hj_1

* Derivative of vector wrt vector is a Jacobian matrix of partial
derivatives; norm of this matrix can become very small or very
large quickly [Bengio et al 1994, Pascanu et al. 2013], leading
to vanishing/exploding gradient

Adapted from Richard Socher

What uses of language models from
everyday life can you think of?

Now In more detall...

Language Modeling

* Language Modeling is the task of predicting what word comes next.

books
laptops
the students opened their //
\\ exams
minds
« More formally: given a sequence of words () £ .. . z®),

compute the probability distribution of the next word z(+1) ;
t+1 t 1
Pzt 2O)
where (1) can be any word in the vocabulary V' = {w, ..., w|v|}

e A system that does this is called a Language Model.

Abigail See

n-gram Language Models

* First we make a simplifying assumption: z{t+1) depends only on the
preceding n-1 words.

n-1words
r A \
Pzt D)e® W) = p(ettD|g® glt-nt2) (assumption)

b of a n-
prob of a n-gram \ P(w(t+1), m(t)’ o ’m(t—n+2))

(definition of
orob of a (n-1)-gram o P(x®), ... x{t—"n+2)) conditional prob)

* Question: How do we get these n-gram and (n-1)-gram probabilities?
* Answer: By counting them in some large corpus of text!

- Count(a:(t‘H), w(t), o ,w(t—n+2)) (statistical
N count(xz®), ... xt—nt2)) approximation)

Abigail See

Sparsity Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if “students
opened their w” never
occurred in data? Then w
has probability 0!

(Partial) Solution: Add small &

to the count forevery w € V.
This is called smoothing.

\ 4

count(students opened their w)

P(w|students opened their) =

count(students opened their)

Sparsity Problem 2

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any w!

(Partial) Solution: Just condition

on “opened their” instead.
This is called backoff.

\ 4

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Abigail See

A fixed-window neural Language Model

books
laptops
output distribution
y = softmax(Uh + by) € RIV!
a N 200
U
nidden faver (000000000000
h=f(We+ b;) —
%4
concatenated word embeddings
). (2). (3. -(4) (0000 0000 0000 0000)|
6:[6 € €e e] A A 7Y 7\
words / one-hot vectors the students opened their
w(l)7 ;,3(2)7 53(3)7 7 (4) (1) 2(2) 7(3) (4

Abigail See

A fixed-window neural Language Model

Improvements over n-gram LM: books

* No sparsity problem
 Don’t need to store all observed n-grams

laptops

QA
N
o
o

Remaining problems:
* Fixed window is too small U
* Enlarging window enlarges W
 Window can never be large enough! [............]

N
« (1) and (2 are multiplied by 1%,%4
completely different weights in W.

No symmetry in how the inputs are [oooo 0000 0000 oooo]
processed. A A A A

We need a neural
architecture that can the students opened their
process any length input o) z(2) () @

Abigail See

Recurrent Neural Networks (RNN)

A family of neural architectures

outputs (1)
(optional) { Y

h(1)

hidden states <

g(2)

h(2)

33(3)

h3)

h(4)

V

N

8
e
|
SN—r

input sequence
(any length) {

Abigail See

—— 0000

B

\V)
~

v

——{ 0000

S

(o™
~—

Core idea: Apply the

same weights W
repeatedly

——{ 0000

8
—~
o
p—

A RNN Language Model

output distribution

§® = softmax (Uh(t) + b2) c R

hidden states
h® =g (Whh(t‘l) +W.e® 4+ b1>

h(0) is the initial hidden state

word embeddings
et — Eap®)

words / one-hot vectors
) ¢ RIVI

Abigail See

y@ = P(x®)|the students opened their)

books
laptops
'
: —%
U
h©)_ h(})—~ h(2) h3) h(4)
@] @ @ @] @
Q Wh\. W, [0) Wh\. Wh\.
. rd . rd . r g . rd .
J J e e e
A N o -
W, W, W, W,
¢ o)) (@
1 (2)] © 3) © (4) ©
Dol ¢“lo| ol ¢leo
@] @) @) @)
e Tz o Iz

the
(D)

students opened their
7 (2) 2 (3) (%)

Note: this input sequence could be much

/

longer, but this slide doesn’t have space!

y@ = P(x®)|the students opened their)

A RNN Language Model books

laptops

RNN Advantages: !

e Can process any length input m

Computation for step t

QA
y

can (in theory) use S
information from many U
steps baFk hO)__ A B(2) h(3) B
. Model size doesn t. ® ® o P ®
increase for longer input el W, |@| W, @ Wy, | @ W, |1 @
* Same weights applied on @ 10 1@ 1@ 1@
every timestep, so there is L _t @ @ @
. . A N -
symmetry in how inputs are W, W, W, w.
processed —— Y i Y
8 o @) o
1 (2)| © 3) © 4| ©
eVo| ol o] “'o
RNN Disadvantages: o @) O Q
e Recurrent computation is slow
ot com e Tz o Iz
* In practice, difficult to access .
information from many steps back the students opened their
(D) 7(2) 2 (3) (%)

Abigail See

Recall: Training a RNN Language Model

e Get a big corpus of text which is a sequence of words =™ ... 2™
* Feed into RNN-LM; compute output distribution ;,;,(t) for every step t.
* i.e. predict probability distribution of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution (*), and the true next word () (one-hot for g(t+1)):

JO®O) = CEW®,59) = — 3 40 log g = —log 5.
weV

e Average this to get overall loss for entire training set:

] = 1.
=23 700) = = 3 —log g
L t=1 S T t=1 s

Abigail See

Training a RNN Language Model

= negative log prob
of “students”

Loss > | T () J@(6) J3)(9) J(0)
T N N N
) e 5O e
prob dists " n "
U U U U
h©)__ h) h(Z’)__\ h3) h(‘f)__
o o @ O @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
€le| “le| “le| ¢ e
o) @) o
Te & o s
Corpus =———— the students opened their exams
(1) 7 (2) 2(3) 2 (4)

Abigail See

Training a RNN Language Model

= negative log prob
of “opened”

Loss PARI() J2)(9) J®(6) J@(9)
/I\ \ N N
Predicted o) 52 5O G0
prob dists " n "
U U U U
h(02—~ h) h(Z’)__\ h3) h(‘f)__
@ e @ @ @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
©) @) o
T T2 Tz s
Corpus =———— the students opened their exams
(1) 7 (2) 2(3) (1)

Abigail See

Training a RNN Language Model

= negative log prob
of “their”

Loss PARI() J2)(9) J®(6) J@(9)
/]\ N N N
Predicted o) 52 5O G0
prob dists " " "
U U U U
h©)__ h) h(Z’)__\ h3) h(‘f)__
o @ @ O @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
© () O o
T T2 Tz s
Corpus =———— the students opened their exams
(1) 7 (2) 2(3) 2 (4)

Abigail See

Training a RNN Language Model

= negative log prob
of “exams”

Loss PARI() J2)(9) J®(6) J@(9)
/I\ N N \
Predicted o) 52 5O G0
prob dists " n "
U U U U
h(02—~ h) h(Z’)__\ h3) h(‘f)__
@ e @ @ @
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 10 1@ 1@ 1@ .
@ &) @ @ @
— N N N N
W, W, W, W,
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
©) @) o
T T2 Tz s
Corpus =———— the students opened their exams
(1) 7 (2) 2(3) (1)

Abigail See

Training a RNN Language Model

Loss » TG + J@0) + JO@G) + JDE) +.. = JO) ==
T()+ TDE) + TOE) + IO 0) =7
Predicted) 52 5@ 5
prob dists " " .
U U U U
h©) h() h(2) h3) A1)
© @ 0] O O
Q| Wiy || W, |@| Wi |@| Wr |@| W,
© 1@ 1@ 1@ 1@ -
© ® @ O O
I N >
We We We We
(1) (2)| © (3)| © (4) ©
el “’le|l “le| °|e
© o @) o
Te Tz & s
Corpus =———— the students opened their exams

2D 22 2(3) ey
Abigail See

Backpropagation for RNNs

J® (6)
R AU RO R h(ti
@ @ (O] @ (O]
e W, Wi, 0| W, || Wr |l@| Wr |@| W,
é rd > rd rd o
@ ® (0] @ (0]
° o) o [of e

Question: What’s the derivative of j(*)(9) w.rt. the repeated weight matrix W}, ?

“The gradient w.r.t. a repeated weight
is the sum of the gradient
w.rt. each time it appears”

o.J(®) t 97

oWy~ — OW,,

Answer:

(%)

Abigail See

Multivariable Chain Rule

« Given a multivariable function f(z, y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

_O0f dz Of dy
\d_t (w(t)ﬁy(t)z ~ B dt 5 By dt

N
Derivative of composition function

One final output f(x(¢), y(t))

RN

1) y(t)

One input

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Abigail See

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs: Proof sketch

« Given a multivariable function f(z, y), and two single variable functions
z(t) and y(t), here's what the multivariable chain rule says:

_O0f dz Of dy
\d_t (m(t)ay(t)z ~ B dt 5 By dt

-
Derivative of composition function

In our example: Apply the multivariable chain rule:
T (6) -1
/\ o.J®) i o.J®) 8Wh|(z‘)
Wh|(l) Wh|(2) s Wh|(t) aWh =il 8Wh (i aWh
Q
%, . (t)
e \S 0J
Tuals % coue _ Z
W = Whla
h

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Abigail See

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

J(t)(,g)
h(0) h(t=3) h(t—2) h(t—1) h(®)
0 0
o!| Wi Wi |o| Wa |9l Wi |2| wi | 9| Wi
o< * —lo[e >: > s - >
© © Ll) @)

Answer: Backpropagate over
timesteps i=t,...,0, summing
gradients as you go.
This algorithm is called
T “backpropagation through time”
Question: How do we
calculate this?

o.J®) t 97
OWp, Z

Abigail See

Vanishing gradient intuition

A4
A2

Abigail See

\ 4

Vanishing gradient intuition

J4(6)

Abigail See

Vanishing gradient intuition

J4(6)

h(D) h(2) h(3)
0 o) 0
O w L |e W e
0 l® O
0 O 0

o.J&) Oh(2) o.J4)
oD~ 9rD " RO

chain rule!

Abigail See

Vanishing gradient intuition

J(6)

R B(2) B(3)
O 0 O
o) 114 o) 114 5

> —>
0 0 0
0 0 0
0JW oh? OhB3) HJ@

= X

ohM 9 oh@ " Oh®

chain rule!

Abigail See

Vanishing gradient intuition

J4 ()
A
htD_ h(2)_) _ h1
(0] @ (0] @
0 w__|e w __|e w e
@ 1@ 1@ @
@ @ @ @
o.J&) B Oh(2) y oh3) oh® oJ4
oh(l) — Hh) a2 R Gh@
chain rule!

Abigail See

Vanishing gradient intuition
JW(0)

0J@ dh(? 9@
oh® — |on® * on®

Vanishing gradient problem:
When these are small, the

gradient signal gets smaller
and smaller as it
backpropagates further

What happens if these are small?

Abigail See

Vanishing gradient proof sketch
¢ Recall: h) =g (Whh(t—l) + Wz + b1)

Oh®

* Therefore: 7

= diag ((7' (Whh(t“l) + W,oz® + bl)) %% (chain rule)

« Consider the gradient of the loss J®(6) on step i, with respect
to the hidden state h(4) on some previous step j.

JD (@) aJ(0) Oh® (chain rule)
onG) — 9h) H _Oh(t-1)
i1<t<Li
_9J9() (value of pr®)

W’Ei—j) H diag (0' (Whh(t_l) + W,oz® + bl))

T J<t<i

If W, is small, then this term gets
vanishingly small as i and j get further apart

0 dR(—1)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.

Abigail See

http://proceedings.mlr.press/v28/pascanu13.pdf

Vanishing gradient proof sketch

e Consider matrix L2 norms:

0J(6) 0J®(6)
—2 .l & |l———
or@ || = | ar®

e Pascanu et al showed that that if the largest eigenvalue of W, is

less than 1, then the gradient H@g;;(f)” will shrink exponentially

* There’s a similar proof relating a largest eigenvalue >1 to
exploding gradients

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.
http://proceedings.mlr.press/v28/pascanul3.pdf

Adapted from Abigail See

http://proceedings.mlr.press/v28/pascanu13.pdf

Why is vanishing gradient a problem?
J3(6) J@(6)

Gradient signal from faraway is lost because it’'s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-term effects.

Abigail See

Effect of vanishing gradient on RNN-LM

* LM task: When she tried to print her tickets, she found that the
printer was out of toner. She went to the stationery store to buy
more toner. It was very overpriced. After installing the toner into
the printer, she finally printed her

* To learn from this training example, the RNN-LM needs to
model the dependency between “tickets” on the 7thstep and
the target word “tickets” at the end.

e But if gradient is small, the model can’t learn this dependency

* So the model is unable to predict similar long-distance
dependencies at test time

Abigail See

Effect of vanishing gradient on RNN-LM

IS
* LM task: The writer of the books -~

are

* Correct answer: The writer of the books is planning a sequel

T

e Syntactic recency: The writer of the books is (correct)
"N
* Sequential recency: The writer of the books are (incorrect)

e Due to vanishing gradient, RNN-LMs are better at learning from
sequential recency than syntactic recency, so they make this
type of error more often than we’d like [Linzen et al 2016]

“Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016.
Abigail See

https://arxiv.org/pdf/1611.01368.pdf

Why is exploding gradient a problem?

* If the gradient becomes too big, then the SGD update step
becomes too big:
learning rate

grew — eold . FO?V@J(@)

J

gradient

This can cause bad updates: we take too large a step and reach
a bad parameter configuration (with large loss)

In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

Abigail See

Gradient clipping: solution for exploding gradient

e Gradient clipping: if the norm of the gradient is greater than
some threshold, scale it down before applying SGD update

Algorithm 1 Pseudo-code for norm clipping
g« 55
if ||g|| > threshold then

A threshold A
¢, Breshold
g el 8

end if

e Intuition: take a step in the same direction, but a smaller step

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.

Abigail See

http://proceedings.mlr.press/v28/pascanu13.pdf

RNNs with Gates

How to fix vanishing gradient problem?

 The main problem is that it’s too difficult for the RNN to learn to
preserve information over many timesteps.

* Inavanilla RNN, the hidden state is constantly being rewritten

Br® — & (Whh“—l) +W,z®)

 How about a RNN with separate memory?

Richard Socher

Gated Recurrent Units (GRUs)

* More complex hidden unit computation in
recurrence!

* Introduced by Cho et al. 2014

e Main ideas:

* keep around memories to capture long distance
dependencies

* allow error messages to flow at different strengths
depending on the inputs

Richard Socher

Gated Recurrent Units (GRUs)

e Standard RNN computes hidden layer at next time step
directly: hy = f (W(hh)ht—l n W(hm)xt)

* GRU first computes an update gate (another layer)
based on current input word vector and hidden state

Zt = O (W(z)xt + U(z)ht_l)

 Compute reset gate similarly but with different weights

'y = O (W(T)CUt —+ U(T)ht_l)

Richard Socher

Gated Recurrent Units (GRUs)

« Update gate t=0 (W(Z)a:t + U(z)ht_l)
* Reset gate =0 (W@")a:-t + U("")ht_l)

* New memory content: h; = tanh (Waz; +r 0 Uhs_y)
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

* Final memory at time step combines current and
previous time steps: he =z 0 he_1 + (1 — 2) o by

Richard Socher

Gated Recurrent Units (GRUs)

Zt — O (W(Z)th + U(z)ht_l)
e " (r) (r)
Final memory . T =0 (W Ty +U ht—l)

hy = tanh (Way + 14 0o Uhy_1)

~

Memory (reset) hy = zg 0 hy—q1 + (1 — Zt) o hy

Update gate

Reset gate

Input:

Richard Socher

Gated Recurrent Units (GRUs)

* |fresetrisclosetoO, ignore w=0 (W(Z):ct + U(z)ht_l)
previous hidden state: Allows r, =o¢ (W(T)a:'t + U(”ht_l)
model to drop information that = ; _ ...1 (wa, + 1, 0 URy_y)

is irrelevant in the future 3
ht :Ztoht—l+(1_zt)0ht

* If update zis close to 1, can copy information through
many time steps, i.e. copy-paste state: Less vanishing
gradient!

* Units with short-term dependencies often have reset
gates (r) very active; ones with long-term
dependencies have active update gates (z)

Adapted from Richard Socher

Long-short-term-memories (LSTMs)
* Proposed by Hochreiter and Schmidhuber in 1997
* We can make the units even more complex

* Allow each time step to modify

* Input gate (current cell matters) it=0 (W“)xt + U(i)ht—l)

* Forget (gate 0, forget past) fi=o0 (W(f)xt + U(f)ht_l)

* Output (how much cell is exposed) o; = o (W(O)xt + U(O)ht_l)

* New memory cell ¢; = tanh (W(C)azt + U(C)ht—l)
* Final memory cell: ¢t = froci_1+1i0¢

* Final hidden state: ht = oy o tanh(c;)

Adapted from Richard Socher

Long-short-term-memories (LSTMs)

i, =0 (W(i)a:t + U(“ht_l)

]
|—>@<—\'<-‘ fi=0 (W(f):rt + U(f)ht—l)
c

Ot — 0 (W(O)ﬂjt + U(O)ht_l)

é 5t = tanh (W(C)Zli't + U(C)ht_l)
<— IN

ct = froci_1+ 1006

-»9/ > OUT

h: = ot o tanh(c;)

Intuition: memory cells can keep information intact, unless inputs makes them
forget it or overwrite it with new input

Cell can decide to output this information or just store it

Richard Socher, figure from wildml.com

Review on your own: Gated Recurrent Units (GRU)

* Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.

« On each timestep t we have input z(¥) and hidden state h(*) (no cell state).

Update gate: controls what parts of
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

\u(t) _ ., (Wu RED 4 UL 2® 4 bu)

SN F— (thu—l) +U.2® + br)

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

/vil(t) = tanh (Wh (r(t) o h(t_l)) + Uhm(t) + bh)
Rt — (1— u_(t)) o h(=1) 4 () o)

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

How does this solve vanishing gradient?
GRU makes it easier to retain info long-term

(e.g. by setting update gate to 0)

"Learning Phrase Representations using RNN Encoder—Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Abigail See

https://arxiv.org/pdf/1406.1078v3.pdf

Review on your own: Long Short-Term Memory (LSTM)

We have a sequence of inputs 2(*), and we will compute a sequence of hidden states h®
and cell states ¢(*). On timestep t:

Sigmoid function: all gate
Forget gate: controls what is kept vs values are between 0 and 1
forgotten, from previous cell state \

f(t) —[o
Input gate: controls what parts of the
new cell content are written to cell \

i) —

(WihY + U™ + by)
- (Wih(t‘l) + Uiz® + bz-)
(

Output gate: controls what parts of
cell are output to hidden state ~ o(t) —=|lo

Woh(™D + Uye® + b,

New cell content: this is the new
content to be written to the cell \
Cell state: erase (“forget”) some (

e ~(t) — (t—1) (t)
content from last cell state, and write c'” = tanh (Wch + Ucw + bc

(“input”) some new cell content

Y
All these are vectors of same length n

c® = 1) 5 ot=1) | () 5 5®

Hidden state: read (“output”)some | | R®) — 5(®) 5 tanh c(t) I
content from the cell \

Gates are applied using
element-wise product

Abigail See

Review on your own: Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

Write some new cell content @
Forget some \ T

[
cell content \\, \/\ ¢ | C
Ci-1 ->_® () > t
i
; t N — | Output some cell content
Compute the Tt ¢ to the hidden state
forget gate >0 | [0 | [tanh]

Compute the @ Compute the (Compute the
input gate new cell content output gate

O—P>—>—<

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Abigail See

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM vs GRU

* Researchers have proposed many gated RNN variants, but LSTM
and GRU are the most widely-used

* The biggest difference is that GRU is quicker to compute and has
fewer parameters

* There is no conclusive evidence that one consistently performs
better than the other

 LSTMis a good default choice (especially if your data has
particularly long dependencies, or you have lots of training data)

e Rule of thumb: start with LSTM, but switch to GRU if you want
something more efficient

Abigail See

LSTMs: real-world success

* In2013-2015, LSTMs started achieving state-of-the-art results
for sequence modeling

 Successful tasks include: handwriting recognition, speech
recognition, machine translation, parsing, image captioning

* LSTM became the dominant approach

e Starting in 2019, other approaches (e.g. Transformers) became
more dominant for certain NLP tasks (will discuss next lecture)

* For example in WMT (machine translation competition):
* In WMT 2016, the summary report contains "RNN” 44 times

* In WMT 2018, the report contains “RNN” 9 times and
“Transformer” 63 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016,
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018,

Adapted from Abigail See

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Is vanishing/exploding gradient just a RNN problem?

* No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.

* Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates
* Thus lower layers are learnt very slowly (hard to train)

* Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

X

For example:

A 4

* Residual connections aka “ResNet” WElghtiayer
: _ F(x) relu N
e Also known as skip-connections weight laver X
identity

e The identity connection

preserves information by default
Figure 2. Residual learning: a building block.

* This makes deep networks much
easier to train

"Deep Residual Learning for Image Recognition", He et al, 2015.

Abigail See

https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

* No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.

* Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates
* Thus lower layers are learnt very slowly (hard to train)

* Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

For example:
e Dense connections aka “DenseNet”

e Directly connect everything to everything!

Figure 1: A 5-layer dense block with a growth rate of &k = 4.
Each layer takes all preceding feature-maps as input.

”Densely Connected Convolutional Networks", Huang et al, 2017.

Abigail See

https://arxiv.org/pdf/1608.06993.pdf

Bidirectional RNNs: motivation

Task: Sentiment Classification

representation of the word “terribly” in the

. We can regard this hidden state as a
pOSItIVE

N
context of this sentence. We call this a
contextual representation.

@)

Sentence encoding o
O
O

the movie was terribly exciting !

Abigail See

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

I . This contextual representation of “terribly”
Bld | rECtlonaI RN NS has both left and right context!

Concatenated
hidden states

‘ﬂoooooooo]

/ﬂoooooooo]
/ﬂoooooooo]
}/ﬂoooooooo}

Backward RNN

}/ioooooooo}
©@0000000|
0000

PN
O
O
O
®

7r

{0000
y
~—|e0e00)|

Forward RNN

s
/

{0000
y
©000)]

\
(o000
Xrn

~—|e000)]

%T[....}

movie was terribly exciting
Abigail See

Bidirectional RNNs

On timestep t: This is a general notation to mean “compute
one forward step of the RNN” — it could be a
vanilla, LSTM or GRU computation.

Forward RNN ﬁ(t) — RNNFW(h,>(t_1)7 m(t)) Generally, these

two RNNs have
Backward RNN %(t) — RNNBW(%(H'D, ac(t)) separate weights

Concatenated hidden states | (%) |= [}f(t); <h (t)]

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Abigail See

Multi-layer RNNs

RNN layer 3

RNN layer 2

RNN layer 1

Abigail See

The hidden states from RNN layer i
are the inputs to RNN layer j+1

S Y) SR)
©) @ (©) (O] (©)
.| © > ® > © > ¢ .| @
@ @ @ @ @
(©) @ (©) (O] @
e/ e/ e | S
N N N N N
Y S S —\
@ @ @ @

> > ® > o > © .| @
O @ @ @

O @ @ @

~ N—/ — ~

N N N N

vV

V
A4

W

v

—|e0000)]

—|e000)]
—]e000|
~——0000)]

was terribly exciting

Evaluating Language Models

 The standard evaluation metric for Language Models is perplexity.

1/T
1
perplexity = H ((2D] @) :1:(1))> \n:}l&?;?l:fexobrgs
N J

N
Inverse probability of corpus, according to Language Model

* This is equal to the exponential of the cross-entropy loss .J(6):

T 1/T T
=11 (®) > — P (% D —log yi?H) = exp(J(0))

t=1 ywt+1 t=1

Lower perplexity is better!

Abigail See

Recap thus far

Language Model: A system that predicts the next word

Recurrent Neural Network: A family of neural networks that:

* Take sequential input of any length
* Apply the same weights on each step
* Can optionally produce output on each step

Vanishing gradient problem: what it is, why it happens, and
why it’s bad for RNNs

LSTMs and GRUs: more complicated RNNs that use gates to
control information flow; more resilient to vanishing gradients

Abigail See

Plan for this lecture

* Recurrent neural networks
— Basics
— Training (backprop through time, vanishing gradient)
— Recurrent networks with gates (GRU, LSTM)

* Applications in NLP and vision
— Neural machine translation (beam search, attention)
— Image/video captioning

Applications

Why should we care about Language Modeling?

* Language Modeling is a benchmark task that helps us
measure our progress on understanding language

* Language Modeling is a subcomponent of many NLP tasks,
especially those involving generating text or
estimating the probability of text:

* Predictive typing

e Speech recognition

* Handwriting recognition

* Spelling/grammar correction
* Authorship identification

* Machine translation

* Summarization

* Dialogue

* etc.

Abigail See

Generating text with a RNN Language Model

You can use a RNN Language Model to generate text by repeated sampling.
Sampled output is next step’s input.

favorite season is spring
N N N N
sample sample sample sample
g g2 g3 g@
A A A A
U U U U
hO)__ h(| B2 B(3) B (4)
@ @ @ @ @
@ Wi (0| W, [@| Wh || Wh |@| W,
@ 1@ 1@ 1@ 1@ :
@ ._J @ @] @
— 7 . /)
W, W, W, W,
8 o (0] o
(1) 2)| © 3) @ (1) ©
ele|l “le| “le| € le
o O O O
\ Y, Y, /
E E E E
my favorite season is spring

Abigail See

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style. >

* RNN-LM trained on Obama speeches:

The United States will step up to the cost of a new challenges of the American
people that will share the fact that we created the problem. They were attacked
and so that they have to say that all the task of the final days of war that I will not
be able to get this done.

Source:

Abigail See

https://medium.com/%40samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

* RNN-LM trained on Harry Potter:

“Sorry,” Harry shouted, panicking—*“T'll leave those brooms in London, are
they?”

“No idea,” said Nearly Headless Nick, casting low close by Cedric, carrying the
last bit of treacle Charms, from Harry’s shoulder, and to answer him the
common room perched upon it, four arms held a shining knob from when the

spider hadn’t felt it seemed. He reached the teams too.

Source:

Abigail See

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with a RNN Language Model

e Let’s have some fun!

* You can train a RNN-LM on any kind of text, then generate text
in that style.

e RNN-LM trained on paint color names:

Ghasty Pink 231 137 165 Sand Dan 201 172 143
B Power Gray 151 124 112 I Grade Bat 48 94 83
Navel Tan 199 173 140 Light Of Blast 175 150 147
Bock Coe White 221 215 236 I Grass Bat 176 99 108
Horble Gray 178 181 196 Sindis Poop 204 205 194
I Homestar Brown 133 104 85 Dope 219 209 179
I snader Brown 144 106 74 I Testing 156 101 106
Golder Craam 237 217 177 Stoner Blue 152 165 159
Hurky White 232 223 215 Burble Simp 226 181 132
Burf Pink 223 173 179 Stanky Bean 197 162 171
Rose Hork 230 215 198 Turdly 190 164 116

This is an example of a character-level RNN-LM (predicts what character comes next)

Source:
Abigail See

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Generating poetry with RNNs

Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.

Andrej Karpathy

Generating poetry with RNNs

)) tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at first: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1ng

l train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

More info: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Andrej Karpathy

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generating poetry with RNNs

PANDARUS: VIOLA:

Alas, I think he shall be come approached and the day Why, Salisbury must find his flesh and thought

When little srain would be attain'd into being never fed, That which I am not aps, not a man and in fire,

And who is but a chain and subjects of his death, To show the reining of the raven and the wars

I should not sleep. To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;

Second Senator: When I was heaven of presence and our fleets,

They are away this miseries, produced upon my soul, We spare with hours, but cut thy council I am great,

Breaking and strongly should be buried, when I perish Murdered and by thy master's ready there

The earth and thoughts of many states. My power to give thee but so much as hell:

Some service in the noble bondman here,
DUKE VINCENTIO: Would show him to her wine.
Well, your wit is in the care of side and that.

KING LEAR:
Second Lord: 0, if you were a feeble sight, the courtesy of your law,
They would be ruled after this chamber, and Your sight and several breath, will wear the gods

my fair nues begun out of the fact, to be conveyed, With his heads, and my hands are wonder'd at the deeds,

Whose noble souls I'll have the heart of the wars. So drop upon your lordship's head, and your opinion

Shall be against your honour.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Andrej Karpathy

Generating textbooks with RNNs

For @, . where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=U xx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schyppy and U — U is the fibre category of S in U in Section, 7?7 and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U=|JU:xs, U

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z.2’, 5" € S’ such that Ox .+ = O, . is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z'/S")
and we win.

To prove study we see that F|y is a covering of X, and T; is an object of Fx g for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M® =TI* Qspec(r) Os,s — iz F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7% . (Sch/S) fpps

and

V =T(S.0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim |X| (by the formal open covering X and a single map Proj X(A) =
Spec(B) over U compatible with the complex

Set(A) =T'(X,0x.04)-

When in this case of to show that Q — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T' is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, _,, Ui be the scheme X over
S at the schemes X; — X and U = lim; X;. 0O

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;g. Set T =
Ji1 CTI},. Since I™ C I™ are nonzero over iy < p is a subset of Jn0© Ay works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox+) = Ox(D)

where K is an F-algebra where d,,,; is a scheme over S. (]

Andrej Karpathy

Generating code with RNNs

static void do_command(struct seq file *m, void *v)

{
J:.nt column = 32 << (cmd[2] & 0x80); Generated
if (state)
cmd = (int)(int state ~ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
Lo in in a in c c ags C Code
seq = 1;

for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & 0x00000000fff£f££f£f8) & 0x000000f) << B8;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}

19y 3 - 9~ » - "] ~ - " v . 1) 3
Free our Ser pages) umera i1r a das

subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");

Andrej Karpathy

Neural Machine Translation

« Neural Machine Translation (NMT) is away to doMachine
Translation with asingle neural network

« The neural network architecture is called sequence-to-sequence
(aka segZseq) and it involves two RNNs.

Abigail See

Neural Machine Translation (NMT)

The sequence-to-sequence model
Target sentence (output)

Encoding of the source sentence. Al

NN 19p03a(d

T r N\
Provides initial hidden state . . .
h th a e <END>
for Decoder RNN. he toome W P
5 : & =
< 3 J 3
nd o) o) 0 o) o) o) o)
5 e| .|® ol |.|o N[NN
S e “|® el |’|® ’lo o |0
S o) O [O o O o
- .
il a m’ entarté <SIART> he hit
1§ v J
Source sentence (input) Decoder RNNis a Language Model that generates
target sentence, conditioned on encoding.
Encoder RNN produces
an encoding of the
source sentence.

Abigail See

Greedy decoding

« \We saw how to generate (or “decode”) the target sentence by
taking argmax on each step of the decoder

he hit me with a pie <END>

: zﬂ‘ 1% al: gy oz oz
- £ £ £ £ £ £
2 > o =2 2 =2 =2
@®© @© @® @© @®© @© @©
o o o o (0] o o
Of =10 =[O 3]0 O O (0]
o ol Y10 T|O (0] o o
o o o o) o O o
<START> he hit me with a pie

« Thisis greedy decoding (take most probable word on eachstep)
* Problems with this method?

Abigail See

Problems with greedy decoding

« Greedy decoding has no way to undo decisions!
 Input: il @ m’entarté (he hit me with a pie)
- —>he
- — he hit __

« — he hit a (whoops! no going back now. ..)

« Howto fixthis?

Abigail See

Exhaustive search decoding

« Ideally we want to find a (length T) translation y that maximizes
P(y|.’L’) - P(y1|$) P(yZI(yla $) P(y3|y1) Y2, '/L') ceey P(?/T|3/1, « o ayT—lax)

T
— HP(yt|y19 SR ayt—lax)
t=1

« We could try computing all possible sequences 'y

- This means that on each step t of the decoder, we’re tracking VT
possible partial translations, where V is vocabulary size

« This O(VT) complexity is far too expensive!

Abigail See

Beam search decoding

Core idea: On each step of decoder, keep track of the k
most probable partial translations (hypotheses)
« kis the beam size (in practice around 5 to 10)

A hypothesis ¥1, - - -, ¥t has a score which is its log probability:

t
score(y1,...,y:) = log Pom(y1, - - -, yt|x) = Zlog Broa(yilyss« -« s Yi—1,2)

=1
- Scores are all negative, and higher score is better
« We search for high-scoring hypotheses, tracking top k on each step

Beam search is not guaranteed to find optimal solution
But much more efficient than exhaustive search!

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(y,

<START>

Calculate prob
dist of nextword

Abigail See

.....

ye) = Y _log Pom(uilya, - - -, 9io1, @)

i=1

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1,)

i=1

-0.7 =log P,(he|<START>)
he

/

‘ <START>

\

I
-0.9 =log P \(II<START>)

Taketop k words
and compute scores

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(y1,...,y:) = > _log Pom(¥ilys, - .-

i=1

-1.7 =log P,(hitikSTART> he) +-0.7

he <
struck
/ -2.9 =log P (struck|<START>he) + -0.7
<START>
\ -1.6 =log P, (was|<START>1) +-0.9

was
| <
got

-1.8 =log P \(got]l<START>1) +-0.9

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See

,yz'—l,iﬂ)

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1,)

i=1

-1.7

he <
struck
/ 29

16
\ was
| <

got

-1.8

Of these k2 hypotheses,
just keep k with highest scores

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1,)

i=1

-2.8 =log P ,(al<START>he hit) +-1.7

-1.7

a
-0.7 hlt <
he < me
/’ struck -2.5 =log P, (melSTART> he hit) +-1.7
-2.9
<START> -2.9 =log P ,(hit}<START> | was) +-1.6

\ 16 hit
was <
I < struck
got

-3.8 =log P (struck|<START> | was) +-1.6

-1.8

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1,)

i=1

-2.8

-1.7 3
-0.7 hit <
he < me
/ struck By
-2.9

<START> -2.9

\ 16 hit
was <
I < struck
got

-3.8

-1.8

Of these k2 hypotheses,
just keep k with highest scores

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wilys, - - -, yi1,)

i=1

4.0

tart

28 K _
ie

17 R P
-0.7 hlt < -3.4
he < me 33
/ struck By with

29

<START> -2.9 on

\ 16 hit 35
was <
I < struck
got

-3.8

-1.8

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > _log Pua(yilys

i=1

7'-"yi—17$)

4.0
tart
28 K _

e

1.7 3 24

he 5 me 3.3

/ struc Py with
-2.9

<START> -2.9 on

\ 16 hit 35
was

I struck
0.9 got -3.8
-1.8
Of these k2 hypotheses,

Abigail See

just keep k with highest scores

Beam search decoding: example

Beam size =k =2. Blue numbers = score(yi, ...

-1.7

7yt> = ZlogPLM(yl|y17 s ’yi—lax)

i=1

he <
struck

/=

\ -1.6
was

-1.8

Abigail See

-4.0 -4.8

tart in
-2.8 :)

pie > with

a

3.4 4.5
me 3.3 3.7
-2.5 with > a
2.9 on one
hit 35 -4.3

struck

-3.8

For each of the k hypotheses, find
top k next words and calculate scores

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1,)

i=1

-4.0 -4.8

tart in
-2.8) :
’r . K pie with
0.7 hit < -3.4 -4.5
he < me

\ 4

” -3.3 -3.7
/ struc By with . -
-2.9
<START> 2.9 on one

\ L6 hit 35 43
wes K
I < struck
got

-3.8

-1.8

Of these k2 hypotheses,
just keep k with highest scores

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(ys,...,y:) = > log Pum(wily1, - - -, yi1,)

i=1

-4.0 -4.8

\ 4

tart in
-2.8
17 K pie with 43
. 3 .

07 it < 34 45 pie
he < me 3.3 3.7 tart
struck

A 4

/ -2.5 with a -4.6
-2.9

<START> -2.9 on one 5.0

\ 16 hit -35 4.3 pie
was <

I < struck tart
got

-3.8 -5.3

-1.8

For each of the k hypotheses, find
top k next words and calculate scores

Abigail See

Beam search decoding: example

Beam size =k =2. Blue numbers = score(y,

g o 0.

yt) = ZlOgPLM(yz|ZJl, wicwse 7yi—17x)

i=1

4.0 48
tart in
28 :
17 K pie | with 4.3
07 - 2 34 45 pie
: hit ' :
he 5 me 3.3 3.7 tart
/ struc 25 with R a 16
29
<START> 2.9 on one -5.0
\ 16 hit -35 4.3 pie
was
I struck tart
09 got 38 5.3
1.8

Abigail See

This is the top-scoring hypothesis!

Beam search decoding: example

Beam size =k =2. Blue numbers = score(yi, ...

7yt) = ZlogPLM(yl|y17 s ’yi—lax)

i=1

-4.0 -4.8
tart In
-2.8 :
7 K pie o with 4.3
07 - 2 34 45 pie
: hit ' '
he me 3.3 3.7 tart
/ struck oY with . - e
-2.9
<START> -2.9 on one -5.0
\ 16 hit 35 4.3 pie
was
I struck tart
00 got 38 5.3
-1.8

Abigail See

Backtrack to obtain the full hypothesis

Beam search decoding: finishingup

We have our list of completed hypotheses.
How to select top one with highest score?

Each hypothesis ¥1,---,Yt on our list has a score

t
score(y1,...,y:) = log Pom(y1, - - -, yt|x) = Zlog Broa(yilyss« -« s Yi—1,2)

1=1

« Problem with this: longer hypotheses have lower scores

« Eix: Normalize by length. Use this to select top one instead:

t
1
LS tog Pl 311,7)

1=1

Abigail See

How do we evaluate Machine Translation?

BLEU (Bilingual Evaluation Understudy)

« BLEU compares the machine-written translation to one or
several human-written translation(s), and computes a
similarity score based on:

» n-gram precision (usually for 1, 2, 3 and 4-grams)

 Plus a penalty for too-short system translations

« BLEU is useful but imperfect
- There are many valid ways to translate a sentence
» S0 a good translation can get a poor BLEU score
because it has low n-gram overlap with the human
translation ®

Source: ” BLEU:aMethod for Automatic Evaluation of Machine Translation", Papineni et al, 2002.
Abigail See

MT progress overtime
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U. Montréal]

m Phrase-based SMT m Syntax-based SMT m NeuralMT

25

=

20

15

10

2013 2014 2015 2016

Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09 sennrich.pdf

Abigail See

http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

NMT: the biggest success story of NLP Deep Learning

Neural Machine Translation went from a fringe research
activity in 2014 to the leading standard method in 2016

« 2014: First seq2seq paper published

« 2016: Google Translate switches from SMT to NMT

* This is amazing!
« SMT systems, built by hundreds of engineers over many

years, outperformed by NMT systems trained by a
nandful of engineers in a few months

Abigail See

So is Machine Translation solved?

* Nope!
- Many difficulties remain:
 Out-of-vocabulary words
- Domain mismatch between train and test data
- Maintaining context over longer text
» Low-resource language pairs

Further reading: “Has Al surpassed humans at translation? Not even close!”
https://www.skynettoday.com/editorials/state_of nmt

Abigail See

https://www.skynettoday.com/editorials/state_of_nmt

So is Machine Translation solved?

* Nope!

« Using common sense is still hard
English~ b o) & Spanish~ IEI CD)
paper jam . Mermelada de papel

Feedback

Abigail See

So is Machine Translation solved?

* Nope!
* NMT picks up biases In training data
Malay - detected ~ @J Pl English~ IEI ‘D
Dia bekerja sebagai jururawat. She works as a nurse.
Dia bekerja sebagai pengaturcara. = He works as a programmer.
Didn’t specify gender

Source: https://hackernoon.com/bias-sexist-or-this-is-the-wayv-it-should-be-celf7c8c683¢c
Abigail See

NMT research continues

NMT is the flagship task for NLP Deep Learning

« NMT research has pioneered many of the recent
innovations of NLP Deep Learning

« |In 2019: NMT research continues to thrive

- Researchers have found many, many improvements to
the “vanilla® seqg2seq NMT system

» But one improvement is so integral that it is the new

ATTENTION

Abigail See

Sequence-to-sequence: the bottleneck problem

Encoding of the
source sentence.
This needs to capture all Target sentence (output)
information about the A
source sentence. f : A

Information bottleneck!

Z —
o 0] @ 0] e O o @) @) o (@ o
E . ~ | .)I . ~ . ~ O ~ O o N O L O O O
g, (0] (0] @ |°|1O® 101 “|O ol “10| °“|o o @)
S o) O o) @ o 0 0 0 o) 0 0
c N

il a m’ entarté <SIART> he hit me with a pie

\ J
Y

Source sentence (input)

Abigail See

NNY 19pP03a(d

Attention

« Attention provides a solution to the bottleneck problem.

« Core idea: on each step of the decoder, use direct

connection to the encoder to focus on a particular part of
the source sequence

* First we will show via diagram (no equations), then we will
show with equations

Abigail See

Sequence-to-sequence with attention

dot product

Encoder Attention

@
Q
(0]
Q
m’ entarté <START>

(N J
Y

Source sentence (input)

Y — 0000

Abigail See

H_J

NN 19P03a(d

Sequence-to-sequence with attention

dot product

S

E’ @

o

<

@ ° el (o] (o]

B S ol .Jo| Jo| .[eo

Qrr e @ e ®

L (0] (0] (0] 0]
il a m’ entarté <START>
4 J

Y

Source sentence (input)
Abigail See

H_J

NN 19P03a(d

Sequence-to-sequence with attention

dot product

c

S8 ‘

g 3

I

o) ° ° o] (o]

B S ol .Jo| Jo| .[eo

S e[e))

L (0] (0] (0] (0]
il a m’ entarté <START>
L J

Y

Source sentence (input)
Abigail See

H_J

NN 19P03a(d

Sequence-to-sequence with attention

dot product

S

E’ @

5 5

<

o o [(6)

B35 ol .|o| o

8 0d e| 10 (0]

L e (& e
il a m’ entarté <START>
1\)

Y

Source sentence (input)
Abigail See

NN 19P03a(d

Sequence-to-sequence with attention

Attention
distribution
I_H

Attention
scores

Encoder
RNN
K_H

Abigail See

Onthis decoder timestep, we're

mostly focusing on the first
/ encoder hidden state ("he”)

Take softmax to turn the scores
into a probability distribution

N\

—> 0000

Y — 0000

entarté

J

Source sentence (input)

<START>

NN 19P03a(d

Sequence-to-sequence with attention

Attention Usethe attention distribution to take a
output weighted sum of the encoder hidden
.5 é states.
k= The attention output mostly contains
< % Information from the hidden statesthat
received high attention.
<
@ o}
ERRHE
i o
il a m’ entarté <START>
.)
Y

Source sentence (input)
Abigail See

NN 19P03a(d

Sequence-to-sequence with attention

Attention he
output

-
e
.e®
-
. 0
-t O
.t
e
o

Attention
distribution
f_H
I

I
I
1
>

Attention
scores

@) o) o) o
B < ol .ol fo| .|o o
S o[—le el e >l o
N e o o T o
il a m’ entarté <START>
L J
Y

Source sentence (input)
Abigail See

Concatenate attention output
with decoder hidden state, then
use to compute yi as before

NN 19P03a(d

Sequence-to-sequence with attention

Attention
distribution

Attention
scores
I_H

Encoder
RNN

Abigail See

Attention hit
output T
................. yz
) |
3 / T -
o : . . ? |
| |)I 5 O 0]
ol —le@ o (e i |
o A j | | |
| a m’ entarté <SIART> he
|)
v

Source sentence (input)

/

Sometimes we take the
attention output fromthe
previous step, and also
feed it into the decoder
(along with the usual
decoder input).

NN 19P03a(d

Attention: in equations

- We have encoder hidden states hq,...,hy € R?
« On timestep t, we have decoder hidden state s; € R"
. We get the attention score e’ for this step:

el =[s'hy,...,s] hy] € RY

« We take softmax to get the attention distribution ot for this step (this is
a probability distribution and sums to 1)

o' = softmax(e’) € RY

- Weuse o' totake a weighted sum of the encoder hidden states to
get the attention output a;

a; — Z Ckfhz < Rh
=1

- Finally we concatenate the attention output a; with the decoder
hidden state s: and proceed as in the non-attention seg2seq model

las; s;] € R?P
Abigail See

Attention is great

Attention significantly improves NMT performance

* It's very useful to allow decoder to focus on certain parts of the source
Attention solves the bottleneck problem

- Attention allows decoder to look directly at source; bypass bottleneck
Attention helps with vanishing gradient problem

- Provides shortcut to faraway states

Attention provides some interpretability
« By inspecting attention distribution, we can see

what the decoder was focusing on f.z e 5 < &
* We get (soft) alignment for free! a
 This is cool because we never explicitly trained m’

an alignment system entarte

« The network just learned alignment by itself

Abigail See

Attention is a general Deep Learning technique

- We've seen that attention is a great way to improve the
sequence-to-segquence model for Machine Translation.

- However: You can use attention in many architectures (not
just seg2seq) and many tasks (not just MT)

 More general definition of attention:

» Given a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of
the values, dependent on the query.

« We sometimes say that the guery attends to the values.

« For example, in seg2seq + attention model, each decoder
hidden state (query) attends to all encoder hidden states
(values).

Abigail See

Image Captioning

“straw” “hat” END

START “straw” “hat”

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy

Image Captioning

Recurrent Neural Network

Convolutional Neural Network

Andrej Karpathy

Image Captioning

. conv-128
~ conv-128
maxpool

_ conv-256

~ conv-256
. maxpool

. conv-512

 conv-512

_maxpool

‘f conv-512
_ conv-512

Andrej Karpathy

x0
<START>

<START>

testimage

Image Captioning

test image

~_maxpool

' conv-128

~ conv-128
 maxpool

__conv-256 y0

‘_ conv-256

__maxpool T before:
h =tanh(W,, * x + W,, * h)

_ conv-512
. conv-512

~maxpool hO

Wih

. conv-512

_ conv-512

~ maxpool

T now:
h=tanh(W,, * X+ W,,, *h + W,, *1m)

 FC-4096 @
T I U 967 <START>

Im

<START>

Andrej Karpathy

' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

yO

hO

x0

<START>

<START>

straw

sample!

testimage

Image Captioning

testimage

' conv-128

~ conv-128
~ maxpool

_ conv-256 yO v

~ conv-256

— L]

. conv-512
[

~conv-512

‘f conv-512

conv-512 T T
" maxpool

e bbb = X0
. FC-4096 <START> straw

<START>

Andrej Karpathy

Image Captioning

testimage

. conv-128

~ conv-128
~ maxpool

| conv-256 YO y1

. conv-256

= 1

. conv-512

convs12 sample!

hO | hl

. conv-512
| conv-512 T T
~_maxpool

_ FC-4096 o

e <START> straw hat

. FC-4096

<START>

Andrej Karpathy

Image Captioning

- test image

~ conv-64

__conv-64

 maxpool

. conv-128

_ conv-128
maxpool

. conv-256 y0 yl y2
. conv-256

= L1

| conv-512

. conv-512

{ maxgool ho == hl = h2

[conv-512 '

- maxpool

\—FEA mw‘64 <START> straw hat

<START>

Andrej Karpathy

Image Captioning

_ conv-128
. conv-128

. maxpool

__conv-256
conv-256]
~_maxpool

_conv-512
__conv-512
~_maxpool

. conv-512
. conv-512
L maxpool
~ FC-4096
__FC-4096

Adapted from Andrej Karpathy

testimage

Caption generated:
“straw hat”

\ sample

<END> token

=> finish.

yO yl y2
hO —>| hl h2

x0
<START> straw hat

<START>

"a young boy is holding a 7
baseball bat.’

Andrej Karpathy

Image Captioning

P »'::-] ',\-.j:;‘

“construction worker in orange
safety vest is working on road.’

"a cat is sitting on a couch with a
remote control.”

“two young girls are playing with
lego toy."

"a woman holding a teddy bear in
front of a mirror.”

"'boy is doing backflip on
wakeboard.”

"a horse is standing in the middle
of a road.”

English
Sentence

_.
0D -

—_—

Video Captioning

RNN RNN French
encoder —QQoO— decoder Sentence
Encode —~Q 00| 4oonh, —= Sent
coae decoder entence
Encode @O O gogoder [SeM
ncoae decoder entence
Key Insight:

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]
[Vinyals et al. CVPR’15]

[Venugopalan et. al.
NAACL’15] (this work)

Generate feature representation of the video and “decode” it to a sentence

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Video Captioning

Input Video Convolutional Net

(=)

(=) N

P

= =

Y

L 4 -
° .

\

[HEN\

S
\

[CHEN\

S
\

CHEN\

|:|\ "
1 —>
Iy | [
e — Y
Y — - -
—— - -
A

= =

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Mean across
all frames

Recurrent Net Output
LSTM LSTM A
LSTM_[—=| LSTM |— poy
' '
| LSTM —| LSTM is
v v
LSIM,_'>,_LS{M_,—'> playing
l
L LSTM = LSTM_|—> golf
v v
I LSTM._— <EOS>

Video Captioning

FGM: A person is dancing with the person on the stage. FGM: A person is cutting a potato in the kitchen.
YT: A group of men are riding the forest. YT: A man is slicing a tomato.

I+V: A group of people are dancing. [+V: A man s slicing a carrot.

GT: Many men and women are dancing in the street. GT: A man is slicing carrots.

FGM: A persn is walking with a person inthe forest.

FGM: A person is riding a horse on the stage.
YT: A monkey is walking. P g g

]) YT: A group of playing are playing in the ball.
1+V: A bearis eating a tree. I+V: A basketball player is playing.

GT: Two bear cubs are digging into dirt and plant matter)
GT: Dwayne wade does a fancy layup in an allstar game.
atthe base of a tree.

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

English
Sentence

o

Video Captioning

RNN
encoder

RNN
decoder

—QQo0O—

French
Sentence

Encode

RNN
decoder

—000—

— Sentence

Encode

—> Sentence

RNN
_" decoder

RNN
encoder

RNN

—Q0O0—

—> Sentence

decoder

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]
[Vinyals et al. CVPR’15]

[Venugopalan et. al.
NAACL'15]

[Venugopalan et. al. ICCV’
15] (this work)

Video Captioning

E E r r S2VT Overview
CN NN
Now decode it to a sentence!

o] Cismw [ism [s| s Jus]

| , .
Encoding stage A man is talking

\ J
|

Decoding stage

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

