
CS 1678: Intro to Deep Learning

Recurrent Neural Networks

Prof. Adriana Kovashka
University of Pittsburgh

March 16, 2021

Plan for this lecture

• Recurrent neural networks

– Basics

– Training (backprop through time, vanishing gradient)

– Recurrent networks with gates (GRU, LSTM)

• Applications in NLP and vision

– Neural machine translation (beam search, attention)

– Image/video captioning

Recurrent neural networks

This is a picture of one sky,

one road and one sheep.

The gray sky is over the

gray road. The gray sheep

is by the gray road.

Here we see one road,

one sky and one bicycle.

The road is near the blue

sky, and near the colorful

bicycle. The colorful

bicycle is within the blue

sky.

This is a picture of two

dogs. The first dog is near

the second furry dog. Kulkarni et al., CVPR 2011

Some pre-RNN captioning results

Karpathy and Fei-Fei, CVPR 2015

Results with Recurrent Neural Networks

Recurrent Networks offer a lot of flexibility:

vanilla neural networks

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

e.g. image captioning

image -> sequence of words

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

e.g. sentiment classification

sequence of words -> sentiment

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

e.g. machine translation

seq of words -> seq of words

Andrej Karpathy

Recurrent Networks offer a lot of flexibility:

e.g. video classification on frame level

Andrej Karpathy

Recurrent Neural Network

x

RNN

Andrej Karpathy

RNN

Recurrent Neural Network

x

RNN

y
usually want to

output a prediction

at some time steps

Adapted from Andrej Karpathy

Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

new state old state input vector at

some time step
some function

with parameters W

Andrej Karpathy

Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

Notice: the same function and the same set

of parameters are used at every time step.

Andrej Karpathy

x

RNN

y

(Vanilla) Recurrent Neural Network
The state consists of a single “hidden” vector h:

Andrej Karpathy

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

RNN

x

y

Andrej Karpathy

Example

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Andrej Karpathy

Example

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Andrej Karpathy

Example

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Andrej Karpathy

Example

What kind of loss can we formulate?

What do we still need to specify, for this to work?

Training a Recurrent Neural Network

• Get a big corpus of text which is a sequence of words

• Feed into RNN; compute output distribution for every step t.

• i.e. predict probability distribution of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and true next word (one-hot); V is vocabulary

• Average this to get overall loss for entire training set:

Adapted from Abigail See

The vanishing/exploding gradient problem

• The error at a time step ideally can tell a previous time step
from many steps away to change during backprop

• Multiply the same matrix at each time step during backprop

xt−1 xt xt+1

ht−1 ht

W

ht+1

W

yt−1 yt yt+1

Richard Socher

The vanishing gradient problem

• Total error is the sum of each error at time steps t

• Chain rule:

• More chain rule:

• Derivative of vector wrt vector is a Jacobian matrix of partial
derivatives; norm of this matrix can become very small or very
large quickly [Bengio et al 1994, Pascanu et al. 2013], leading
to vanishing/exploding gradient

Adapted from Richard Socher

What uses of language models from

everyday life can you think of?

Now in more detail…

• Language Modeling is the task of predicting what word comes next.

• More formally: given a sequence of words
compute the probability distribution of the next word

,
:

where can be any word in the vocabulary

• A system that does this is called a Language Model.

Language Modeling

laptops

the students opened their
exams

minds

books

Abigail See

• Question: How do we get these n-gram and (n-1)-gram probabilities?

• Answer: By counting them in some large corpus of text!

(statistical
approximation)

n-gram Language Models

depends only on the

(definition of
conditional prob)

(assumption)

• First we make a simplifying assumption:
preceding n-1 words.

n-1 words

prob of a n-gram

prob of a (n-1)-gram

Abigail See

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem: What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any !

Sparsity Problem 2

Problem: What if “students
opened their ” never
occurred in data? Then
has probability 0!

Sparsity Problem 1

(Partial) Solution: Add small 𝛿
to the count for every .
This is called smoothing.

(Partial) Solution: Just condition
on “opened their” instead.
This is called backoff.

Abigail See

A fixed-window neural Language Model

the students opened their

books
laptops

concatenated word embeddings

words / one-hot vectors

hidden layer

a zoo

output distribution

Abigail See

• Fixed window is too small
• Enlarging window enlarges
• Window can never be large enough!

and are multiplied by
completely different weights in

A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all observed n-grams

Remaining problems:

•
.

No symmetry in how the inputs are
processed.

We need a neural
architecture that can

process any length input

Abigail See

Recurrent Neural Networks (RNN)
A family of neural architectures

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the
same weights
repeatedly

outputs
(optional)

Abigail See

A RNN Language Model

opened theirwords / one-hot vectors the students

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could be much
longer, but this slide doesn’t have space!

hidden states

is the initial hidden state

Abigail See

A RNN Language Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length input
• Computation for step t

can (in theory) use
information from many
steps back

• Model size doesn’t
increase for longer input

• Same weights applied on
every timestep, so there is
symmetry in how inputs are
processed

RNN Disadvantages:
• Recurrent computation is slow
• In practice, difficult to access

information from many steps back

Abigail See

Recall: Training a RNN Language Model

• Get a big corpus of text which is a sequence of words

• Feed into RNN-LM; compute output distribution for every step t.

• i.e. predict probability distribution of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training set:

Abigail See

Training a RNN Language Model
= negative log prob

of “students”

Loss

Predicted
prob dists

…

Corpus the students opened their exams …

Abigail See

Training a RNN Language Model
= negative log prob

of “opened”

…

Loss

Predicted
prob dists

Corpus the students opened their exams …

Abigail See

Training a RNN Language Model
= negative log prob

of “their”

…

Loss

Predicted
prob dists

Corpus the students opened their exams …

Abigail See

Training a RNN Language Model
= negative log prob

of “exams”

…

Loss

Predicted
prob dists

Corpus the students opened their exams …

Abigail See

Training a RNN Language Model

+ + + + … =

…

Loss

Predicted
prob dists

Corpus the students opened their exams …

Abigail See

Backpropagation for RNNs

……

Question: What’s the derivative of w.r.t. the repeated weight matrix ?

Answer:

“The gradient w.r.t. a repeated weight
is the sum of the gradient

w.r.t. each time it appears”

Abigail See

Multivariable Chain Rule

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Abigail See

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs: Proof sketch

…

In our example: Apply the multivariable chain rule:
= 1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Abigail See

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

……

Question: How do we
calculate this?

Answer: Backpropagate over
timesteps i=t,…,0, summing
gradients as you go.
This algorithm is called
“backpropagation through time”

Abigail See

Vanishing gradient intuition

Abigail See

Vanishing gradient intuition

?

Abigail See

Vanishing gradient intuition

chain rule!

Abigail See

Vanishing gradient intuition

chain rule!

Abigail See

Vanishing gradient intuition

chain rule!

Abigail See

Vanishing gradient intuition

What happens if these are small?

Vanishing gradient problem:
When these are small, the
gradient signal gets smaller

and smaller as it
backpropagates further

Abigail See

Vanishing gradient proof sketch

• Recall:

• Therefore:

• Consider the gradient of the loss on step i, with respect
to the hidden state on some previous step j.

(chain rule)

(value of)

If Wh is small, then this term gets
vanishingly small as i and j get further apart

(chain rule)

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

Abigail See

http://proceedings.mlr.press/v28/pascanu13.pdf

Vanishing gradient proof sketch

• Consider matrix L2 norms:

• Pascanu et al showed that that if the largest eigenvalue of Wh is
less than 1, then the gradient will shrink exponentially

• There’s a similar proof relating a largest eigenvalue >1 to
exploding gradients

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.
http://proceedings.mlr.press/v28/pascanu13.pdf

Adapted from Abigail See

http://proceedings.mlr.press/v28/pascanu13.pdf

Why is vanishing gradient a problem?

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-term effects.

Abigail See

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that the
printer was out of toner. She went to the stationery store to buy
more toner. It was very overpriced. After installing the toner into
the printer, she finally printed her

• To learn from this training example, the RNN-LM needs to
model the dependency between “tickets” on the 7th step and
the target word “tickets” at the end.

• But if gradient is small, the model can’t learn this dependency

• So the model is unable to predict similar long-distance
dependencies at test time

Abigail See

• LM task: The writer of the books

• Correct answer: The writer of the books is planning a sequel

• Syntactic recency: The writer of the books is (correct)

• Sequential recency: The writer of the books are (incorrect)

• Due to vanishing gradient, RNN-LMs are better at learning from
sequential recency than syntactic recency, so they make this
type of error more often than we’d like [Linzen et al 2016]

Effect of vanishing gradient on RNN-LM
is

are

“Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016. https://arxiv.org/pdf/1611.01368.pdf

Abigail See

https://arxiv.org/pdf/1611.01368.pdf

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD update step
becomes too big:

learning rate

gradient

• This can cause bad updates: we take too large a step and reach
a bad parameter configuration (with large loss)

• In the worst case, this will result in Inf or NaN in your network
(then you have to restart training from an earlier checkpoint)

Abigail See

Gradient clipping: solution for exploding gradient

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. http://proceedings.mlr.press/v28/pascanu13.pdf

• Gradient clipping: if the norm of the gradient is greater than
some threshold, scale it down before applying SGD update

• Intuition: take a step in the same direction, but a smaller step

Abigail See

http://proceedings.mlr.press/v28/pascanu13.pdf

RNNs with Gates

How to fix vanishing gradient problem?

Richard Socher

• The main problem is that it’s too difficult for the RNN to learn to
preserve information over many timesteps.

• In a vanilla RNN, the hidden state is constantly being rewritten

• How about a RNN with separate memory?

Gated Recurrent Units (GRUs)

• More complex hidden unit computation in
recurrence!

• Introduced by Cho et al. 2014

• Main ideas:

• keep around memories to capture long distance
dependencies

• allow error messages to flow at different strengths
depending on the inputs

Richard Socher

Gated Recurrent Units (GRUs)

• Standard RNN computes hidden layer at next time step
directly:

• GRU first computes an update gate (another layer)
based on current input word vector and hidden state

• Compute reset gate similarly but with different weights

Richard Socher

Gated Recurrent Units (GRUs)

• Update gate

• Reset gate

• New memory content:
If reset gate unit is ~0, then this ignores previous
memory and only stores the new word information

• Final memory at time step combines current and
previous time steps:

Richard Socher

Gated Recurrent Units (GRUs)

rtrt-1

zt-1

~ht~ht-1

zt

ht-1 ht

xtxt-1Input:

Reset gate

Update gate

Memory (reset)

Final memory

Richard Socher

Gated Recurrent Units (GRUs)

• If reset r is close to 0, ignore
previous hidden state: Allows
model to drop information that
is irrelevant in the future

• If update z is close to 1, can copy information through
many time steps, i.e. copy-paste state: Less vanishing
gradient!

• Units with short-term dependencies often have reset
gates (r) very active; ones with long-term
dependencies have active update gates (z)

Adapted from Richard Socher

Long-short-term-memories (LSTMs)
• Proposed by Hochreiter and Schmidhuber in 1997

• We can make the units even more complex

• Allow each time step to modify

• Input gate (current cell matters)

• Forget (gate 0, forget past)

• Output (how much cell is exposed)

• New memory cell

• Final memory cell:

• Final hidden state:

Adapted from Richard Socher

Long-short-term-memories (LSTMs)

Intuition: memory cells can keep information intact, unless inputs makes them
forget it or overwrite it with new input

Cell can decide to output this information or just store it

Richard Socher, figure from wildml.com

Review on your own: Gated Recurrent Units (GRU)

• Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.

• On each timestep t we have input and hidden state (no cell state).

"Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of
hidden state are updated vs preserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden state content

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

How does this solve vanishing gradient?
GRU makes it easier to retain info long-term
(e.g. by setting update gate to 0)

Abigail See

https://arxiv.org/pdf/1406.1078v3.pdf

We have a sequence of inputs , and we will compute a sequence of hidden states
and cell states . On timestep t:

Review on your own: Long Short-Term Memory (LSTM)

A
ll

th
es

e
ar

e
ve

ct
o

rs
 o

f
sa

m
e

le
n

gt
h

n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hidden state

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, and write
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

Gates are applied using
element-wise product

Abigail See

ct-1

ht-1

ct

ht

ft

it ot

ct

t
~c

Review on your own: Long Short-Term Memory (LSTM)

You can think of the LSTM equations visually like this:

Compute the
forget gate

Forget some
cell content

Compute the
input gate

Compute the
new cell content

Compute the
output gate

Write some new cell content

Output some cell content
to the hidden state

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Abigail See

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM vs GRU

• Researchers have proposed many gated RNN variants, but LSTM
and GRU are the most widely-used

• The biggest difference is that GRU is quicker to compute and has
fewer parameters

• There is no conclusive evidence that one consistently performs
better than the other

• LSTM is a good default choice (especially if your data has
particularly long dependencies, or you have lots of training data)

• Rule of thumb: start with LSTM, but switch to GRU if you want
something more efficient

Abigail See

LSTMs: real-world success

• In 2013-2015, LSTMs started achieving state-of-the-art results
for sequence modeling

• Successful tasks include: handwriting recognition, speech
recognition, machine translation, parsing, image captioning

• LSTM became the dominant approach

• Starting in 2019, other approaches (e.g. Transformers) became
more dominant for certain NLP tasks (will discuss next lecture)

• For example in WMT (machine translation competition):

• In WMT 2016, the summary report contains ”RNN” 44 times

• In WMT 2018, the report contains “RNN” 9 times and
“Transformer” 63 times

Source: "Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf
Source: "Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf

Adapted from Abigail See

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.

• Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates

• Thus lower layers are learnt very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

For example:

• Residual connections aka “ResNet”

• Also known as skip-connections

• The identity connection
preserves information by default

• This makes deep networks much
easier to train

"Deep Residual Learning for Image Recognition", He et al, 2015. https://arxiv.org/pdf/1512.03385.pdf

Abigail See

https://arxiv.org/pdf/1512.03385.pdf

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures (including
feed-forward and convolutional), especially deep ones.

• Due to chain rule / choice of nonlinearity function, gradient can become
vanishingly small as it backpropagates

• Thus lower layers are learnt very slowly (hard to train)

• Solution: lots of new deep feedforward/convolutional architectures that
add more direct connections (thus allowing the gradient to flow)

For example:

• Dense connections aka “DenseNet”

• Directly connect everything to everything!

”Densely Connected Convolutional Networks", Huang et al, 2017. https://arxiv.org/pdf/1608.06993.pdf

Abigail See

https://arxiv.org/pdf/1608.06993.pdf

Bidirectional RNNs: motivation
Task: Sentiment Classification

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the left context
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

Abigail See

Bidirectional RNNs

terribly exciting !the movie was

Forward RNN

Backward RNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and right context!

Abigail See

Bidirectional RNNs

Forward RNN

Backward RNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTM or GRU computation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of the network.

Generally, these
two RNNs have
separate weights

On timestep t:

Abigail See

Multi-layer RNNs

terribly exciting !the movie was

RNN layer 1

RNN layer 2

RNN layer 3

The hidden states from RNN layer i
are the inputs to RNN layer i+1

Abigail See

Evaluating Language Models

• This is equal to the exponential of the cross-entropy loss :

• The standard evaluation metric for Language Models is perplexity.

Normalized by
number of words

Inverse probability of corpus, according to Language Model

Lower perplexity is better!

Abigail See

Recap thus far

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks that:

• Take sequential input of any length

• Apply the same weights on each step

• Can optionally produce output on each step

• Vanishing gradient problem: what it is, why it happens, and
why it’s bad for RNNs

• LSTMs and GRUs: more complicated RNNs that use gates to
control information flow; more resilient to vanishing gradients

Abigail See

Plan for this lecture

• Recurrent neural networks

– Basics

– Training (backprop through time, vanishing gradient)

– Recurrent networks with gates (GRU, LSTM)

• Applications in NLP and vision

– Neural machine translation (beam search, attention)

– Image/video captioning

Applications

Why should we care about Language Modeling?

• Language Modeling is a benchmark task that helps us
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks,
especially those involving generating text or
estimating the probability of text:

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

Abigail See

Generating text with a RNN Language Model
You can use a RNN Language Model to generate text by repeated sampling.
Sampled output is next step’s input.

my favorite season is

…

favorite season is

sample sample sample

spring

sample

spring
Abigail See

Generating text with a RNN Language Model

• Let’s have some fun!

• You can train a RNN-LM on any kind of text, then generate text
in that style.

• RNN-LM trained on Obama speeches:

Source: https://medium.com/@samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

Abigail See

https://medium.com/%40samim/obama-rnn-machine-generated-political-speeches-c8abd18a2ea0

• Let’s have some fun!

• You can train a RNN-LM on any kind of text, then generate text
in that style.

• RNN-LM trained on Harry Potter:

Source: https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

Generating text with a RNN Language Model

Abigail See

https://medium.com/deep-writing/harry-potter-written-by-artificial-intelligence-8a9431803da6

• Let’s have some fun!

• You can train a RNN-LM on any kind of text, then generate text
in that style.

• RNN-LM trained on paint color names:

Source: http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

This is an example of a character-level RNN-LM (predicts what character comes next)

Generating text with a RNN Language Model

Abigail See

http://aiweirdness.com/post/160776374467/new-paint-colors-invented-by-neural-network

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

35

Andrej Karpathy

Generating poetry with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016

train more

train more

train more

Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

36

at first:

Andrej Karpathy

More info: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generating poetry with RNNs

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

37

Andrej Karpathy

Generating poetry with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

39

Andrej Karpathy

Generating textbooks with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016

Generated

C code

Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

42

Andrej Karpathy

Generating code with RNNs

Neural MachineTranslation

• Neural Machine Translation (NMT) is a way to doMachine

Translation with a single neural network

• The neural network architecture is called sequence-to-sequence

(aka seq2seq) and it involves twoRNNs.

Abigail See

E
n
co

d
e
r
R

N
N

Neural Machine Translation(NMT)

<START> he hit me with a pie

Source sentence (input)

il a m’ entarté

The sequence-to-sequence model

Encoding of the sourcesentence.

Target sentence (output)

D
e
co

d
e
r
R

N
N

Encoder RNN produces

an encoding of the

source sentence.

Provides initial hidden state

for DecoderRNN.

Decoder RNN is a Language Model that generates

target sentence, conditioned on encoding.

he

a
rg

m
a
x

a
rg

m
a
x

hit

a
rg

m
a
x

me

Note: This diagram shows test time behavior:

decoder output is fed in as next step’s input

with a pie <END>

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

Abigail See

Greedydecoding

• We saw how to generate (or “decode”) the target sentence by

taking argmax on each step of thedecoder

he hit me with a pie <END>

<START> he hit me with a pie

• This is greedy decoding (take most probable word on eachstep)

• Problems with thismethod?

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

a
rg

m
a
x

Abigail See

Problems with greedydecoding

• Greedy decoding has no way to undodecisions!

• Input: il a m’entarté

• → he

• → he hit

• → he hit a

(he hit me with a pie)

(whoops! no going backnow…)

• How to fix this?

Abigail See

Exhaustive searchdecoding

• Ideally we want to find a (length T) translation y that maximizes

• We could try computing all possible sequences y

• This means that on each step t of the decoder, we’re tracking VT

possible partial translations, where V is vocabulary size

• This O(VT) complexity is far too expensive!

Abigail See

Beam searchdecoding

• Core idea: On each step of decoder, keep track of the k

most probable partial translations (hypotheses)

• k is the beam size (in practice around 5 to 10)

• A hypothesis has a score which is its log probability:

• Scores are all negative, and higher score is better

• We search for high-scoring hypotheses, tracking top k on each step

• Beam search is not guaranteed to find optimal solution

• But much more efficient than exhaustive search!

Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

<START>

Calculate prob

dist of nextword
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

<START>

he

I

-0.7 = log PLM(he|<START>)

-0.9 = log PLM(I|<START>)

Take top k words

and compute scores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

-0.7

-0.9

-1.6 = log PLM(was|<START> I) + -0.9

-1.8 = log PLM(got|<START> I) + -0.9

-1.7 = log PLM(hit|<START> he) + -0.7

-2.9 = log PLM(struck|<START> he) + -0.7

For each of the k hypotheses, find

top k next words and calculatescores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

Of these k2 hypotheses,

just keep k with highestscores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5 = log PLM(me|<START> he hit) +-1.7

-2.8 = log PLM(a|<START> he hit) +-1.7

-3.8 = log PLM(struck|<START> I was) +-1.6

-2.9 = log PLM(hit|<START> I was) +-1.6

For each of the k hypotheses, find

top k next words and calculatescores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

Of these k2 hypotheses,

just keep k with highestscores
Abigail See

Beam search decoding:example

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

Beam size = k = 2. Blue numbers =

-4.0

-3.5

-3.3

-3.4

For each of the k hypotheses, find

top k next words and calculatescores
Abigail See

Beam search decoding:example

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

Beam size = k = 2. Blue numbers =

-4.0

-3.5

-3.3

-3.4

Of these k2 hypotheses,

just keep k with highestscores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

For each of the k hypotheses, find

top k next words and calculatescores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

Of these k2 hypotheses,

just keep k with highestscores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

For each of the k hypotheses, find

top k next words and calculatescores
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

This is the top-scoring hypothesis!
Abigail See

Beam search decoding:example
Beam size = k = 2. Blue numbers =

hit

struck

was

got

a

me

hit

struck

tart

pie

with

on

in

with

a

one

pie

tart

pie

tart

<START>

he

I

-0.7

-0.9

-1.6

-1.8

-1.7

-2.9

-2.5

-2.8

-3.8

-2.9

-3.5

-3.3

-4.0

-3.4

-3.7

-4.3

-4.5

-4.8

-4.3

-4.6

-5.0

-5.3

Backtrack to obtain the fullhypothesis
Abigail See

Beam search decoding: finishingup

• We have our list of completed hypotheses.

• How to select top one with highest score?

• Each hypothesis on our list has a score

• Problem with this: longer hypotheses have lower scores

• Fix: Normalize by length. Use this to select top one instead:

Abigail See

How do we evaluate MachineTranslation?

BLEU (Bilingual Evaluation Understudy)

• BLEU compares the machine-written translation to one or

several human-written translation(s), and computes a

similarity score based on:

• n-gram precision (usually for 1, 2, 3 and 4-grams)

• Plus a penalty for too-short system translations

• BLEU is useful but imperfect

• There are many valid ways to translate a sentence

• So a good translation can get a poor BLEU score

because it has low n-gram overlap with the human

translation
Source: ” BLEU: a Method for Automatic Evaluation of Machine Translation", Papineni et al, 2002.

Abigail See

MT progress overtime
[Edinburgh En-De WMT newstest2013 Cased BLEU; NMT 2015 from U.Montréal]

2013 2014 2015 2016

Phrase-based SMT Syntax-based SMT NeuralMT
25

20

15

10

5

0

Source: http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf
Abigail See

http://www.meta-net.eu/events/meta-forum-2016/slides/09_sennrich.pdf

NMT: the biggest success story of NLPDeep Learning

Neural Machine Translation went from a fringe research

activity in 2014 to the leading standard method in 2016

• 2014: First seq2seq paper published

• 2016: Google Translate switches from SMT to NMT

• This is amazing!

• SMT systems, built by hundreds of engineers over many

years, outperformed by NMT systems trained by a

handful of engineers in a few months

Abigail See

So is Machine Translation solved?

• Nope!

• Many difficulties remain:

• Out-of-vocabulary words

• Domain mismatch between train and test data

• Maintaining context over longer text

• Low-resource language pairs

Further reading: “Has AI surpassed humans at translation? Not even close!”

https://www.skynettoday.com/editorials/state_of_nmt

Abigail See

https://www.skynettoday.com/editorials/state_of_nmt

So is Machine Translation solved?

• Nope!

• Using common sense is still hard

?

Abigail See

So is Machine Translation solved?

• Nope!

• NMT picks up biases in training data

Source: https://hackernoon.com/bias-sexist-or-this-is-the-way-it-should-be-ce1f7c8c683c

Didn’t specifygender

Abigail See

NMT research continues

NMT is the flagship task for NLP Deep Learning

• NMT research has pioneered many of the recent

innovations of NLP Deep Learning

• In 2019: NMT research continues to thrive

• Researchers have found many, many improvements to

the “vanilla” seq2seq NMT system

• But one improvement is so integral that it is the new

vanilla…

ATTENTION

Abigail See

Sequence-to-sequence: the bottleneckproblem
E

n
co

d
e
rR

N
N

Source sentence (input)

<START> he hit me with a pieil a m’ entarté

he hit me with a pie <END>

D
e
co

d
e
r
R

N
N

Target sentence (output)

Encoding of the

source sentence.

This needs to captureall

information about the

source sentence.

Information bottleneck!

Abigail See

Attention

• Attention provides a solution to the bottleneck problem.

• Core idea: on each step of the decoder, use direct

connection to the encoder to focus on a particular part of

the source sequence

• First we will show via diagram (no equations), then we will

show with equations

Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

sc
o
re

s

dot product

Source sentence (input)
Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

sc
o
re

s

On this decoder timestep, we’re

mostly focusing on the first

encoder hidden state (”he”)

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

Take softmax to turn thescores

into a probability distribution

Source sentence (input)
Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention

output
Use the attention distribution to takea

weighted sum of the encoder hidden

states.

The attention output mostly contains

information from the hidden statesthat

received high attention.

Source sentence (input)
Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START>il a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

A
tt
e
n
tio

n

sc
o
re

s

Attention

output
Concatenate attention output

with decoder hidden state, then

use to compute 𝑦1 as before

𝑦1

he

Source sentence (input)
Abigail See

Sequence-to-sequence withattention
E

n
co

d
e
r

R
N

N

<START> heil a m’ entarté

D
e
co

d
e
r
R

N
N

A
tt
e
n
tio

n

sc
o
re

s

A
tt
e
n
tio

n

d
is

tr
ib

u
ti
o
n

Attention

output

𝑦2

hit

Sometimes we take the

attention output fromthe

previous step, and also

feed it into the decoder

(along with the usual

decoder input).

Source sentence (input)
Abigail See

Attention: in equations

• We have encoder hidden states

• On timestep t, we have decoder hidden state

• We get the attention scores for this step:

• We take softmax to get the attention distribution

a probability distribution and sums to 1)

for this step (this is

• We use to take a weighted sum of the encoder hidden states to

get the attention output

• Finally we concatenate the attention output with the decoder

hidden state and proceed as in the non-attention seq2seq model

Abigail See

Attention is great

• Attention significantly improves NMT performance

• It’s very useful to allow decoder to focus on certain parts of the source

• Attention solves the bottleneck problem

• Attention allows decoder to look directly at source; bypass bottleneck

• Attention helps with vanishing gradient problem

• Provides shortcut to faraway states

• Attention provides some interpretability

• By inspecting attention distribution, we can see

what the decoder was focusing on

• We get (soft) alignment for free!

• This is cool because we never explicitly trained

an alignment system

• The network just learned alignment by itself

h
e

h
it

m
e

w
it
h

a p
ie

il

a

m’

entarté

Abigail See

Attention is a general Deep Learning technique

• We’ve seen that attention is a great way to improve the

sequence-to-sequence model for Machine Translation.

• However: You can use attention in many architectures (not

just seq2seq) and many tasks (not just MT)

• More general definition of attention:

• Given a set of vector values, and a vector query,

attention is a technique to compute a weighted sum of

the values, dependent on the query.

• We sometimes say that the query attends to the values.

• For example, in seq2seq + attention model, each decoder

hidden state (query) attends to all encoder hidden states

(values).
Abigail See

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy

Image Captioning

Convolutional Neural Network

Recurrent Neural Network

Andrej Karpathy

Image Captioning

test image

x0
<START>

<START>

Andrej Karpathy

Image Captioning

h0

y0

<START>

test image

before:

h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * im)

im

Wih

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

sample!

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

sample!

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

h2

y2

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

h2

y2

sample

<END> token

=> finish.

straw hat

<START>

Adapted from Andrej Karpathy

Image Captioning

Caption generated:
“straw hat”

x0
<START>

Andrej Karpathy

Image Captioning

Key Insight:

Generate feature representation of the video and “decode” it to a sentence

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]

[Vinyals et al. CVPR’15]

English

Sentence

RNN

encoder

RNN

decoder
French

Sentence

Encode
RNN

decoder
Sentence

Encode
RNN

decoder
Sentence

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

[Venugopalan et. al.

NAACL’15] (this work)

Video Captioning

Input Video Output

A

...

boy

is

playing

golf

<EOS>

Convolutional Net Recurrent Net

LSTM LSTM

LSTM LSTM

LSTM LSTM

LSTM LSTM

LSTM LSTM

LSTM LSTM

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Video Captioning

Mean across

all frames

FGM: A person is dancing with the person on the stage.

YT: A group of men are riding the forest.

I+V: A group of people are dancing.

GT: Many men and women are dancing in the street.

FGM: A person is cutting a potato in the kitchen.

YT: A man is slicinga tomato.

I+V:Amanisslicing a carrot.

GT: A man is slicing carrots.

FGM: A person is walkingwith a person in the forest.

YT: A monkey is walking.

I+V:Abear is eating a tree.

GT: Two bear cubs are digging into dirt and plant matter

at the base of a tree.

FGM: A person is riding a horse on the stage.

YT: A group of playing are playing in the ball.

I+V:Abasketball player is playing.

GT: Dwayne wade does a fancy layup in an allstar game.

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Video Captioning

Encode

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]

[Vinyals et al. CVPR’15]

English

Sentence

RNN

encoder

RNN

decoder
French

Sentence

Encode
RNN

decoder
Sentence

Encode
RNN

decoder
Sentence [Venugopalan et. al.

NAACL’15]

RNN

decoder
Sentence

RNN

encoder
[Venugopalan et. al. ICCV’

15] (this work)

3

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

Video Captioning

S2VT Overview

LSTM LSTMLSTMLSTM LSTM LSTMLSTMLSTM

LSTM LSTMLSTMLSTM LSTM LSTMLSTMLSTM

CNN CNN CNN CNN

A man is

...

talking ...
Encoding stage

Decoding stage

Now decode it to a sentence!

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

Video Captioning

