
CS 1678: Intro to Deep Learning

Convolutional Neural Networks

Prof. Adriana Kovashka
University of Pittsburgh

March 2, 2021

Plan for this lecture

• Motivation: Scanning for patterns

• Convolutional network operations

• Common architectures

• Visualizing convolutional networks

• Applications in computer vision

input layer
output layer

• Can recognize patterns in data (e.g. digits)

Adapted from Bhiksha Raj

Neural networks so far

• The green pattern looks more like the weights

pattern (black) than the red pattern

– The green pattern is more correlated with the weights

Correlation =0.57 Correlation =0.82
1 𝑖𝑓Σ 𝑤ixi ≥ 𝑇

𝑦 = {
0 𝑒𝑙𝑠𝑒

4

Bhiksha Raj

The weights look for patterns

• Does this signal contain the word “Welcome”?

• Compose a NN for this problem
– Assuming all recordings are exactly the same length

Bhiksha Raj

A problem

Finding aWelcome

• Trivial solution:Train a NN for the entire

recording

Bhiksha Raj

• Problem with trivial solution: Network that finds a “welcome”

in the top recording will not find it in the lower one

– Unless trained with both

– Will require a very large network and a large amount of training

data to cover every case

Bhiksha Raj

Finding aWelcome

• Need a simple network that will fire

regardless of the location of “Welcome”

– and not fire when there is none

Bhiksha Raj

Finding aWelcome

• Is there a flower in any of these images?

Bhiksha Raj

Flower

• Will a NN that recognizes the left image as a flower

also recognize the one on the right as a flower?
in

p
u
t la

ye
r

o
u
tp

u
t
la

ye
r

Bhiksha Raj

• Need a network that will “fire” regardless of the

precise location of the target object

Flower

The need for shift invariance

• In many problems the location of a pattern is not important

– Only the presence of the pattern is important

• Conventional NNs are sensitive to location of pattern

– Moving it by one component results in an entirely different

input that the NN won't recognize

• Requirement: Network must be shift invariant

Bhiksha Raj

• Scan for the target word

– The audio signals in a “window” are input to a

“welcome-detector” NN

Adapted from Bhiksha Raj

Solution: Scan

• “Does welcome occur in this recording?”

– Maximum of all outputs (Equivalent of Boolean OR)

– Or more complex function

Adapted from Bhiksha Raj

Solution: Scan

2-d analogue: Does this picture have a flower?

• Scan for the desired object

• “Look” for the target object at each position

• At each location, entire region is sent through NN

Bhiksha Raj

A giant net with common identical subnets

• Determine if any of the locations had a flower

• Each dot in the right represents the output of the NN when

it classifies one location in the input figure

• Look at the maximum value

• Or pass it through a simple NN (e.g. linear combination +

softmax)

Adapted from Bhiksha Raj

– Assume N inputs and M outputs

• The weights matrix is a full N x M matrix
– Requiring N*M unique parameters

Regular network

• Consider the first layer

(1) (1)

11 12 13 14 1M

21 22 23 24 2M

31 32 33 34 3M

41 42 43 44 4M

N1 N2 N3 N4 NM

Bhiksha Raj

Scanning networks

• In a scanning NN each neuron is connected to a subset of

neurons in the previous layer

– The weights matrix is sparse

– The weights matrix is block structured with identical blocks

– The network is a shared parameter model

(1)

11 12

21 22

31 32

11 12

21 22

31 32

11 12

31 32

(1)

time

Adapted from Bhiksha Raj

Training the network

• These are really just large networks

• Can use conventional backpropagation to learn parameters

• Backprop learns a network that maps the training inputs to

the target binary outputs

Bhiksha Raj

Training the network: constraint

• These are shared parameter networks

– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the

subnet must equally update all copies

Bhiksha Raj

Convolutional Neural Networks (CNN)

• Neural network with specialized

connectivity structure

• Stack multiple stages of feature

extractors

• Higher stages compute more global,

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

• Feed-forward feature extraction:

1. Convolve input with learned filters

2. Apply non-linearity

3. Spatial pooling (downsample)

• Recent architectures have additional

operations (to be discussed)

• Trained with some loss, backprop

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…

1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus

2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus

Krizhevsky et al.

3. Spatial Pooling

• Sum or max over non-overlapping /

overlapping regions

Rob Fergus, figure from Andrej Karpathy

3. Spatial Pooling

• Sum or max over non-overlapping /

overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus

Goodfellow DL book

Background: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Background: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Background: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Background: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Background: Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Source: S. Seitz

Background: Moving Average In 2D

Image filtering

• Compute a function of the local neighborhood at
each pixel in the image

– Function specified by a “filter” or mask saying how to
combine values from neighbors.

– Element-wise multiplication

• Uses of filtering:

– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Adapted from Derek Hoiem

Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood around
image pixel F[i,j]

Attribute uniform weight
to each pixel

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

Non-uniform weights

Kristen Grauman

Correlation filtering

Filtering an image: replace each pixel with a linear combination of
its neighbors.

The filter a.k.a. kernel a.k.a. mask H[u,v] is the prescription for the
weights in the linear combination.

This is called cross-correlation, denoted

Adapted from Kristen Grauman

Averaging filter

• What values belong in the kernel H for the moving average
example?

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

“box filter”

?

Kristen Grauman

Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?
Kristen Grauman

Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have

the most influence on the output?

This kernel is an
approximation of a 2d
Gaussian function:

Source: S. Seitz

Convolution

• Convolution:

– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for

convolution

operator

h

F

Kristen Grauman

Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?

Kristen Grauman

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

(0, 0)

(i, j)

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

v = 0

(0, 0)

(i, j)

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

v = 0

v = +1

(0, 0)

(i, j)

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

v = 0

v = +1

u = 0, v = -1

(0, 0)

(i, j)

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

(0, 0)

(i, j)

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

v = 0

(0, 0)

(i, j)

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

v = 0

v = +1

(0, 0)

(i, j)

Convolution vs. correlation

Convolution

Cross-correlation
5 2 5 4 4

5 200 3 200 4

1 5 5 4 4

5 5 1 1 2

200 1 3 5 200

1 200 200 200 1

F

.06 .12 .06

.12 .25 .12

.06 .12 .06

H

u = -1, v = -1

v = 0

v = +1

u = 0, v = -1

(0, 0)

(i, j)

Predict the outputs using
correlation filtering

000

010

000

* = ?

000

100

000

* = ?

111
111
111

000
020
000

-* = ?

Kristen Grauman

Practice with linear filters

000

010

000

Original

?

Source: D. Lowe

Practice with linear filters

000

010

000

Original Filtered

(no change)

Source: D. Lowe

Practice with linear filters

000

100

000

Original

?

Source: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

by 1 pixel

with

correlation

Source: D. Lowe

Practice with linear filters

Original

?
111

111

111

Source: D. Lowe

Practice with linear filters

Original

111

111

111

Blur (with a

box filter)

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000

- ?

Source: D. Lowe

Practice with linear filters

Original

111
111
111

000
020
000

-

Sharpening filter:
accentuates differences with
local average

Source: D. Lowe

Sharpening

Kristen Grauman

-101

-202

-101

* =

Slide credit: Derek Hoiem

Filters for computing gradients

Texture representation: example

original image

derivative filter
responses, squared

statistics to summarize
patterns in small

windows

mean
d/dx
value

mean
d/dy
value

Win. #1 4 10

…

Kristen Grauman

Texture representation: example

original image

derivative filter
responses, squared

statistics to summarize
patterns in small

windows

mean
d/dx
value

mean
d/dy
value

Win. #1 4 10

Win.#2 18 7

…

Kristen Grauman

Texture representation: example

original image

derivative filter
responses, squared

statistics to summarize
patterns in small

windows

mean
d/dx
value

mean
d/dy
value

Win. #1 4 10

Win.#2 18 7

Win.#9 20 20

…

…

Kristen Grauman

[r(1,1)
1, r(1,1)

2, …, r(1,1)
38]

Vectors of texture responses

To represent pixel, form a
“feature vector” from the
responses at that pixel.

Pixel location
(row, column)

Filter ID

[r(1,2)
1, r(1,2)

2, …, r(1,2)
38]

[r(W,H)
1, r(W,H)

2, …, r(W,H)
38]

…

[mean(r(:)
1), mean(r(:)

2), …, mean(r(:)
38)]

To represent image, compute
statistics over all pixel feature
vectors, e.g. their mean.

You try: Can you match the texture

to the response?

Mean abs responses

Filters
A

B

C

1

2

3

Derek Hoiem

Representing texture by mean abs

response

Mean abs responses

Filters

Derek Hoiem

32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

3

28

28

6

CONV,

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

32

3

CONV,

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,

ReLU

e.g. 10

5x5x6

filters

CONV,

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy

Preview
[From recent Yann

LeCun slides]

Convolutions: More detail

Andrej Karpathy

example 5x5 filters
(32 total)

We call the layer convolutional

because it is related to convolution

of two signals:

Element-wise multiplication and sum

of a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman

A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

=> 5x5 output

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy

N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1

Goodfellow DL book

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy

Putting it all together

Andrej Karpathy

Some Common Architectures

Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:

CONV1

MAX POOL1

NORM1

CONV2

MAX POOL2

NORM2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 - 9
8

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)

-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons

(class scores)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13

(ZFNet)

-> 7.3% top 5 error in ILSVRC’14
AlexNet VGG16 VGG19

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q: Why use smaller filters? (3x3 conv)

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers

has same effective receptive field as

one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.

72C2 for C channels per layer

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

INPUT: [224x224x3] memory: 224*224*3=150K params: 0

VGG16

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)

TOTAL params: 138M parameters

Case Study: VGGNet

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational

efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner

(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

“Inception module”: design a good local network

topology (network within a network) and then

stack these modules on top of each other

Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on

the input from previous layer:

- Multiple receptive field sizes

for convolution (1x1, 3x3,

5x5)

- Pooling operation (3x3)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Concatenate all filter outputs

together depth-wise

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?

[Hint: Computational complexity]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Example:

Module input:

28x28x256

Q3: What is output size

after filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256

[3x3 conv, 192] 28x28x192x3x3x256

[5x5 conv, 96] 28x28x96x5x5x256

Total: 854M ops

Very expensive compute

Pooling layer preserves feature depth,

which means total depth after

concatenation can only grow at every

layer!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Solution: “bottleneck” layers that

use 1x1 convolutions to reduce

feature depth

1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

Each filter has size

1x1x64, and performs a

64-dimensional dot

product

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

Preserves spatial

dimensions, reduces depth!

Projects depth to lower

dimension (combination of

feature maps)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Naive Inception module

1x1 conv “bottleneck” layers

Total: 358M opsTotal: 854M ops

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet architecture

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43022.pdf

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

152 layers

Case Study: ResNet
[He et al., 2016]

Very deep networks using residual

connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)

- Swept all classification and

detection competitions in

ILSVRC’15 and COCO’15!

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

Q: What’s strange about these training and test curves?

[Hint: look at the order of the curves]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis:

The problem is an optimization problem, deeper models are harder to optimize

The deeper model should be able to perform at

least as well as the shallower model.

A solution by construction is copying the learned

layers from the shallower model and setting

additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

relu

Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a

desired underlying mapping

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)

Use layers to

fit residual

F(x) = H(x) - x

instead of

H(x) directly

H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

..

.

Case Study: ResNet
[He et al., 2016]

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block

has two 3x3 conv

layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Comparing complexity...

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; figures by Alfredo Canziani, Adam Paszke, Eugenio Culurciello

Improving ResNets...

- Argues that residuals are the

important factor, not depth

- User wider residual blocks (F x k

filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms

152-layer original ResNet

- Increasing width instead of depth

more computationally efficient

(parallelizable)

Wide Residual Networks
[Zagoruyko et al. 2016]

Basic residual block Wide residual block

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Improving ResNets...

Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)
[Xie et al. 2016]

- Also from creators of

ResNet

- Increases width of

residual block through

multiple parallel

pathways

(“cardinality”)

- Parallel pathways

similar in spirit to

Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Huang et al. 2016]

- Motivation: reduce vanishing gradients and

training time through short networks during

training

- Randomly drop a subset of layers during each

training pass

- Bypass with identity function

- Use full deep network at test time

Improving ResNets...

Deep Networks with Stochastic Depth

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Beyond ResNets...

Densely Connected Convolutional Networks
[Huang et al. 2017]

- Dense blocks where each layer is

connected to every other layer in

feedforward fashion

- Alleviates vanishing gradient,

strengthens feature propagation,

encourages feature reuse

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Summary: CNN Architectures

Lecture 9 -
10

5

Case Studies
- AlexNet

- VGG

- GoogLeNet

- ResNet

Also....
- Wide ResNet

- ResNeXT

- DenseNet

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Summary: CNN Architectures

Lecture 9 - 106

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos

- Trend towards extremely deep networks

- Significant research centers around design of layer / skip

connections and improving gradient flow

- Efforts to investigate necessity of depth vs. width and residual

connections

- Even more recent trend towards meta-learning (e.g. learning what

architecture should be)

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Understanding CNNs

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give

maximal activation of a given feature map

• Activations projected

down to pixel level

via decovolution

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy

What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy

What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

http://yosinski.com/deepvis

What image maximizes a class score?

Andrej Karpathy

GradCAM

Selvaraju et al. ICCV 2017, IJCV 2019

Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]
Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf

Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for

Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf

Applications in computer vision

Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Vector:

4096

Fully-Connected:

4096 to 1000

May 10, 2017

Image Classification

Slide by: Justin Johnson

Other Computer Vision Tasks

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 143

Classification

+ Localization

Semantic

Segmentation
Object

Detection

Instance

Segmentation

GRASS, CAT,

TREE, SKY
CAT DOG, DOG, CAT DOG, DOG, CAT

Multiple ObjectNo objects, just pixels Single Object

May 10, 2017

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

CATGRASS, CAT,

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels

May 10, 2017

Classification + Localization

Slide by: Justin Johnson

Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Vector:

4096

Fully
Connected:
4096 to 1000

Box

Coordinates

(x, y, w, h)

Fully
Connected:
4096 to 4

May 10, 2017

Treat localization as a

regression problem!

Classification + Localization

Slide by: Justin Johnson

Class Scores
Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Vector:

4096

Fully
Connected:
4096 to 1000

Box

Coordinates

Fully
Connected:
4096 to 4

Softmax

Loss

L2 Loss

Correct label:

Cat

(x, y, w, h)
Treat localization as a

regression problem! Correct box:

(x’, y’, w’, h’)

May 10, 2017

Classification + Localization

Slide by: Justin Johnson

Class Scores
Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Vector:

4096

Fully
Connected:
4096 to 1000

Box

Coordinates

Fully
Connected:
4096 to 4

Softmax

Loss

L2 Loss

Loss

Correct label:

Cat

+Multitask Loss

(x, y, w, h)
Treat localization as a

regression problem! Correct box:

(x’, y’, w’, h’)

May 10, 2017

Classification + Localization

Slide by: Justin Johnson

Class Scores
Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Vector:

4096

Fully
Connected:
4096 to 1000

Box

Coordinates

Fully
Connected:
4096 to 4

Softmax

Loss

L2 Loss

Loss

Correct label:

Cat

+

Often pretrained on ImageNet

(Transfer learning)

(x, y, w, h)
Treat localization as a

regression problem! Correct box:

(x’, y’, w’, h’)

May 10, 2017

Classification + Localization

Slide by: Justin Johnson

Object Detection as Regression?

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 149

CAT: (x, y, w, h)

DOG: (x, y, w, h)

DOG: (x, y, w, h)

CAT: (x, y, w, h)

DUCK: (x, y, w, h)

DUCK: (x, y, w, h)

….

May 10, 2017

Slide by: Justin Johnson

CAT: (x, y, w, h)

DOG: (x, y, w, h)

DOG: (x, y, w, h)

CAT: (x, y, w, h)

4 numbers

Each image needs a different
number of outputs!

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

16 numbers

DUCK: (x, y, w, h) Many
DUCK: (x, y, w, h) numbers!
….

Object Detection as Regression?

Slide by: Justin Johnson

Object Detection as Classification:
Sliding Window

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 151

Dog? NO

Cat? NO

Background? YES

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Dog? YES
Cat? NO

Background? NO

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Object Detection as Classification:
Sliding Window

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Dog? YES
Cat? NO

Background? NO

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Object Detection as Classification:
Sliding Window

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Dog? NO

Cat? YES

Background? NO

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Object Detection as Classification:
Sliding Window

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Dog? NO

Cat? YES

Background? NO

Problem: Need to apply CNN to huge

number of locations and scales, very

computationally expensive!

Object Detection as Classification:
Sliding Window

Slide by: Justin Johnson

Region Proposals

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 156

● Find “blobby” image regions that are likely to contain objects
● Relatively fast to run; e.g. Selective Search gives 1000 region

proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014

Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

May 10, 2017

Slide by: Justin Johnson

R-CNN

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 157

May 10, 2017

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Conv
Net

Conv
Net

Conv
Net

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Conv
Net

Conv
Net

Conv
Net

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Conv
Net

Conv
Net

Conv
Net

R-CNN on ImageNet detection

0 100

UIUC−IFP

Delta

GPU_UCLA

SYSU_Vision

Toronto A

*OverFeat (1)

*NEC−MU

UvA−Euvision

*OverFeat (2)

*R−CNN BB

20 40 60 80

mean average precision (mAP) in %

ILSVRC2013 detection test set mAP

1.0%

6.1%

9.8%

10.5%

11.5%

19.4%

20.9%

22.6%

24.3%

31.4%

post competition result

competition result

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Conv
Net

Conv
Net

Conv
Net

Post hoc component

What’s wrong with slow R-CNN?

• Ad hoc training objectives
• Fine-tune network with softmax classifier (log loss)

• Train post-hoc linear SVMs (hingeloss)

• Train post-hoc bounding-box regressions (least squares)

• Training is slow (84h), takes a lot of disk space

• Inference (detection) is slow
• 47s / image with VGG16 [Simonyan & Zisserman, ICLR15]

~2000 ConvNet forward passes per imageGirshick, “Fast R-CNN”, ICCV 2015

Fast R-CNN

• Fast test time

• One network, trained in one stage

• Higher mean average precision

Girshick, “Fast R-CNN”, ICCV 2015

Fast R-CNN

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 167

May 10, 2017

Girshick, “Fast R-CNN”, ICCV 2015

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015

Fast R-CNN (Training)

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 173

May 10, 2017

Girshick, “Fast R-CNN”, ICCV 2015

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

May 10, 2017

Fast R-CNN (Training)

Girshick, “Fast R-CNN”, ICCV 2015

Fast R-CNN vs R-CNN

Fast R-CNN R-CNN

Train time (h) 9.5 84

Speedup 8.8x 1x

Test time / image 0.32s 47.0s

Test speedup 146x 1x

mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

Girshick, “Fast R-CNN”, ICCV 2015

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 176

Make CNN do proposals!

Insert Region Proposal

Network (RPN) to predict

proposals from features

Jointly train with 4 losses:

1. RPN classify object / not object

2. RPN regress box coordinates
3. Final classification score (object

classes)

4. Final box coordinates

May 10, 2017

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Faster R-CNN

Semantic Segmentation

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 177

GRASS, CAT,

TREE, SKY
CAT DOG, DOG, CAT DOG, DOG, CAT

Multiple ObjectNo objects, just pixels Single Object

May 10, 2017

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Sky

Cow

Grass

Label each pixel in the

image with a category

label

Don’t differentiate

instances, only care about

pixels
Grass

May 10, 2017

Cat

Sky

Semantic Segmentation

Slide by: Justin Johnson

Semantic Segmentation Idea:
Sliding Window

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 - 179

Full image

Extract patch
Classify center

pixel with CNN

Cow

May 10, 2017

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Full image

Extract patch
Classify center

pixel with CNN

Cow

May 10, 2017

Cow

Grass

Problem: Very inefficient! Not

reusing shared features between

overlapping patches

Semantic Segmentation Idea:
Sliding Window

Slide by: Justin Johnson

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Input:

3 x H x W

Convolutions:

D x H x W

Conv Conv Conv Conv

Scores:

C x H x W

argmax

May 10, 2017

Predictions:

H x W

Design a network as a bunch of convolutional layers

to make predictions for pixels all at once!

Semantic Segmentation Idea:
Fully Convolutional

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Input:

3 x H x W

Convolutions:

D x H x W

Conv Conv Conv Conv

Scores:

C x H x W

argmax

Predictions:

H x W

Design a network as a bunch of convolutional layers

to make predictions for pixels all at once!

Problem: convolutions at

original image resolution will

be very expensive ...

May 10, 2017

Semantic Segmentation Idea:
Fully Convolutional

Slide by: Justin Johnson

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

Input:

3 x H x W
Predictions:

H x W

Design network as a bunch of convolutional layers, with

downsampling and upsampling inside the network!

High-res:

D1 x H/2 x W/2

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

May 10, 2017

High-res:

D1 x H/2 x W/2

Med-res:

D2 x H/4 x W/4

Med-res:

D2 x H/4 x W/4

Low-res:

D
3
x H/4 x W/4

Semantic Segmentation Idea:
Fully Convolutional

Slide by: Justin Johnson

