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Plan for this lecture

• Motivation: Scanning for patterns 

• Convolutional network operations

• Common architectures

• Visualizing convolutional networks

• Applications in computer vision



input layer
output layer

• Can recognize patterns in data (e.g. digits)

Adapted from Bhiksha Raj

Neural networks so far



• The green pattern looks more like the weights  

pattern (black) than the red pattern

– The green pattern is more correlated with the weights

Correlation =0.57 Correlation =0.82
1 𝑖𝑓Σ 𝑤ixi ≥ 𝑇

𝑦 = {
0 𝑒𝑙𝑠𝑒

4

Bhiksha Raj

The weights look for patterns



• Does this signal contain the word “Welcome”?

• Compose a NN for this problem
– Assuming all recordings are exactly the same length

Bhiksha Raj

A problem



Finding aWelcome

• Trivial solution:Train a NN for the entire  

recording

Bhiksha Raj



• Problem with trivial solution: Network that finds a “welcome” 

in  the top recording will not find it in the lower one

– Unless trained with both

– Will require a very large network and a large amount of training 

data to cover every case

Bhiksha Raj

Finding aWelcome



• Need a simple network that will fire 

regardless of the location of “Welcome”

– and not fire when there is none

Bhiksha Raj

Finding aWelcome



• Is there a flower in any of these images?

Bhiksha Raj

Flower



• Will a NN that recognizes the left image as a flower  

also recognize the one on the right as a flower?
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• Need a network that will “fire” regardless of  the 

precise location of the target object

Flower



The need for shift invariance

• In many problems the location of a pattern is not important

– Only the presence of the pattern is important

• Conventional NNs are sensitive to location of pattern 

– Moving it by one component results in an entirely different  

input that the NN won't recognize

• Requirement: Network must be shift invariant

Bhiksha Raj



• Scan for the target word

– The audio signals in a  “window” are input to a 

“welcome-detector” NN

Adapted from Bhiksha Raj

Solution: Scan



• “Does welcome occur in this recording?”

– Maximum of all outputs (Equivalent of Boolean OR)

– Or more complex function

Adapted from Bhiksha Raj

Solution: Scan



2-d analogue: Does this picture have a flower?

• Scan for the desired object

• “Look” for the target object at each position

• At each location, entire region is sent through NN

Bhiksha Raj



A giant net with common identical subnets

• Determine if any of the locations had a flower

• Each dot in the right represents the output of the NN when 

it classifies one location in the input figure

• Look at the maximum value

• Or pass it through a simple NN (e.g. linear combination + 

softmax)

Adapted from Bhiksha Raj



– Assume N inputs and M outputs

• The weights matrix is a full N x M matrix
– Requiring N*M unique parameters

Regular network

• Consider the first layer

(1) (1) 

11 12 13 14 1M

21 22 23 24 2M

31 32 33 34 3M

41 42 43 44 4M

N1 N2 N3 N4 NM

Bhiksha Raj



Scanning networks

• In a scanning NN each neuron is connected to a subset of 

neurons in the previous layer

– The weights matrix is sparse

– The weights matrix is block structured with identical blocks

– The network is a shared parameter model

(1) 

11 12

21 22

31 32

11 12

21 22

31 32

11 12

31 32

(1)

time

Adapted from Bhiksha Raj



Training the network

• These are really just large networks

• Can use conventional backpropagation to learn parameters

• Backprop learns a network that maps the training inputs to 

the target binary outputs

Bhiksha Raj



Training the network: constraint

• These are shared parameter networks

– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the  

subnet must equally update all copies

Bhiksha Raj



Convolutional Neural Networks (CNN)

• Neural network with specialized 

connectivity structure

• Stack multiple stages of feature 

extractors

• Higher stages compute more global, 

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


• Feed-forward feature extraction: 

1. Convolve input with learned filters

2. Apply non-linearity 

3. Spatial pooling (downsample)

• Recent architectures have additional 

operations (to be discussed)

• Trained with some loss, backprop

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…



1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than 

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus



2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit  (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus

Krizhevsky et al.



3. Spatial Pooling

• Sum or max over non-overlapping / 

overlapping regions

Rob Fergus, figure from Andrej Karpathy



3. Spatial Pooling

• Sum or max over non-overlapping / 

overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus



Goodfellow DL book



Background: Moving Average In 2D
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Background: Moving Average In 2D



Image filtering

• Compute a function of the local neighborhood at 
each pixel in the image

– Function specified by a “filter” or mask saying how to 
combine values from neighbors.

– Element-wise multiplication

• Uses of filtering:

– Enhance an image (denoise, resize, etc)

– Extract information (texture, edges, etc)

– Detect patterns (template matching)

Adapted from Derek Hoiem



Correlation filtering

Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood around  
image pixel F[i,j]

Attribute uniform weight 
to each pixel

Now generalize to allow different weights depending on  
neighboring pixel’s relative position:

Non-uniform weights

Kristen Grauman



Correlation filtering

Filtering an image: replace each pixel with a linear combination of 
its neighbors.

The filter a.k.a. kernel a.k.a. mask H[u,v] is the prescription for the 
weights in the linear combination.

This is called cross-correlation, denoted 

Adapted from Kristen Grauman



Averaging filter

• What values belong in the kernel H for the moving average 
example?
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“box filter”

?

Kristen Grauman



Smoothing by averaging

depicts box filter: 
white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?
Kristen Grauman



Gaussian filter
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• What if we want nearest neighboring pixels to have 

the most influence on the output?

This kernel is an 
approximation of a 2d 
Gaussian function:

Source: S. Seitz



Convolution

• Convolution: 

– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for 

convolution 

operator

h

F

Kristen Grauman



Convolution vs. correlation
Convolution

Cross-correlation

For a Gaussian or box filter, how will the outputs differ?

Kristen Grauman



Convolution vs. correlation
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Predict the outputs using 
correlation filtering
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-* = ?

Kristen Grauman



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Original Filtered 

(no change)

Source: D. Lowe



Practice with linear filters
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Source: D. Lowe



Practice with linear filters
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Original Shifted left

by 1 pixel 

with 

correlation

Source: D. Lowe



Practice with linear filters

Original

?
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Source: D. Lowe



Practice with linear filters

Original

111

111

111

Blur (with a

box filter)

Source: D. Lowe



Practice with linear filters

Original
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000
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- ?

Source: D. Lowe



Practice with linear filters

Original

111
111
111

000
020
000

-

Sharpening filter:
accentuates differences with 
local average

Source: D. Lowe



Sharpening

Kristen Grauman



-101

-202

-101

* =

Slide credit: Derek Hoiem

Filters for computing gradients



Texture representation: example

original image

derivative filter 
responses, squared

statistics to summarize 
patterns in small 

windows 

mean 
d/dx
value 

mean 
d/dy
value 

Win. #1 4 10

…

Kristen Grauman
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Texture representation: example

original image

derivative filter 
responses, squared

statistics to summarize 
patterns in small 

windows 

mean 
d/dx
value 

mean 
d/dy
value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…

Kristen Grauman



[r(1,1)
1, r(1,1)

2, …, r(1,1)
38]

Vectors of texture responses

To represent pixel, form a 
“feature vector” from the 
responses at that pixel.

Pixel location 
(row, column)

Filter ID

[r(1,2)
1, r(1,2)

2, …, r(1,2)
38]

[r(W,H)
1, r(W,H)

2, …, r(W,H)
38]

… 

[mean(r(:)
1), mean(r(:)

2), …, mean(r(:)
38)]

To represent image, compute 
statistics over all pixel feature 
vectors, e.g. their mean.



You try: Can you match the texture 

to the response?

Mean abs responses

Filters
A

B

C

1

2

3

Derek Hoiem



Representing texture by mean abs 

response

Mean abs responses

Filters

Derek Hoiem



32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,  

computing dot products”

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

1 number:
the result of taking a dot product between the  

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all  

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy



32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolution Layers, interspersed with  

activation functions

32

32

3

28

28

6

CONV,  

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  

activation functions

32

32

3

CONV,  

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,  

ReLU

e.g. 10  

5x5x6  

filters

CONV,  

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy



Preview
[From recent Yann  

LeCun slides]

Convolutions: More detail

Andrej Karpathy



example 5x5 filters
(32 total)

We call the layer convolutional  

because it is related to convolution  

of two signals:

Element-wise multiplication and sum 

of  a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman



A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy



7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



=> 5x5 output

7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on  

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy



N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with  

stride 1, filters of size FxF, and zero-padding with  

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1



Goodfellow DL book



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?  

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy



Putting it all together

Andrej Karpathy



Some Common Architectures



Case Study: AlexNet
[Krizhevsky et al. 2012]

Architecture:

CONV1  

MAX POOL1  

NORM1  

CONV2  

MAX POOL2  

NORM2  

CONV3  

CONV4  

CONV5

Max POOL3  

FC6

FC7  

FC8

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 - 9
8

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images  

After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2  

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:  

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  

[27x27x96] MAX POOL1: 3x3 filters at stride 2  

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  

[13x13x256] MAX POOL2: 3x3 filters at stride 2  

[13x13x256] NORM2: Normalization layer  

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)

-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1e-2, reduced by 10  

manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons 

(class scores)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Small filters, Deeper networks

8 layers (AlexNet)

-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1  

and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13  

(ZFNet)

-> 7.3% top 5 error in ILSVRC’14
AlexNet VGG16 VGG19

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Q: Why use smaller filters? (3x3 conv)

AlexNet

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

VGG16 VGG19

Stack of three 3x3 conv (stride 1) layers  

has same effective receptive field as  

one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs.  

72C2 for C channels per layer

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



INPUT: [224x224x3] memory:  224*224*3=150K params: 0

VGG16

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*3)*64 = 1,728  
CONV3-64: [224x224x64] memory:  224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory:  112*112*64=800K params: 0

CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*64)*128 = 73,728  
CONV3-128: [112x112x128] memory:  112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory:  56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory:  28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory:  14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448  
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (for a forward pass)  

TOTAL params: 138M parameters

Case Study: VGGNet

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Inception module

Deeper networks, with computational  

efficiency

- 22 layers

- Efficient “Inception” module

- No FC layers

- Only 5 million parameters!

12x less than AlexNet
- ILSVRC’14 classification winner  

(6.7% top 5 error)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

“Inception module”: design a  good local network 

topology  (network within a network) and then 

stack these modules on  top of each other

Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Apply parallel filter operations on  

the input from previous layer:

- Multiple receptive field sizes  

for convolution (1x1, 3x3,  

5x5)

- Pooling operation (3x3)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Concatenate all filter outputs  

together depth-wise

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Naive Inception module

Q: What is the problem with this?  

[Hint: Computational complexity]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Example:

Module input:  

28x28x256

Q3: What is output size

after filter concatenation?

28x28x128 28x28x192 28x28x96 28x28x256

28x28x(128+192+96+256) = 28x28x672

Conv Ops:
[1x1 conv, 128] 28x28x128x1x1x256  

[3x3 conv, 192] 28x28x192x3x3x256  

[5x5 conv, 96] 28x28x96x5x5x256  

Total: 854M ops

Very expensive compute

Pooling layer preserves feature depth, 

which means total depth after  

concatenation can only grow at every  

layer!

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Solution: “bottleneck” layers that  

use 1x1 convolutions to reduce  

feature depth



1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

Each filter has size  

1x1x64, and performs a  

64-dimensional dot  

product

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



1x1 convolutions

64

56

56
1x1 CONV

with 32 filters

32

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

56

56

Preserves spatial  

dimensions, reduces depth!

Projects depth to lower  

dimension (combination of  

feature maps)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Inception module with dimension reduction

Case Study: GoogLeNet
[Szegedy et al., 2014]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Naive Inception module

1x1 conv “bottleneck” layers

Total: 358M opsTotal: 854M ops

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: GoogLeNet
[Szegedy et al., 2014]

Full GoogLeNet  architecture

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43022.pdf

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/43022.pdf


shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“Revolution of Depth”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

152 layers



Case Study: ResNet
[He et al., 2016]

Very deep networks using residual  

connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner  

(3.57% top 5 error)

- Swept all classification and  

detection competitions in  

ILSVRC’15 and COCO’15!

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

What happens when we continue stacking deeper layers on a “plain” convolutional  

neural network?

Q: What’s strange about these training and test curves?  

[Hint: look at the order of the curves]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!



Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: 

The problem is an optimization problem, deeper models are harder to optimize

The deeper model should be able to perform at  

least as well as the shallower model.

A solution by construction is copying the learned  

layers from the shallower model and setting  

additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



relu

Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a  

desired underlying mapping

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)

Use layers to  

fit residual  

F(x) = H(x) - x

instead of  

H(x) directly

H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



..

.

Case Study: ResNet
[He et al., 2016]

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block

has  two 3x3 conv

layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Comparing complexity...

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; figures by Alfredo Canziani, Adam Paszke, Eugenio Culurciello



Improving ResNets...

- Argues that residuals are the  

important factor, not depth

- User wider residual blocks (F x k  

filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms  

152-layer original ResNet

- Increasing width instead of depth  

more computationally efficient  

(parallelizable)

Wide Residual Networks
[Zagoruyko et al. 2016]

Basic residual block Wide residual block

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Improving ResNets...

Aggregated Residual Transformations for Deep

Neural Networks (ResNeXt)
[Xie et al. 2016]

- Also from creators of  

ResNet

- Increases width of  

residual block through  

multiple parallel  

pathways  

(“cardinality”)

- Parallel pathways  

similar in spirit to  

Inception module

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Huang et al. 2016]

- Motivation: reduce vanishing gradients and

training time through short networks during

training

- Randomly drop a subset of layers during each  

training pass

- Bypass with identity function

- Use full deep network at test time

Improving ResNets...

Deep Networks with Stochastic Depth

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Beyond ResNets...

Densely Connected Convolutional Networks
[Huang et al. 2017]

- Dense blocks where each layer is  

connected to every other layer in  

feedforward fashion

- Alleviates vanishing gradient,  

strengthens feature propagation,  

encourages feature reuse

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018Lecture 9 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Summary: CNN Architectures

Lecture 9 -
10

5

Case Studies
- AlexNet

- VGG

- GoogLeNet

- ResNet

Also....
- Wide ResNet

- ResNeXT

- DenseNet

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Summary: CNN Architectures

Lecture 9 - 106

- VGG, GoogLeNet, ResNet all in wide use, available in model zoos

- Trend towards extremely deep networks

- Significant research centers around design of layer / skip  

connections and improving gradient flow

- Efforts to investigate necessity of depth vs. width and residual  

connections

- Even more recent trend towards meta-learning (e.g. learning what 

architecture should be)

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Understanding CNNs



Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give 

maximal activation of a given feature map 

• Activations projected 

down to pixel level 

via decovolution

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]



Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy



What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy



What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

http://yosinski.com/deepvis


What image maximizes a class score?

Andrej Karpathy



GradCAM

Selvaraju et al. ICCV 2017, IJCV 2019



Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]
Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf


Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for 

Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf


Applications in computer vision



Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Vector:

4096

Fully-Connected:  

4096 to 1000

May 10, 2017

Image Classification

Slide by: Justin Johnson



Other Computer Vision Tasks

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 - 143

Classification

+ Localization

Semantic  

Segmentation
Object  

Detection

Instance  

Segmentation

GRASS, CAT,

TREE, SKY
CAT DOG, DOG, CAT DOG, DOG, CAT

Multiple ObjectNo objects, just pixels Single Object

May 10, 2017

Slide by: Justin Johnson



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

CATGRASS, CAT,  

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels

May 10, 2017

Classification + Localization

Slide by: Justin Johnson



Class Scores

Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Vector:

4096

Fully  
Connected:  
4096 to 1000

Box  

Coordinates  

(x, y, w, h)

Fully  
Connected:  
4096 to 4

May 10, 2017

Treat localization as a  

regression problem!

Classification + Localization

Slide by: Justin Johnson



Class Scores
Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Vector:

4096

Fully  
Connected:  
4096 to 1000

Box  

Coordinates

Fully  
Connected:  
4096 to 4

Softmax  

Loss

L2 Loss

Correct label:

Cat

(x, y, w, h)
Treat localization as a

regression problem! Correct box:  

(x’, y’, w’, h’)

May 10, 2017

Classification + Localization

Slide by: Justin Johnson



Class Scores
Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Vector:

4096

Fully  
Connected:  
4096 to 1000

Box  

Coordinates

Fully  
Connected:  
4096 to 4

Softmax  

Loss

L2 Loss

Loss

Correct label:

Cat

+Multitask Loss

(x, y, w, h)
Treat localization as a

regression problem! Correct box:  

(x’, y’, w’, h’)

May 10, 2017

Classification + Localization

Slide by: Justin Johnson



Class Scores
Cat: 0.9

Dog: 0.05

Car: 0.01

...

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Vector:

4096

Fully  
Connected:  
4096 to 1000

Box  

Coordinates

Fully  
Connected:  
4096 to 4

Softmax  

Loss

L2 Loss

Loss

Correct label:

Cat

+

Often pretrained on ImageNet  

(Transfer learning)

(x, y, w, h)
Treat localization as a

regression problem! Correct box:  

(x’, y’, w’, h’)

May 10, 2017

Classification + Localization

Slide by: Justin Johnson



Object Detection as Regression?

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 - 149

CAT: (x, y, w, h)

DOG: (x, y, w, h)

DOG: (x, y, w, h)

CAT: (x, y, w, h)

DUCK: (x, y, w, h)

DUCK: (x, y, w, h)

….

May 10, 2017

Slide by: Justin Johnson



CAT: (x, y, w, h)

DOG: (x, y, w, h)

DOG: (x, y, w, h)

CAT: (x, y, w, h)

4 numbers

Each image needs a  different 
number of outputs!

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

May 10, 2017

16 numbers

DUCK: (x, y, w, h) Many
DUCK: (x, y, w, h) numbers!
….

Object Detection as Regression?

Slide by: Justin Johnson



Object Detection as Classification: 
Sliding Window

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 - 151

Dog? NO  

Cat? NO

Background? YES

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Slide by: Justin Johnson



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Dog? YES
Cat? NO  

Background? NO

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Object Detection as Classification: 
Sliding Window

Slide by: Justin Johnson



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Dog? YES
Cat? NO  

Background? NO

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Object Detection as Classification: 
Sliding Window

Slide by: Justin Johnson



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Dog? NO  

Cat? YES

Background? NO

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Object Detection as Classification: 
Sliding Window

Slide by: Justin Johnson



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Apply a CNN to many different crops of the

image, CNN classifies each crop as object

or background

May 10, 2017

Dog? NO  

Cat? YES

Background? NO

Problem: Need to apply CNN to huge

number of locations and scales, very

computationally expensive!

Object Detection as Classification: 
Sliding Window

Slide by: Justin Johnson



Region Proposals

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 - 156

● Find “blobby” image regions that are likely to contain objects
● Relatively fast to run; e.g. Selective Search gives 1000 region  

proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012  

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014  

Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

May 10, 2017

Slide by: Justin Johnson



R-CNN

Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 - 157

May 10, 2017

Girshick et al., “R ich  Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich  Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich  Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich  Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Conv
Net

Conv
Net

Conv
Net



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

May 10, 2017

R-CNN

Girshick et al., “R ich  Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014

Conv
Net

Conv
Net

Conv
Net



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -
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R-CNN on ImageNet detection
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Girshick et al., “R ich  Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014
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R-CNN

Girshick et al., “R ich  Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014
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What’s wrong with slow R-CNN?

• Ad hoc training objectives
• Fine-tune network with softmax classifier (log loss)

• Train post-hoc linear SVMs (hingeloss)

• Train post-hoc bounding-box regressions (least squares)

• Training is slow (84h), takes a lot of disk space

• Inference (detection) is slow
• 47s / image with VGG16 [Simonyan & Zisserman, ICLR15]

~2000 ConvNet forward passes per imageGirshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

• Fast test time

• One network, trained in one stage

• Higher mean average precision

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN
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Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN  (Training)
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Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN  (Training)

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN vs R-CNN

Fast R-CNN R-CNN

Train time (h) 9.5 84

Speedup 8.8x 1x

Test time / image 0.32s 47.0s

Test speedup 146x 1x

mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods.  
All methods  use VGG16 from Simonyan and Zisserman.

Girshick, “Fast R-CNN”, ICCV 2015
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Make CNN do proposals!

Insert Region Proposal  

Network (RPN) to predict  

proposals from features

Jointly train with 4 losses:

1. RPN classify object / not object

2. RPN regress box coordinates
3. Final classification score (object  

classes)

4. Final box coordinates

May 10, 2017

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Faster R-CNN



Semantic Segmentation
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GRASS, CAT,

TREE, SKY
CAT DOG, DOG, CAT DOG, DOG, CAT

Multiple ObjectNo objects, just pixels Single Object
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Slide by: Justin Johnson



Fei-Fei Li & Justin Johnson & 

SerenaYeung
Lecture 11 -

Sky

Cow

Grass

Label each pixel in the

image with a category

label

Don’t differentiate  

instances, only care about  

pixels
Grass
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Cat

Sky

Semantic Segmentation

Slide by: Justin Johnson



Semantic Segmentation Idea: 
Sliding Window
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Full image

Extract patch
Classify center  

pixel with CNN

Cow

May 10, 2017

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide by: Justin Johnson
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Full image

Extract patch
Classify center  

pixel with CNN

Cow
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Cow

Grass

Problem: Very inefficient! Not  

reusing shared features between  

overlapping patches

Semantic Segmentation Idea: 
Sliding Window

Slide by: Justin Johnson

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014
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Input:

3 x H x W

Convolutions:  

D x H x W

Conv Conv Conv Conv

Scores:  

C x H x W

argmax

May 10, 2017

Predictions:  

H x W

Design a network as a bunch of convolutional layers  

to make predictions for pixels all at once!

Semantic Segmentation Idea: 
Fully Convolutional

Slide by: Justin Johnson
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Input:

3 x H x W

Convolutions:  

D x H x W

Conv Conv Conv Conv

Scores:  

C x H x W

argmax

Predictions:  

H x W

Design a network as a bunch of convolutional layers  

to make predictions for pixels all at once!

Problem: convolutions at  

original image resolution will  

be very expensive ...

May 10, 2017

Semantic Segmentation Idea: 
Fully Convolutional

Slide by: Justin Johnson
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Input:

3 x H x W
Predictions:  

H x W

Design network as a bunch of convolutional layers, with

downsampling and upsampling inside the network!

High-res:  

D1 x H/2 x W/2

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

May 10, 2017

High-res:  

D1 x H/2 x W/2

Med-res:  

D2 x H/4 x W/4

Med-res:  

D2 x H/4 x W/4

Low-res:  

D
3 
x H/4 x W/4

Semantic Segmentation Idea: 
Fully Convolutional

Slide by: Justin Johnson


