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Plan for this lecture

• Tricks of the trade
– Preprocessing, initialization, normalization
– Dealing with limited data

• Convergence of gradient descent
– How long will it take?
– Will it work at all?

• Different optimization strategies
– Alternatives to SGD
– Learning rates
– Choosing hyperparameters

• How to do the computation
– Computation graphs
– Vector notation (Jacobians)



Tricks of the trade



Practical matters

• Getting started: Preprocessing, initialization, 
normalization, choosing activation functions 

• Improving performance and dealing with sparse 
data: regularization, augmentation, transfer 
learning

• Hardware and software

• Extra reading/visualization resources

– https://www.deeplearning.ai/ai-notes/initialization/

– https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/initialization/
https://www.deeplearning.ai/ai-notes/optimization/


(Assume X [NxD] is data matrix,  

each example in a row)
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 5 April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data



In practice, you may also see PCA and Whitening of the data

(data has diagonal  

covariance matrix)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Lecture 6 - 39

(covariance matrix is the  

identity matrix)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data



Weight Initialization

• Q: what happens when W=constant init is used?

April 19, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



- Another idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with  

deeper networks.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 8 April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Weight Initialization



“Xavier initialization”  

[Glorot et al., 2010]

Reasonable initialization.  

(Mathematical derivation  

assumes linear activations)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung https://www.deeplearning.ai/ai-notes/initialization/#IV

https://www.deeplearning.ai/ai-notes/initialization/#IV


Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they  

have nice interpretation as a  

saturating “firing rate” of a neuron

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they  

have nice interpretation as a  

saturating “firing rate” of a neuron

• 3 problems:

1. Saturated neurons “kill” the  

gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 12

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



sigmoid  

gate

x

What happens when x = -10?  

What happens when x = 0?

What happens when x = 10?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 201913

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they  

have nice interpretation as a  

saturating “firing rate” of a neuron

• 3 problems:

1. Saturated neurons “kill” the  

gradients

2. Sigmoid outputs are not  

zero-centered

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 14

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they  

have nice interpretation as a  

saturating “firing rate” of a neuron

• 3 problems:

1. Saturated neurons “kill” the  

gradients

2. Sigmoid outputs are not  

zero-centered

3. exp() is a bit compute expensive

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)

- still kills gradients when saturated :(

[LeCun et al., 1991]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)

ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

- Computes f(x) = max(0,x)



Activation Functions

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than  

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

- An annoyance:

hint: what is the gradient when x < 0?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

- Computes f(x) = max(0,x)



ReLU

gate

x

What happens when x = -10?  

What happens when x = 0?

What happens when x = 10?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 201920

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Leaky ReLU

[Mass et al., 2013]  

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 201921

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Leaky ReLU

[Mass et al., 2013]  

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

backprop into alpha  

(parameter)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime  

compared with Leaky ReLU  

adds some robustness to noise

- Computation requires exp()

[Clevert et al., 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Maxout “Neuron”

- Does not have the basic form of dot product ->  

nonlinearity

- Generalizes ReLU and Leaky ReLU

- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 24

[Goodfellow et al., 2013]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



TLDR: In practice:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 25

- Use ReLU. Be careful with your learning rates

- Try out Leaky ReLU / Maxout / ELU / PReLU

- Try out tanh but don’t expect much

- Don’t use sigmoid

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



[Ioffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make  

each dimension zero-mean unit-variance, apply:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Batch Normalization

Lecture 6 - 26April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



N

D

1. compute the empirical mean and  

variance independently for each  

dimension.

2. Normalize

“you want zero-mean unit-variance activations? just make them so.”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]



And then allow the network to squash  

the range if it wants to:

Note, the network can learn:

to recover the identity  

mapping.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Normalize:

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]



- Improves gradient flow through  

the network

- Allows higher learning rates
- Reduces the strong dependence  

on initialization

- Acts as a form of regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 29 April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]



Note: at test time BatchNorm layer  

functions differently:

The mean/std are not computed  

based on the batch. Instead, a single  

fixed empirical mean of activations  

during training is used.

(e.g. can be estimated during training  

with running averages)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 30 April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]



Babysitting the Learning Process

• Preprocess data

• Choose architecture

• Initialize and check initial loss with no regularization

• Increase regularization, loss should increase

• Then train – try small portion of data, check you can 

overfit 

• Add regularization, and find learning rate that can make 

the loss go down

• Check learning rates in range [1e-3 … 1e-5]

• Coarse-to-fine search for hyperparameters (e.g. learning 

rate, regularization)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Important Parameter Important Parameter
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Illustration of Bergstra et al., 2012 by Shayne  
Longpre, copyright CS231n 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019

32

Random Search for
Hyper-Parameter Optimization

Bergstra and Bengio, 2012

Grid Layout Random Layout

Fei-Fei Li, Justin Johnson, Serena Yeung

Grid and Random Search



big gap = overfitting

=> increase regularization strength?

no gap
=> increase model capacity?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Monitor and Visualize Accuracy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Dealing with sparse data

• Deep neural networks require lots of data, 

and can overfit easily

• The more weights you need to learn, the 

more data you need

• That’s why with a deeper network, you need 

more data for training than for a shallower 

network 

• Ways to prevent overfitting include:
• Using a validation set to stop training or pick parameters

• Regularization 

• Data augmentation

• Transfer learning



Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it 
after every epoch. Stop training when additional 
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney



Determining best number of hidden units

• Too few hidden units prevent the network from 

adequately fitting the data.

• Too many hidden units can result in over-fitting.

• Use internal cross-validation to empirically 

determine an optimal number of hidden units.

e
rr

o
r

on training data

on test data

0 # hidden units

Ray Mooney



more neurons = more capacity

Effect of number of neurons

Andrej Karpathy



(you can play with this demo over at ConvNetJS: http://cs.stanford. 

edu/people/karpathy/convnetjs/demo/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger 

regularization instead:

Effect of regularization

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Regularization

• L1, L2 regularization (weight decay)

• Dropout
• Randomly turn off some neurons

• Allows individual neurons to independently be responsible 

for performance

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Load image  

and label

“cat”

Compute  

loss

CNN

Data Augmentation

April 24, 2018 Lecture 7 - 40

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

April 24, 2018 Lecture 7 - 41

Load image  

and label

“cat”

Compute  

loss

CNN

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Horizontal Flips

Fei-Fei Li & Justin 
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 42

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, +

flips

April 24, 2018 Lecture 7 - 43

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions

- …

April 24, 2018 Lecture 7 - 44

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug


Transfer learning

• If you have sparse data in your domain of 

interest (target), but have rich data in a 

disjoint yet related domain (source), 

• You can train the early layers on the source 

domain, and only the last few layers on the 

target domain:

Set these to the already learned 

weights from another network

Learn these on your own task



1. Train on  

source (large 

dataset)

2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of  

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer learning

Adapted from Andrej Karpathy

Another option: use network as feature extractor, 

train SVM/LR on extracted features for target task

Source: classify 20 animal classes Target: 10 car classes



Mini-batch gradient descent

• In classic gradient descent, we compute the 

gradient from the loss for all training 

examples

• Could also only use some of the data for 

each gradient update

• We cycle through all the training examples 

multiple times 

• Each time we’ve cycled through all of them 

once is called an ‘epoch’

• Allows faster training (e.g. on GPUs), 

parallelization



Training: Best practices

• Center (subtract mean from) your data

• Use Xavier initialization for weights

• Use RELU or leaky RELU or ELU or PReLU

• Use batch normalization

• Use data augmentation 

• Use regularization

• Use mini-batch 

• Learning rate: too high? Too low? 

• Use cross-validation for hyperparameters



Spot the CPU! (central processing unit)

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Spot the GPUs! (graphics processing unit)

Lecture 8 - April 26, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



CPU vs GPU

Fei-Fei Li & Justin Johnson & Serena Yeung

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Cores Clock  

Speed

Memory Price Speed

CPU

(Intel Core  

i7-7700k)

4
(8 threads with  

hyperthreading)

4.2 GHz System  

RAM

$385 ~540 GFLOPs FP32

GPU  

(NVIDIA  

RTX 2080 Ti)

4352 1.6 GHz 11 GB  

GDDR6

$1199 ~13.4 TFLOPs FP32

GPU

(NVIDIA 

Quadro RTX 

5000)

3072 1.6 GHz 16 GB 

GDDR6

$2,299 ~11.2 TFLOPs FP32

TPU  

NVIDIA  

TITAN V

5120 CUDA,

640 Tensor
1.5 GHz 12GB  

HBM2

$2999 ~14 TFLOPs FP32

~112 TFLOP FP16

TPU

Google Cloud  

TPU

? ? 64 GB  

HBM

$4.50

per  

hour

~180 TFLOP

CPU: Fewer cores,  

but each core is  

much faster and  

much more  

capable; great at  

sequential tasks

GPU: More cores,  

but each core is  

much slower and  

“dumber”; great for  

parallel tasks

TPU: Specialized  

hardware for deep  

learning



Google Cloud TPU

= 180 TFLOPs of compute!

NVIDIA Tesla V100

= 125 TFLOPs of compute

Lecture 6 - 52

TensorFlow: Tensor Processing Units

April 18, 2019Fei-Fei Li & Justin Johnson & Serena YeungNVIDIA Tesla P100 = 11 TFLOPs of compute  

GTX 580 = 0.2 TFLOPs

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Google Cloud TPU Pod

= 64 Cloud TPUs

= 11.5 PFLOPs of compute!

Google Cloud TPU

= 180 TFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

Lecture 6 - 53

April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

TensorFlow: Tensor Processing Units

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu


CPU vs GPU in practice

(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018

Data from https://github.com/jcjohnson/cnn-benchmarks

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



CPU / GPU Communication

Lecture 8 -April 26, 2018

Model  

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

If you aren’t careful, training can  

bottleneck on reading data and  

transferring to GPU!

Solutions:

- Read all data into RAM

- Use SSD instead of HDD

- Use multiple CPU threads  

to prefetch data

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Software: A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

PaddlePaddle
(Baidu)

MXNet
(Amazon)

And others...

Chainer

JAX
(Google)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Convergence of training



Successful training

• We want training to converge (stop) at a 
reasonable place

• Stopping is not guaranteed – e.g. imagine 
taking larger and larger steps…

• Stopping in a good place is not guaranteed



Will backprop do the right thing?

Adapted from Bhiksha Raj

• In classification problems, classification error 
is a non-differentiable function of weights

• The divergence function minimized (loss) is 
only a proxy for classification error

• Minimizing loss may not minimize 
classification error



• With these three points, backprop finds the 
right answer

Will backprop do the right thing?

(1,0), +1

(0,1), +1

(-1,0), -1

Adapted from Bhiksha Raj



Will backprop do the right thing?

• Now add a fourth point

• With large enough t, 0 contribution of 4th point to derivative of L2 error 
(e.g. if sigmoid/tanh used) 

• Local optimum solution found bybackprop

• Does not separate the points even thoughthey are linearly separable!

• Another algorithm (perceptron, in blue) does find the optimal separator

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

Adapted from Bhiksha Raj



Will backprop do the right thing?

• Adding a “spoiler” (or a small number ofspoilers)

– Perceptron finds the linear separator

– For bounded w, backprop does not find a separator

– A single additional input does not change the lossfunction significantly

• Backprop is minimally changed by new training  instances

– Prefers consistency over perfection

• Anecdotal: Variance decreases with depth and data

Bhiksha Raj



Loss surfaces 

• Usually Loss(W) is not convex, so there are 
many local minima

• However, in deep networks, these minima are 
reasonably similar – not true in small 
networks

• What are desirable properties of the loss 
surface?



Convexity 

• A surface is “convex” if it continuously curves upward

– We can connect any two points  above the surface without  
intersecting it

– Many mathematical definitions  that are equivalent

• Caveat: Neural net loss surface generally not convex

Adapted from Bhiksha Raj

Convex set

Non-convex set



The loss surface

• Gradient descent makes the assumption that 
loss/objective has a single global optimum 

• What about local optima?

Adapted from Bhiksha Raj



The loss surface

• Popular hypothesis:

– Most local minima are equivalent

•And close to global minimum

– This is not true for smallnetworks

– In large networks, saddle points are far more  
common than local minima

•Frequency exponential in networksize

• Saddle point: A point where:

– The slope is zero

– The surface increases in some directions, but  
decreases in others

•Some of the Eigenvalues of the Hessian are positive; 
others are negative

– Gradient descent algs often get “stuck” in saddle points

Bhiksha Raj



The controversial loss surface

• Baldi and Hornik (89), “Neural Networks and Principal Component  
Analysis: Learning from Examples Without Local Minima” : An MLP with
a  single hidden layer has only saddle points and nolocal minima

• Dauphin et. al (2015), “Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization” : An exponential
number of saddle points in large networks

• Chomoranksa et. al (2015), “The loss surface of multilayer networks” :
For large networks, most local minima lie in a band and areequivalent

• Swirscz et. al. (2016), “Local minima in training of deep networks”, In  
networks of finite size, trained on finite data, you can have horrible
local  minima

• Watch this space…

Adapted from Bhiksha Raj



Conditions for convergence

• So far we have assumed training arrives at a local 
minimum

• Does it always converge?

• How long does it take?

• Hard to analyze for a neural network, but we can 
look at the problem through the lens of convex 
optimization

Adapted from Bhiksha Raj



Convergence and convergence rate

• An iterative algorithm is said to 
converge to a solution if thevalue 
updates arrive at a fixed point

• Where the gradient is 0 and further  
updates do not change the estimate

• The algorithm may not converge

• It may jitter around thelocal  
minimum

• It may even diverge

• Conditions for convergence?

Bhiksha Raj



Convergence and convergence rate

• Convergence rate: how fast iterations arrive 
at the solution

• Generally quantified as: 

• If R is a constant (or upper-bounded): 
convergence is linear

Adapted from Bhiksha Raj



With non-optimal step size

Bhiksha Raj



Multivariate quadratic surface

• Optimal learning rate is different for the different
coordinates

• The learning rate must be lower than twice the smallest 
optimal learning rate for anycomponent

– Otherwise the learning will diverge

• This, however, makes the learning very slow

• Convergence is particularly slow if the following is 
large (the “condition” number is small)

Adapted from Bhiksha Raj



Dependence on learning rate

Bhiksha Raj



Convexity 

• For quadratic (strongly) 
convex functions, 
gradient descent is 
exponentially  fast

• For generic (Lifschitz
Smooth) convex 
functions however, it is 
very slow

• In neural networks, we 
may have neither…

Adapted from Bhiksha Raj https://christianjhoward.me/blog/index.php/2018/03/19/exponential-convergence-of-gradient-descent-with-lipschitz-smoothness

https://christianjhoward.me/blog/index.php/2018/03/19/exponential-convergence-of-gradient-descent-with-lipschitz-smoothness-and-strong-convexity/


Optimization strategies



Getting to the minimum

• Gradient descent is just one strategy, but has 
several problems

• What other “steps” can we take? 

• How far in the direction of decreasing gradient 
do we go? With what speed/acceleration?

• What about overshooting minima?



W_1

W_2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 - 77 April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



What if loss changes quickly in one direction and slowly in another?  

What does gradient descent do?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



What if loss changes quickly in one direction and slowly in another?  

What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



What if the loss  

function has a  

local minima or  

saddle point?

Zero gradient,  

gradient descent  

gets stuck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 - 80

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Our gradients come from  

minibatches so they can be noisy!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Optimization: 

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



SGD

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

SGD + Momentum

Lecture 7 - 82April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Added element-wise scaling of the gradient based  

on the historical sum of squares in each dimension

“Per-parameter learning rates”  

or “adaptive learning rates”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

AdaGrad

Lecture 7 - 83April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Q: What happens with AdaGrad? Progress along “steep” directions is damped;  

progress along “flat” directions is accelerated

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Q2: What happens to the step size over long time?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



AdaGrad

RMSProp

Tieleman and Hinton, 2012

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

RMSProp

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 - 87 April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR2015

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that  

first and second moment  

estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4  

is a great starting point for many models!

Adam

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Optimizers comparison

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

https://imgur.com/a/Hqolp

https://imgur.com/a/Hqolp


SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Q: Which one of these learning  

rates is best to use?

A: All of them! Start with large  

learning rate and decay over time

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201990

Fei-Fei Li, Justin Johnson, Serena Yeung



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Loss
Learning rate decay!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Epoch

Lecture 7 - 91 April 24, 2018

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Also see https://openreview.net/pdf?id=r1eOnh4YPB

https://openreview.net/pdf?id=r1eOnh4YPB


Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 92
time

Bad initialization a prime suspect

Fei-Fei Li, Justin Johnson, Serena Yeung



Loss

time

Loss plateaus: Try  

learning rate decay

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

93

Fei-Fei Li, Justin Johnson, Serena Yeung



Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 - 94

time

Learning rate step decay Loss was still going down  

when learning rate dropped,  

you decayed too early!

Fei-Fei Li, Justin Johnson, Serena Yeung



Loss

w1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201995

First-Order Optimization

Fei-Fei Li, Justin Johnson, Serena Yeung



w1

(1) Use gradient form linear approximation

(2) Step to minimize the approximation

Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201996

First-Order Optimization

Fei-Fei Li, Justin Johnson, Serena Yeung



w1

(1) Use gradient and Hessian to form quadratic approximation

(2) Step to the minima of the approximation

Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201997

Second-Order Optimization

Fei-Fei Li, Justin Johnson, Serena Yeung



second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N^2) elements  

Inverting takes O(N^3)

N = (Tens or Hundreds of) Millions

Q: Why is this bad for deep learning?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201998

Second-Order Optimization

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung

Partial solution: Quasi-Newton methods (e.g. BGFS)

approximate inverse Hessian

http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote07.html

http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote07.html
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Step 1: Check initial loss

Without weight decay (regularization), sanity check loss 

at initialization

e.g. log(C) for softmax with C classes

Choosing Hyperparameters

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
0

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of  

training data (~5-10 minibatches); fiddle with architecture,  

learning rate, weight initialization

Loss not going down? LR too low, bad initialization

Loss explodes to Inf or NaN? LR too high, bad initialization

Choosing Hyperparameters

Fei-Fei Li, Justin Johnson, Serena Yeung



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
1

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training  

data, turn on small weight decay, find a learning rate that  

makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Good weight decay to try: 1e-4, 1e-5, 0

Choosing Hyperparameters

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
2

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid search, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around  

what worked from Step 3, train a few models for ~1-5 epochs.

Choosing Hyperparameters

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
3

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down  

Step 4: Coarse grid, train for ~1-5 epochs  

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20  

epochs) without learning rate decay

Choosing Hyperparameters

Fei-Fei Li, Justin Johnson, Serena Yeung



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
4

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves

Choosing Hyperparameters

Fei-Fei Li, Justin Johnson, Serena Yeung



Losses may be noisy, use a  

scatter plot and also plot moving  

average to see trends better

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201910
5

Training Loss Train / ValAccuracy

Look at learning curves!

Fei-Fei Li, Justin Johnson, Serena Yeung



Accuracy

time

Train

Accuracy still going up, you  

need to train longer

Val

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

106

Fei-Fei Li, Justin Johnson, Serena Yeung



Accuracy

time

Train

Huge train / val gap means  

overfitting! Increase regularization,  

get more data

Val

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

107

Fei-Fei Li, Justin Johnson, Serena Yeung



Accuracy

time

Train

No gap between train / val means  

underfitting: train longer, use a  

bigger model

Val

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

108

Fei-Fei Li, Justin Johnson, Serena Yeung



Track the ratio of weight updates / weight magnitudes:

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)

want this to be somewhere around 0.001 or so

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 - 109

Fei-Fei Li, Justin Johnson, Serena Yeung



Mini batch size

Bhiksha Raj; Goyal et al. “Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour”



1. Train multiple independent models

2. At test time average their results
(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 11
1

Model Ensembles

Fei-Fei Li, Justin Johnson, Serena Yeung



Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple  

snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016  

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 11
2

Fei-Fei Li, Justin Johnson, Serena Yeung



Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple  

snapshots of a single model during training!

Cyclic learning rate schedules can  

make this work even better!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

58

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016  

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li, Justin Johnson, Serena Yeung
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April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

114

- Improve your training error:
- Optimizers

- Learning rate schedules

- Improve your test error:
- Regularization

- Choosing hyperparameters

- Model ensembles

Summary

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Computation graphs



How do we compute the gradient?

• Derive on paper? Tedious 

• What about vector-valued functions?



x

W

hinge  

loss

R

+ L

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
117

April 11, 2019

s (scores)

Computational graphs

*

Fei-Fei Li, Justin Johnson, Serena Yeung



Chain rule:

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

Want:
Upstream  

gradient

Local  

gradient

April 13, 2017

Fei-Fei Li, Justin Johnson, Serena Yeung



f

“local gradient”

April 11, 2019

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
120

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
121

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Upstream  

gradient

Local  

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Upstream  

gradient

Local  

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Upstream  

gradient

Local  

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Upstream  

gradient

Local  

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

[upstream gradient] x [local gradient]  

[0.2] x [1] = 0.2

[0.2] x [1] = 0.2 (both inputs!)

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

[upstream gradient] x [local gradient]  

x0: [0.2] x [2] = 0.4

w0: [0.2] x [-1] = -0.2

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Sigmoid

Sigmoid  

function

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
130

April 11, 2019

Computational graph  

representation may not  

be unique. Choose one  

where local gradients at  

each node can be easily  

expressed!

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

Sigmoid

Sigmoid  

function

Sigmoid local  

gradient:

Computational graph  

representation may not  

be unique. Choose one  

where local gradients at  

each node can be easily  

expressed!

[upstream gradient] x [local gradient]  

[1.00] x [(1 - 0.73) (0.73)] = 0.2

Fei-Fei Li, Justin Johnson, Serena Yeung



add gate: gradient distributor  

3

2

2

4

max

mul gate: “swap multiplier”  

2

5

5*3=15

3

5*2=10

max gate: gradient router  

4

0

5

9

4

7

2

Patterns in gradient flow

Fei-Fei Li, Justin Johnson, Serena Yeung

2

copy gate: gradient adder

7

7

4+2=6

+ 7 × 6

5

9



Backprop Implementation:  

“Flat” code Forward pass:  

Compute output

Backward pass:  

Compute grads

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:  

“Flat” code Forward pass:  

Compute output

Base case

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:  

“Flat” code Forward pass:  

Compute output

Sigmoid

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:  

“Flat” code Forward pass:  

Compute output

Add gate

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:  

“Flat” code Forward pass:  

Compute output

Add gate

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:  

“Flat” code Forward pass:  

Compute output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
138

Multiply gate

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:  

“Flat” code Forward pass:  

Compute output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
139

Multiply gate

Fei-Fei Li, Justin Johnson, Serena Yeung



So far: backprop with scalars

What about vector-valued functions?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
140

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung



Recap: Vector derivatives

Scalar to Scalar

Regular derivative:

If x changes by a  

small amount, how  

much will y change?

Lecture 4 - 141

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung



Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

Regular derivative:

If x changes by a  

small amount, how  

much will y change?

Derivative is Gradient:

For each element of x,

if it changes by a small

amount then how much

will y change?

Lecture 4 - 142

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung



Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

Regular derivative:

If x changes by a  

small amount, how  

much will y change?

Derivative is Gradient:

For each element of x,

if it changes by a small

amount then how much

will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it  

changes by a small amount  

then how much will each  

element of y change?

Lecture 4 - 143

Fei-Fei Li, Justin Johnson, Serena Yeung



Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivativeswith  

respect to eachinput

Christopher Manning



Jacobian Matrix: Generalization of Gradient

• Given a function with m outputs and n inputs

• Its Jacobian is an m x n matrix of partial derivatives

Christopher Manning



Chain Rule

• For one-variable functions: multiplyderivatives

• For multiple variables at once: multiplyJacobians

Christopher Manning



Example Jacobian: Elementwise activationFunction

Christopher Manning



Function hasn outputs and n inputs →n by n Jacobian

148

Christopher Manning

Example Jacobian: Elementwise activationFunction



Example Jacobian: Elementwise activationFunction

Christopher Manning



Example Jacobian: Elementwise activationFunction

Christopher Manning



Example Jacobian: Elementwise activationFunction

Christopher Manning



“Downstream

gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

y z
[D x D ]

“local  

gradients”

[Dx x Dz]

f

Jacobian  

matrices “Upstream gradient”  

For each element of z, how  

much does it influence L?
Dy

Dx

Matrix-vector  

multiply

Backprop with Vectors

Lecture 4 - 152

Fei-Fei Li, Justin Johnson, Serena Yeung



f(x) = max(0,x)

(elementwise)

4D input x:

[ 1 ]

[ -2 ]

[ 3 ]

[ -1 ]

4D output y:

[ 1 ]

[ 0 ]

[ 3 ]

[ 0 ]

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 153

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung



f(x) = max(0,x)

(elementwise)

4D input x:

[ 1 ]

[ -2 ]

[ 3 ]

[ -1 ]

4D output y:

[ 1 ]

[ 0 ]

[ 3 ]

[ 0 ]

[ 4 ]

[ -1 ]

[ 5 ]
[ 9 ]

4D dL/dy:

Upstream  

gradient

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 154

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung



f(x) = max(0,x)

(elementwise)

4D input x:

[ 1 ]

[ -2 ]

[ 3 ]

[ -1 ]

4D output y:

[ 1 ]

[ 0 ]

[ 3 ]

[ 0 ]

4D dL/dy:

[ 4 ]

[ -1 ]

[ 5 ]

[ 9 ]

Jacobian dy/dx  

[ 1 0 0 0 ]

[ 0 0 0 0 ]

[ 0 0 1 0 ]

[ 0 0 0 0 ]

Upstream  

gradient

Lecture 4 - 155

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung



f(x) = max(0,x)

(elementwise)

4D input x:

[ 1 ]

[ -2 ]

[ 3 ]

[ -1 ]

4D output y:

[ 1 ]

[ 0 ]

[ 3 ]

[ 0 ]

4D dL/dy:

[ 4 ]

[ -1 ]

[ 5 ]

[ 9 ]

[dy/dx] [dL/dy]  

[ 1 0 0 0 ] [ 4 ]

[ 0 0 0 0 ] [ -1 ]

[ 0 0 1 0 ] [ 5 ]

[ 0 0 0 0 ] [ 9 ]

Upstream  

gradient

Lecture 4 - 156

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung



f(x) = max(0,x)

(elementwise)

4D input x:

[ 1 ]

[ -2 ]

[ 3 ]

[ -1 ]

4D output y:

[ 1 ]

[ 0 ]

[ 3 ]

[ 0 ]

4D dL/dy:

[ 4 ]

[ -1 ]

[ 5 ]

[ 9 ]

[dy/dx] [dL/dy]  

[ 1 0 0 0 ] [ 4 ]

[ 0 0 0 0 ] [ -1 ]

[ 0 0 1 0 ] [ 5 ]

[ 0 0 0 0 ] [ 9 ]

Upstream  

gradient

4D dL/dx:  

[ 4 ]

[ 0 ]

[ 5 ]

[ 0 ]

Lecture 4 - 157

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung



f(x) = max(0,x)

(elementwise)

4D input x:

[ 1 ]

[ -2 ]

[ 3 ]

[ -1 ]

4D output y:

[ 1 ]

[ 0 ]

[ 3 ]

[ 0 ]

4D dL/dy:

[ 4 ]

[ -1 ]

[ 5 ]

[ 9 ]

[dy/dx] [dL/dy]  

[ 1 0 0 0 ] [ 4 ]

[ 0 0 0 0 ] [ -1 ]

[ 0 0 1 0 ] [ 5 ]

[ 0 0 0 0 ] [ 9 ]

Upstream  

gradient

Jacobian is sparse:  

off-diagonal entries  

always zero! Never  

explicitly form  

Jacobian -- instead  

use implicit  

multiplication

Lecture 4 - 158

April 11, 2019

4D dL/dx:  

[ 4 ]

[ 0 ]

[ 5 ]

[ 0 ]

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 159

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example:
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A vectorized example:
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A vectorized example:

Always check: The  

gradient with  

respect to a variable  

should have the  

same shape as the  

variable
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Recap

• Tricks of the trade
– Preprocessing, initialization, normalization
– Dealing with limited data

• Convergence of gradient descent
– How long will it take?
– Will it work at all?

• Different optimization strategies
– Alternatives to SGD
– Learning rates
– Choosing hyperparameters

• How to do the computation
– Computation graphs
– Vector notation (Jacobians)


