CS 1678: Intro to Deep Learning
Neural Network Training

(Part 2)

Prof. Adriana Kovashka
University of Pittsburgh
February 16, 2021



Plan for this lecture

Tricks of the trade
— Preprocessing, initialization, normalization
— Dealing with limited data
Convergence of gradient descent
— How long will it take?
— Will it work at all?
Different optimization strategies
— Alternatives to SGD
— Learning rates
— Choosing hyperparameters
How to do the computation
— Computation graphs
— Vector notation (Jacobians)



Tricks of the trade



Practical matters

Getting started: Preprocessing, initialization,
normalization, choosing activation functions

Improving performance and dealing with sparse
data: regularization, augmentation, transfer
learning

Hardware and software
Extra reading/visualization resources

— https://www.deeplearning.ai/ai-notes/initialization/

— https://www.deeplearning.ai/ai-notes/optimization/



https://www.deeplearning.ai/ai-notes/initialization/
https://www.deeplearning.ai/ai-notes/optimization/

Preprocessing the Data

original data zero-centered data normalized data

-2

-10 -10
1G =10 -5 0 5 1G -10 =5 0 5 10

-10 -5

X -= np.mean(X, axis = 0) . X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Preprocessing the Data

In practice, you may also see PCA and Whitening of the data

Fei-Fei Li,

original data decorrelated data whitened data

~-10

-10 -10

-10 =5 1g 210 = 0 5 g -10 > ) 5 10
(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Andrej Karpathy, Justin Johnson, Serena Yeung



Weight Initialization

output layer
input layer
hidden layer

* Q: what happens when W=constant init is used?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Weight Initialization

- Another idea: Small random numbers
(gaussian with zero mean and le-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but problems with
deeper networks.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



input layer had mean 0.001800 and std 1.001311

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer

layer 2

layer
layer
layer
layer
layer
layer
layer
layer

had
had
had
had
had
had
had
had
had

mean
mean
mean
mean
mean
mean
mean
mean
mean

0.001198 and std 0.627953
-0.000175 and std 0.486051
0.000055 and std 0.407723
-0.000306 and std 0.357108
0.000142 and std 0.320917
-0.000389 and std 0.292116
-0.000228 and std 0.273387
-0.000291 and std ©.254935
0.000361 and std 0.239266

0 had mean 0.000139 and std 0.228008

layer mean

np.random.randn(fan_in, fan out) / np.sqrt(fan_in) # layer initialization

layer std

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

https://www.deeplearning.ai/ai-notes/initialization/#I1\V



https://www.deeplearning.ai/ai-notes/initialization/#IV

Activation Functions

Sigmoid Leaky RelLU “’
o(z) = 11 max(0.1x, )
= 0 - r— To

tanh V Maxout
tanh(z) 4 o max(wi = + by, w3 T + bo)
RelLU / ELU

0 xZr i Z 0
max( ’ ZC) e ) {a(e“’ —1) <0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Sigmoid

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

o) =1/(1+e%)

Squashes numbers to range [0,1]

Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron



Activation Functions

Sigmoid

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

o) =1/(1+e%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

« 3 problems:

1. Saturated neurons “kill” the
gradients



()8E //—"_.——
X 8o sigmoid o(z) =1/(1+e7) salf
\loz - g
= 5p| 9t - |
o - ki % /t{:}
dr Oz Oo oo i _‘;-../..'....E._)....l,o

What happens when x =-107
What happens when x = 0?
What happens when x = 10?7

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

Sigmoid

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

o) =1/(1+e%)

Squashes numbers to range [0,1]

Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

« 3 problems:

1.

2.

Saturated neurons “kill” the
gradients

Sigmoid outputs are not
zero-centered



Activation Functions

Sigmoid

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

o) =1/(1+e%)

Squashes numbers to range [0,1]

Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

« 3 problems:

1

2.

3.

. Saturated neurons “kill” the

gradients

Sigmoid outputs are not
zero-centered

exp() is a bit compute expensive



Activation Functions

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

[LeCun et al., 1991]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

10,

-10 10

RelLU
(Rectified Linear Unit)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Computes f(x) = max(0,x)

Does not saturate (in +region)
Very computationally efficient
Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

[Krizhevsky et al., 2012]



Activation Functions

10,

_T0 10

RelLU
(Rectified Linear Unit)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Computes f(x) = max(0,x)

Does not saturate (in +region)
Very computationally efficient
Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

Not zero-centered output



Activation Functions

Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

10,

-10 10

- Not zero-centered output
An annoyance:

RelLU

(Rectified Linear Unit)
hint: what is the gradient when x < 0?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



X 55 ReLU o(x) = max(0, z)
< 5o 9ate <
9L 00 0L\ oL
dx Oz Oo oo -10

10,

What happens when x =-107
What happens when x = 0?
What happens when x = 10?7

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

10



: : : [Mass et al., 2013]
Activation Functions [He et al., 2015]
- Does not saturate
- Computationally efficient
- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

10,

_; N 10

Leaky RelL U
flz) = max(0.01z;x)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Activation Functions

10,

— Lo | 10

Leaky RelLU
f(z) = max(0.01z, z)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Mass et al., 2013]
[He et al., 2015]
- Does not saturate
- Computationally efficient
- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PRelLU)
flz) = max(awz; x)

>

backprop into alpha
(parameter)



Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime
compared with Leaky RelLU
adds some robustness to noise

10+

T ifx >0 . :
i) = {C’; (exp(z) — 1) :f; 2 o - Computation requires exp()

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Maxout “Neuron” [Goodfellow et al., 2013]

Does not have the basic form of dot product ->
nonlinearity

Generalizes RelLU and Leaky RelLU

Linear Regime! Does not saturate! Does not die!

max(w] z + by, w; z + b)

Problem: doubles the number of parameters/neuron :(

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



TLDR: In practice:

- Use RelU. Be careful with your learning rates
- Try out Leaky RelLU / Maxout / ELU / PRelLU
Try out tanh but don’t expect much

Don’t use sigmoid

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Batch Normalization

[loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

) _ z®) — E[z(®)]
v/ Var[z ()]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Batch Normalization

[loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

1. compute the empirical mean and

t44 variance independently for each
dimension.
N :
2. Normalize
k) k
YVY ) _ &) —Elz]
D \/ Var[z(%)]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Batch Normalization

[loffe and Szegedy, 2015]

Normalize;
k LK
(B z®) — E[z(®)]
k
\/Var[f’j (k) ] Note, the network can learn:
And then allow the network to squash V(k) i \/Var[.fv(’“)]

the range if it wants to:

Bk = E[x(k)]

to recover the identity
mapping.

y8) = A(R3(k) | gk)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Batch Normalization

[loffe and Szegedy, 2015]

Input: Values of z over a mini-batch: B = {1, . }; - Improves gradient flow through
Parameters to be learned: v, 3 the network
Output: {y; = BN, 5(z:)} - Allows higher learning rates
m - Reduces the strong dependence
pB 4 — N // mini-batch mean on initialization
i=1 - Acts as a form of regularization
1 m
2 2 w .
— — i — /l -batch
OB ¢ — ;(:p UB) mini-batch variance
T; +— el 3 // normalize
V05 +e
Yi + YZ; + B = BN, g(z:) // scale and shift

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Batch Normalization

[loffe and Szegedy, 2015]

Input: Values of = over a mini-batch: B = {21, }; Note: at test time BatchNorm layer
Parameters to be learned: v, 3 functions differently:

Output: {y; = BN, g(z;)}

L m The mean/std are not computed

HB = — Z T // mini-batch mean | based on the batch. Instead, a single

' fixed empirical mean of activations

during training is used.

— // mini-batch vari
O'B — = - Z /IB mini-oatcn variance
o T MB 7 " (e.g. can be estimated during training
i /o% + e HOTMAIZEN with running averages)
Yi +— Y%; + B = BN, 5(z;) // scale and shift

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Babysitting the Learning Process

* Preprocess data

« Choose architecture

« Initialize and check initial loss with no regularization
 Increase regularization, loss should increase

« Then train — try small portion of data, check you can
overfit

« Add regularization, and find learning rate that can make
the loss go down

« Check learning rates in range [le-3 ... 1e-5]

« Coarse-to-fine search for hyperparameters (e.g. learning
rate, regularization)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Grid and Random Search

Random Search for
Hyper-Parameter Optimization

Bergstra and Bengio, 2012

®
®
@
Unimportant Parameter
|
Unimportant Parameter

Important Parameter Important Parameter

lllustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017

Fei-Fei Li, Justin Johnson, Serena Yeung



Monitor and Visualize Accuracy

|
065 | A [ \f \ll
J
1

Clasification accuracy

| J ||'{ \
045 ‘f/\/

&% . ) v
050 | I’\‘v/ | m A /'L\/- /\'/"\\ |'|".\ /\,\/ l\/\J\/:\_,/\/ \ /\ /\ J\/\A\/'V\/\,\//\'\MM

— Training accuracy

— Validation accuracy

20 40

:::::

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

80 100

big gap = overfitting

=2 increase regularization strength?

No gap
=> increase model capacity?



Dealing with sparse data

Deep neural networks require lots of data,
and can overfit easily

The more weights you need to learn, the
more data you need

That's why with a deeper network, you need
more data for training than for a shallower

network

Ways to prevent overfitting include:
Using a validation set to stop training or pick parameters
Regularization
Data augmentation
Transfer learning



Over-training prevention

* Running too many epochs can result in over-fitting.

error

on test data

on training data

—
0 # training epochs

« Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

Adapted from Ray Mooney



Determining best number of hidden units

Ray Mooney

Too few hidden units prevent the network from
adequately fitting the data.

Too many hidden units can result in over-fitting.

error

on test data

on training data

——

0 # hidden units

Use internal cross-validation to empirically
determine an optimal number of hidden units.



Effect of number of neurons

3 hidde neurons | 6 hidden neurons 20 hidd neurons

more neurons = more capacity

Andrej Karpathy



Effect of regularization

Do not use size of neural network as a regularizer. Use stronger
regularization instead:

A=0.01

(you can play with this demo over at ConvNetJS: http://cs.stanford.
edu/people/karpathy/convnetjs/demo/classify2d.html)

Andrej Karpathy


http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Regularization

L1, L2 regularization (weight decay)

* Dropout

« Randomly turn off some neurons

« Allows individual neurons to independently be responsible
for performance

AN

O WAL, e = -

WO PR AT LALEA PN N, PP S s

/- e lﬁﬁ‘\);' ( \.‘v"“" A A A

My AR T s, ,‘\(\J‘-‘ n

S 4 O A,

} Y v W '\,x.; | ZaS e

v kS .
L i i i i

0 200000 400000 GOODDD 200000 10030000

!
Number of weight updates

(a) Standard Neural Net (b) After applyving dropout.

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang


http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Data Augmentation

Load image
and label

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Compute
loss



Data Augmentation

Load image
and label

Compute
loss

Transform image

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Horizontal Flips

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet: «
1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, +
flips

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Data Augmentation

Get creative for your problem!

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
lens distortions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; Image: https://github.com/aleju/imgaug



https://github.com/aleju/imgaug

Transfer learning

« If you have sparse data in your domain of
Interest (target), but have rich data in a
disjoint yet related domain (source),

* You can train the early layers on the source
domain, and only the last few layers on the

target domain:

Set these to the already learned Learn these on your own task
weights from another network



Transfer learning

Source: classify 20 animal classes Target: 10 car classes
1. Train on 2. Small dataset: 3. Medium dataset:
im®e_  source (large image ] [imege | finetuning
conv-64 d at as et) conv-64 \ conv-64 \
come-64 — com-64 more data = retrain more of
maxpool maxpool maxpool .
conv-128 conv-128 conv-128 the network (Or a” Of It)
conv-128 conv-128 conv-128
maxpool maxpool maxpool
conv-256 conv-256 conv-256 Freeze these
conv-256 conv-256 conv-256
maxpool maxpool Freeze these maxpool
conv-512 conv-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpool j
conv-512 conv-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpool
FC-4096 FC-4096 j FC-4096 <+—— Train this
FC-4096 FC-4096 FC-4096
FC-1000 FC-1000 . . FC-1000
softmax softmax <t Tra|n thIS softmax

Another option: use network as feature extractor,
train SVM/LR on extracted features for target task

Adapted from Andrej Karpathy



Mini-batch gradient descent

* In classic gradient descent, we compute the
gradient from the loss for all training
examples

 Could also only use some of the data for
each gradient update

« We cycle through all the training examples
multiple times

« Each time we’ve cycled through all of them
once is called an ‘epoch’

* Allows faster training (e.g. on GPUSs),
parallelization



Training: Best practices

Center (subtract mean from) your data

Use Xavier initialization for weights

Use RELU or leaky RELU or ELU or PRelLU
Use batch normalization

Use data augmentation

Use reqgularization

Use mini-batch

Learning rate: too high? Too low?

Use cross-validation for hyperparameters



SpOt the CPU! (central processing unit)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

GEFORCE GTX»ON

d GEFORCE GTX !}




SpOt the GPUSs! (graphics processing unit)

="  GEFORCEGTX»oN

lﬁ GEFORCE GTX ‘0

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



CPU vs GPU

Cores Clock Memory | Price | Speed CPU: Fewer cores,
Speed but each core is
much faster and
CPU 4 4.2GHz System | $385 ~540 GFLOPs FP32 much more
.(Intel Core f]gyg)r;rr?ﬁgz\é\?;g) RAM Capable; great at
I7-7700K) sequential tasks
GPU 4352 1.6 GHz 11 GB $1199 | ~13.4 TFLOPs FP32
(NVIDIA GDDR6 GPU: More cores,
RTX 2080 Ti) but each core is
much slower and
GPU 3072 1.6 GHz 16 GB $2,299 | ~11.2 TFLOPs FP32 “dumber”; great for
(NVIDIA GDDR6 parallel tasks
Quadro RTX
5000) L
TPU: Specialized
TPU 5120 CUDA, 15GHz 12GB $2999 ~14 TFLOPsFP32 hardware for deep
NVIDIA 640 Tensor HBM2 ~112 TFLOP FP16 learning
TITANV
TPU ? ? 64 GB $4.50 | ~180 TFLOP
Google Cloud HBM per
TPU hour

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



TensorFlow: Tensor Processing Units

Google Cloud TPU NVIDIA Tesla V100
=180 TFLOPs of compute! =125 TFLOPs of compute

NVIDIA Tesla P100 = 11 TFLOPs of compute
GTX 580 =0.2 TFLOPs

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



TensorFlow: Tensor Processing Units

Google Cloud TPU ; : -
=180 TFLOPs of compute! Google Cloud TPU Pod

= 64 Cloud TPUs
= 11.5 PFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers guide/using tpu

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung


https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

CPU vs GPU in practice

(CPU performance not
well-optimized, a little unfair)

I intel E5-2620v3 [ Pascal Titan X (no cuDNN) Pascal Titan X (CuDNN 5.1)
24000

18000 \

96X X 71x 64X 76X

6/
[’ ¢ ]
i ]

VGG-16 VGG-19 ResNet-18 Res-Net-50 ResNet-200

16 Forward + Backward time (ms)

N=

Data from https://github.com/jcjohnson/cnn-benchmarks

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



CPU / GPU Communication

Model
IS here

Data is here

- et Y If you aren’t careful, training can
| ——— ' = bottleneck on reading data and

e P e X -' transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads
to prefetch data

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Software: A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

e

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

PaddlePaddle Chainer

(Baidu)
Caffe2
(Facebook)

X\Ir)n(z!jc?r;[) CNTK
(Microsoft)
PyTorch
(Facebook)
JAX

TensorFlow (Google)
(Google)

And others...



Convergence of training



Successful training

 We want training to converge (stop) at a
reasonable place

* Stopping is not guaranteed — e.g. imagine
taking larger and larger steps...

e Stopping in a good place is not guaranteed



Will backprop do the right thing?

* |n classification problems, classification error
is a non-differentiable function of weights

* The divergence function minimized (loss) is
only a proxy for classification error

* Minimizing loss may not minimize
classification error

Adapted from Bhiksha Raj



Will backprop do the right thing?

* With these three points, backprop finds the

right answer

Adapted from Bhiksha Raj

« Fromthe three points we get three independentequations:

w,.1+w,.0+b=u
we.0+wy.14+b=u
ws.—1+wy.0+4+b=—-u

» Unique solution (ws=u,ws = u, b = 0) exists



Will backprop do the right thing?

t very large

® 00+

e Now add a fourth point

e With large enough t, O contribution of 4th point to derivative of L, error
(e.g. if sigmoid/tanh used)

¢ Local optimum solution found by backprop
e Doesnot separate the points even thoughthey are linearly separable!

e Another algorithm (perceptron, in blue) does find the optimal separator
w(™ = w(™ — pVEp(w) = w(® + ¢, t,

Adapted from Bhiksha Raj



Will backprop do the right thing?

e Adding a“spoiler” (or asmall number of spoilers)
— Perceptron finds the linear separator

— For bounded w, backprop does not find a separator
— Asingle additional input does not change the lossfunction significantly
e Backprop is minimally changed by new training instances
— Prefers consistency over perfection
* Anecdotal: Variance decreases with depth and data

Bhiksha Raj



Loss surfaces

e Usually Loss(W) is not convex, so there are
many local minima

* However, in deep networks, these minima are
reasonably similar — not true in small
networks

 What are desirable properties of the loss
surface?



Convexity

e Asurface is “convex” if it continuously curves upward

— We can connect any two points above the surface without
intersecting it

— Many mathematical definitions that are equivalent

e (Caveat: Neural net loss surface generally not convex

a(*)

o 1
® o 2 ®

Adapted from Bhiksha Raj

Non-convex set




The loss surface

* Gradient descent makes the assumption that
loss/objective has a single global optimum

 What about local optima?

—d " »

Adapted from Bhiksha Raj



The loss surface

* Popular hypothesis:
— Most local minima are equivalent
e And close to global minimum
— This is not true for small networks

— In large networks, saddle points are far more
common than local minima

e Frequency exponential in network size

 Saddle point: Apoint where:
— The slope is zero

— The surface increases in some directions, but
decreases in others

e Some of the Eigenvalues of the Hessian are positive;
others are negative

— Gradient descent algs often get “stuck” in saddle points

Bhiksha Raj



The controversial loss surface

 Baldi and Hornik (89), “Neural Networks and Principal Component
Analysis: Learning from Examples Without Local Minima” : An MLP with
a single hidden layer has only saddle points and nolocal minima

* Dauphin et. al (2015), “Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization” : An exponential
number of saddle points in large networks

e Chomoranksa et. al (2015), “The loss surface of multilayer networks”
For large networks, most local minima lie in a band and are equivalent

* Swirsczet. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible
local minima

e Watch this space...

Adapted from Bhiksha Raj



Conditions for convergence

* So far we have assumed training arrives at a local
minimum

* Does it always converge?
* How long does it take?

* Hard to analyze for a neural network, but we can
look at the problem through the lens of convex
optimization

Adapted from Bhiksha Raj



Convergence and convergence rate

e Aniterative algorithm is said to converging
converge to asolution if thevalue y -
updates arrive at afixed point "

e Where the gradient is 0 and further
updates do not change the estimate fittering

e The algorithm may not converge
e [t may jitter around thelocal
minimum
* [t may even diverge
e Conditions for convergence?

Bhiksha Raj



Convergence and convergence rate

 Convergence rate: how fast iterations arrive
at the solution

* Generally quantified as:

o U ) —ra)
F ) —f ()

— x(k+lis the k-thiteration
— x'is the optimal value of x

* |f Ris a constant (or upper-bounded):
convergence is linear

Adapted from Bhiksha Raj



With non-optimal step size

W(k+1) — W(k) ./

dE (W(k)) Gradient descent with fixed step size n
to estimate scalar parameter w

dw
E(wm) E(w)
f 1 \
‘_. @ " W
a) m‘min b} (!}min
E(w) E(w)
y . n=>2n
\ n>ng. | H-\Dm
ﬁ_(.; - (1) ' - ®
c) Omin d) Wrin

Bhiksha Raj

Fory < Nopt the algorithm
will converge monotonically

FOr 2nope > 1 > 1ope WE
have oscillating
convergence

Forn > 21,,. weget
divergence




Multivariate quadratic surface

e Optimal learning rate is different for the different
coordinates

* Thelearning rate must be lower than twice the smallest
optimal learning rate for any component 7 < 2min;,,,

— Otherwise the learning will diverge
* This, however, makes the learning very slow

e Convergence is particularly slow if the following is
large (the “condition” number is small)  max niopt
I

mIn 7iopt

Adapted from Bhiksha Raj



Dependence on learning rate

* Mpt =1; Mmypept = 0.33
* N =2.1n0pt

* M= 2N0pt

* = 15mpt

* N =M2opt

» T’ = 0.75n2ppt

Bhiksha Raj



Convexity

* For quadratic (strongly)
convex functions,
gradient descent is
exponentially fast

* For generic (Lifschitz
Smooth) convex
functions however, it is
very slow

* |In neural networks, we
may have neither...

Adapted from Bhiksha Raj  https://christianjhoward.me/blog/index.php/2018/03/19/exponential-convergence-of-gradient-descent-with-lipschitz-s



https://christianjhoward.me/blog/index.php/2018/03/19/exponential-convergence-of-gradient-descent-with-lipschitz-smoothness-and-strong-convexity/

Optimization strategies



Getting to the minimum

Gradient descent is just one strategy, but has
several problems

What other “steps” can we take?

How far in the direction of decreasing gradient
do we go? With what speed/acceleration?

What about overshooting minima?



Optimization

# Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss_ fun, data, weights)
weights += - step size * weights grad # perform parameter update

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Optimization:
Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Optimization:
Problems with SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Optimization:
Problems with SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,

gradient descent
gets stuck

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Optimization:
Problems with SGD

Our gradients come from
minibatches so they can be noisy!

N
1
1=1

N
1

=1

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



SGD + Momentum

SGD SGD+Momentum
Vi1 = pvr + V f(x4)

Tt+1 = Tt — AV41

Tiy1 = 2 — oV f(xy)

vX = 0
while True:

while True:
dx = compute_gradient(x)

x —= learning_rate * dx dx = compute_gradient(x)
vX = rho *x vx + dx
x —= learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



AdaGrad

grad_squared = 0

while True:

dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / (np.sgrt(grad_squared) + 1le-7)

Added element-wise scaling of the gradient based
on the historical sum of squares in each dimension

“Per-parameter learning rates”
or “adaptive learning rates”

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(Xx)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + le-7)

Q: Wha’[ happens Wlth AdaG rad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



AdaGrad

grad_squared = 0
while True:
dx = compute_gradient(x)
grad_squared += dx * dx
X -= learning_rate * dx / |(np.sqrt(grad_squared) + 1le-7)

Q2: What happens to the step size over long time?

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



RMSProp

grad_squared = 0
while True:

AdaG rad dx = compute_gradient(x)

grad_squared += dx * dx
X -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)
grad_squared = 0

while True:

RMSPrOp dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx

x -= learning_rate * dx / (np.sqrt(grad_squared) + 1le-7)

Tieleman and Hinton, 2012

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Adam

first_moment = 0

second_moment = 0

for t in range(1, num_iterations):
dx = compute gradient(x) Momentum
first_moment = betal * first_moment + (1 - betal) * dx
second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
first_unbias = first_moment / (1 - betal ** t)

second_unbias = second_moment / (1 - beta2 ** t) Bias correction
X -= learning_rate * first_unbias / (np.sqgrt(second_unbias) + 1le-7))
AdaGrad / RMSProp
Bias correction for the fact that Adam with betal = 0.9
first and second moment beta2 = 0.999, and learning_rate = 1e-3 or 5e-4
estimates start at zero is a great starting point for many models!

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR 2015

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



Optimizers comparison

SGD

SGD+Momentum

RMSProp

Adam

https://imgur.com/a/Hgolp

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung


https://imgur.com/a/Hqolp

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

loss => L earning rate decay over time!

N step decay:
e.g. decay learning rate by half every few epochs.

low learning rate

<L B —— exponential decay:

\ a — e_kt
good learning rate 1/t decay:
epoch Q= Of()/(]. —+ kt)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these learning
rates Is best to use?

low learning rate

T — A: All of them! Start with large
\ learning rate and decay over time

good learning rate

Fei-Fei Li, Justin Johnson, Serena Yeung



SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

low learning rate

high learning rate

good learning rate

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

4 |oss

Learning rate decay!

Epoch

Also see https://openreview.net/pdf?id=rleOnh4YPB

>


https://openreview.net/pdf?id=r1eOnh4YPB

Loss

Bad initialization a prime suspect

/

time

Fei-Fei Li, Justin Johnson, Serena Yeung



Loss

Loss plateaus: Try
learning rate decay

time

Fei-Fei Li, Justin Johnson, Serena Yeung



Loss

Learning rate step decay Loss was still going down
when learning rate dropped,
you decayed too early!

time

Fei-Fei Li, Justin Johnson, Serena Yeung



First-Order Optimization

Loss

wl

Fei-Fei Li, Justin Johnson, Serena Yeung



First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

Loss

B

wl

Fei-Fei Li, Justin Johnson, Serena Yeung



Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

Loss

wl

Fei-Fei Li, Justin Johnson, Serena Yeung



Second-Order Optimization

2%¢ 9%¢ . 2%
Bw% owidwy dwidwy
H(w) = : e : :
2. .. o
adw,o0w; ow?

second-order Taylor expansion:

J(0)~ J(0y) + (O—G))TVQJ(Ho)wL %(H—BO)TH(H— 6o)

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N”2) elements

0" = 0, — H_1V9t7(90) Inverting takes O(N”3)

N = (Tens or Hundreds of) Millions

Q: Why is this bad for deep learning?

Partial solution: Quasi-Newton methods (e.g. BGFS)
approximate inverse Hessian

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung  http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote07.html



http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote07.html

Choosing Hyperparameters

Step 1: Check initial loss
Without weight decay (regularization), sanity check loss

at initialization
e.g. log(C) for softmax with C classes

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of
training data (~5-10 minibatches); fiddle with architecture,
learning rate, weight initialization

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization

Fei-Fei Li, Justin Johnson, Serena Yeung



Choosing Hyperparameters

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training
data, turn on small weight decay, find a learning rate that
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1le-2, 1e-3, le-4
Good weight decay to try: 1le-4, 1e-5,0

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid search, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around
what worked from Step 3, train a few models for ~1-5 epochs.

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20
epochs) without learning rate decay

Fei-Fei Li, Justin Johnson, Serena Yeung



Choosing Hyperparameters

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4. Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss curves

Fei-Fei Li, Justin Johnson, Serena Yeung



Look at learning curves!

Training Loss Train / Val Accuracy
010
9g | —@— ftrain
0.08 4
0 96 1
v
2 006
o 94
=
£ 004 -
© 92 A
|_
0.02 - 90 -
0.00

0 100000 200000 300000400000 500000600000  © § 100000 200000 300000 400000 500000 600000
lteration lteration

Losses may be noisy, use a
scatter plot and also plot moving
average to see trends better

Fei-Fei Li, Justin Johnson, Serena Yeung



Accuracy Accuracy still going up, you
need to train longer

Train

__—

time

Fei-Fei Li, Justin Johnson, Serena Yeung



Accuracy Huge train / val gap means
overfitting! Increase regularization,
get more data

__—

Train

time

Fei-Fei Li, Justin Johnson, Serena Yeung



Accuracy { No gap between train / val means

underfitting: train longer, use a
bigger model

___—

Train

time

Fei-Fei Li, Justin Johnson, Serena Yeung



Track the ratio of weight updates / weight magnitudes:

# assume parameter vector W and its gradient vector dW
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

Fei-Fei Li, Justin Johnson, Serena Yeung



Mini batch size

SGD example

Mini-Batch K-Means (b=1000) T 1®ue A

nge
Il’lt

" SGD K-Means e

Batch K-Means =« s

0.04
o 0035 |
|

®

>

C

8 0.03 |-
2

=

w

é 0.025 |-
3,

¢}

. 0.02 |
:

¥ 0.015 |
3

@

m

§ o001}
g

W 0.005 -

0
0.0001

L
0.001

Training CPU secs

1000

5
o

wW
[4)]
T

W
o
T

N
o
T

1 L |

128 256 512 1k 2k 4k 8k 16k 32k 64k
mini-batch size

ImageNet top-1 validation error
[}
o

fep}
=

Figure 1. ImageNet top-1 validation error vs. minibatch size.
Error range of plus/minus two standard deviations is shown. We
present a simple and general technique for scaling distributed syn-
chronous SGD to minibatches of up to 8k images while maintain-
ing the top-1 error of small minibatch training. For all minibatch
sizes we set the learning rate as a linear function of the minibatch
size and apply a simple warmup phase for the first few epochs of
training. All other hyper-parameters are kept fixed. Using this
simple approach, accuracy of our models is invariant to minibatch
size (up to an 8k minibatch size). Our techniques enable a lin-
ear reduction in training time with ~90% efficiency as we scale
to large minibatch sizes, allowing us to train an accurate 8k mini-
batch ResNet-50 model in 1 hour on 256 GPUs.

Bhiksha Raj; Goyal et al. “Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour”



Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Fei-Fei Li, Justin Johnson, Serena Yeung



Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

: Single Model ,,x}}\
04 Standard LR Schedule [\

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017
Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li, Justin Johnson, Serena Yeung



Model Ensembles: Tips and Tricks

Instead of training independent models, use multiple
snapshots of a single model during training!

Cifar10 (L=100,k=24, B=300 epochs)

05 Single Model AN 955 Snapshot Ensemble m 10!
04 Standard LR Schedule /| W 044 Cyclic LR Schedule [}/ — Standard Ir scheduling
: A - Cosine annealing with restart Ir 0.1
03 R 10° I I I I I
0.2 024 | | | | |
0.1 0.1 )

o
L
j
Training loss
=

-0.1 014 }f.\‘ ) i3

-02 -02 r: : Vi

-03 -03 P E 10° |

~0.4 04 = ’ Model | Model | Model | Model | Model | Model

50 = 50 50 €« 50 1 2 3 4 5 6
40 " 40 40 N 40 107 1 1 1 1 1
30 < 30 30 30 0 50 100 150 200 250 300
20 = Y X Hy 0 B 20
7 =~ ~< Epocl.c

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016 CyCIIC |eam|n9 rate SChedUIGS can
Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017 make thIS WOfk even better'

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li, Justin Johnson, Serena Yeung



Summary

- Improve your training error:
- Optimizers
- Learning rate schedules

- Improve your test error:
- Regularization

- Choosing hyperparameters
- Model ensembles

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung



Computation graphs



How do we compute the gradient?

* Derive on paper? Tedious
e What about vector-valued functions?



Computational graphs

f=Wez

Li = . ,., max(0,s; — sy, +1)

I s (scores)
CO®—¢
(r)

L

\

Fei-Fei Li, Justin Johnson, Serena Yeung

R(W)




Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

Chalin rule:

_ 9 _ . 09 _
q=x+Y 5:8——1,?@—1
of of
f=gqz 0 =% — 4
. Of dF @af
Want: B! Ty B

Fei-Fei Li, Justin Johnson, Serena Yeung

of _ Of 9q
Or  Oq Ox

A
Upstream
gradient

\
Local
gradient




“local gradient”

X 5
o >
oL
0z

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung




_ 1
Another example: f(w,z) = ey

.
x0

.

w2

Fei-Fei Li, Justin Johnson, Serena Yeung



Another example:

w0 2.00
x0 -
wl -
X1.=

w2

Fei-Fei Li, Justin Johnson, Serena Yeung

f('w,m) =

1

1+e —(wpzo+wi 1 +ws)




1

1+e —(wpzo+wi 1 +ws)

Another example: flw,z) =

fa) = - G | t@-1 4 Bt
fo(z) =az — Z—i::a fe) =g+ — %:1

Fei-Fei Li, Justin Johnson, Serena Yeung



1

1 + e (wozo+wizi+w,)

Another example: flw,z) =

w0 2.00

Upstream Local
gradient  gradient
~ 7 1
1.00
( ) 1.372

) = —0.53

0.37 +1 1.37 0.73
-0.53 1.00

() = e = G | |@=1 “ Bt
fo(z) =az — Z—;::a filE) =61 — %:1

Fei-Fei Li, Justin Johnson, Serena Yeung



1

1 + e (wozo+wizi+w,)

Another example: flw,z) =

w0 2.00
Upstream Local
x0 -1.00 gradient  gradient
~ /
. (—0.53)(1) = —0.53
1.00 % -1.00 0.37 1.37 0.73
X1, 200 @ S -0.553 0.53 1.00
w2 -3.
df 1 df
— % — -_— - = — _ - 2
flz)=e e flz) =~ — ——=—1/a
d
fo(z) = az — d—:];:a f(x)=c+=x s %:1

Fei-Fei Li, Justin Johnson, Serena Yeung




1

1 + e (wozo+wizi+w,)

Another example: flw,z) =

w0 2.00

Upstream Local

gradient  gradient
~ /

(—0.53)(e™!) = —0.20

x0 -

w1 -3.00

-1.00 0.37 1.37 0.73
x1 - 020 P -0%53 i -0.53 @ 1.00
w2 -3.

df 1 df
o ol Y i e i
d
f.lz) =nx — d—iza J(z) =ec+= —

Fei-Fei Li, Justin Johnson, Serena Yeung



1

1 + e (wozo+wizi+w,)

Another example: flw,z) =

w0 2.00

Upstream Local

%0 -1.00 gradient  gradient
~

(—0.20)(—1) = 0.20

w1 -3.00
100 /4 -1.00 0.37 1.37 0.73
x1 -2.00 020 \__/ 020 [\XP -0.553 \__/ 053 @ 1.00
w2 -3.00
df 1 df
o . e &l _ g2
flz)=e = e flz) =~ ——=—1/a
d
fo(z) = az — d—:];:a f(x)=c+=x s %:1

Fei-Fei Li, Justin Johnson, Serena Yeung



1

Another example: flw,z) =

w0 2.00

1.0 @ 100 V037 A1)

0.20
& df .
Flig)= e 5 7
df
fa(w) — ar — % =a

Fei-Fei Li, Justin Johnson, Serena Yeung

1+e —(wpzo+wi 1 +ws)

[upstream gradient] x [local gradient]
[0.2] x[1] =0.2
[0.2] x [1] = 0.2 (both inputs!)

P 1.37 @ 0.73
-0.20 \_pJ 053 \__/ 053 \_J 1.00

f(a:):é — %:—1/:1:2

fi(®) =642 —5



1

Another example: flw,z) =

w0 2.00
-2.00
x0 -1.00 L

w1 -3.00

1 + e (wozo+wizi+w,)

x1 -2.00 020 \_J 020 X5 U

fa) = e - L | -2
fola) = aa = Z-a | f@=cta

Fei-Fei Li, Justin Johnson, Serena Yeung



1

Another example: flw,z) =

1 XX e—(womo+w1x1+w2)

w0 2.00
0 >® 2.00 [upstream gradient] x [local gradient]
2100 x0: [0.2] x [2] = 0.4
' wO: [0.2] x [-1] =-0.2
wl -3.00
1.00 @‘1\ 2100 /2N 037 /‘1\ 1.37 /1/\ 0.73
x1 -2.00 020 \_J 020 ST 53 \i/ 05 Y 100
w2 -3.00
0.20
i)=& - 7 flz) == oy %__1/:1;
B df _ . af _
fo(z) = az — T, T fi(®) =642 o 5_1

Fei-Fei Li, Justin Johnson, Serena Yeung




Another example:

w0 2.00

x0 -1.00

wl -3.00

x1 -2.00

w2 -3.00
0.20

Fei-Fei Li, Justin Johnson, Serena Yeung

1

flw,z) = Computational graph
, e i .
1 + e (wozo+wizy+w,) representation may not
be unique. Choose one
Sigmoid 1 where local gradients at
function o(z) = 1+ ez €achnode can be easily
expressed!
Sigmoid
1.00 # -1.00 0.37 1.37 0.73
0.20 @ 0.20 @ 053 @ -0.53 @ 1.00




1 .
Another example:  f(w,z) = Computational graph

1 + e~ (wozo+wizy+wy) representation may not
be unique. Choose one
- Sigmoid 1 where local gradients at
function o) = 1+ e-z| e€achnode can be easily
x0 -1.00 + € ex |
pressed!

wl -3.00

Sigmoid

100 & 1) . -100 @ 037 /137
020 \_/ 020 Y 053 \__J -053

x1 -2.00

w2 -3.00

020 [upstream gradient] x [local gradient]
[1.00] x[(1-0.73) (0.73)] = 0.2
Sigmoidlocal do(z) e = [(1+4+e " -1 1 |
gradient: dr (1-}-8_":)2 o l1+e® 1+e=*) (1 —0(:17))0’(:13)

Fei-Fei Li, Justin Johnson, Serena Yeung



Patterns in gradient flow

add gate: gradient distributor mul gate: “swap multiplier”
2 N\ 5%3=15
< 3 2 < } 5
- A
2 5*2=10
copy gate: gradient adder max gate: gradient router
4 0 .
ey Cra
4+2=6 ‘ 9

2 9

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:

Flat” code Forward pass:
Compute output

w0 2.00

0.20

Compute grads

0.20

Fei-Fei Li, Justin Johnson, Serena Yeung

100 @?-gg Backward pass:

def f(w@,

x0, wl, x1, w2):

SO = wo
sl =wl
s2 = s0O
s3 = s2

*
*
+

4

L = sigmoid(s3)

X0
x1
sl
w2

grad_L = 1.0

grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2

grad_sl = grad_s2

grad_wl = grad_sl * x1

grad_x1 = grad_sl * wl

grad_w@ = grad_s@ * x0

grad_x0 = grad_s@ x w0




def f(wd, x0, wl, x1, w2):

Backprop Implementation: p—————

“Flat” code Forward pass: S5 = WL

Compute output 5; il e
S

L = sigmoid(s3)

s2 + w2

w0 2.00

Base case grad_L = 1.0

grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3

073 grad_s2 = grad_s3
1.00 grad_s@ = grad_s2

grad_sl = grad_s2

— grad_wl = grad_sl * x1
grad_x1 = grad_sl * wl
grad_w@ = grad_s@ * x0

grad_x0 = grad_s@ x w0

Fei-Fei Li, Justin Johnson, Serena Yeung



def f(wd, x0, wl, x1, w2):

Backprop Implementation: p—————

“Flat” code Forward pass: S5 = WL
Compute output | 52 =52 * 51

s3 = 52 + w2
||L = sigmoid(s3)

w0 2.00

grad L = 1.0
Sigmoid grad_s3 = grad_L * (1 - L) % L
grad_w2 = grad_s3
1.00 0.73 grad_s2 = grad_s3
L Loo] grad_s@ = grad_s2

grad_sl = grad_s2

— grad_wl = grad_sl * x1
grad_x1 = grad_sl * wl
grad_w@ = grad_s@ * x0

grad_x0 = grad_s@ x w0

Fei-Fei Li, Justin Johnson, Serena Yeung



Backprop Implementation:

“Flat” code

w0 2.00

-0.60

w2| -3.00
0.20

4.00
0.20

1.00j

@ 0.73

0.20

Fei-Fei Li, Justin Johnson, Serena Yeung

\__/ 100

Forward pass:
Compute output

Add gate

def f(wd, x0, wl, x1, w2):
SO = wd * x0

s1 = wl % x1
s2
s3
L = sigmoid(s3)

s@ + sl

s2 + w2

grad_L = 1.0

grad s3 =grad L x (1 — 1) % L _
grad_w2 = grad_s3

grad_s2 = grad_s3

grad_s® = grad_s2
grad_sl = grad_s2
grad_wl = grad_sl *x x1
grad_x1 = grad_sl * wl
grad_w@ = grad_s@ * x0
grad_x@ = grad_s@ *x w0



def f(wd, x0, wl, x1, w2):

Backprop Implementation: p—————
“Flat” code Forward pass: oMLy

Compute output ~ [[52.= 52 * s1
S3 = 82 + w2
wof%%i><::>- L = sigmoid(s3)
-2.00
x0 -1.00 )
— grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
wl:éii grad_w2 = grad_s3
1;@ 0.20 + o @0'73 grad_s2 - grad_s?
%l A2 020 1.00 grad_s@ = grad_s2

0.60 Add gate
grad_sl = grad_s2

grad_wl = grad_s1l *x x1
grad_x1 = grad_sl * wl
grad_w@ = grad_s@ * x0
grad_x@ = grad_s@ *x w0

Fei-Fei Li, Justin Johnson, Serena Yeung



def f(wd, x0, wl, x1, w2):

Backprop Implementation: o ———
“Flat” code Forward pass: S eRe

Compute output | 52 =52 * 51
s3 = s2 + w2
Woiﬁi L = sigmoid(s3)
-2.00
0 -1.00 o
an grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
wl -3.00

grad_w2 = grad_s3
100 (. 073 grad_s2 = grad_s3

a
x1 -2.00 0.20 1.00 grad_s@ = grad_s2
grad_sl = grad_s2
w2 -3.00
. rad_wl = grad_sl *x x1
0.20 Multiply gate Y St
grad_x1 = grad_sl * wl

grad_w@ = grad_s@ * x0
grad_x@ = grad_s@ *x w0

Fei-Fei Li, Justin Johnson, Serena Yeung



def f(wd, x0, wl, x1, w2):

Backprop Implementation: 5 = WOUH X0

“Flat” code Forward pass: 3l = Wlow
Compute output | 52 =52 * 51

s3 = s2 + w2

w0 2.00

L = sigmoid(s3)

grad_L = 1.0
grad_s3 = grad_L * (1 - L) * L
grad_w2 = grad_s3

1.00 /;;\\073 grad_s2 = grad_s3
0.20 1.00 grad_s@ = grad_s2

grad_sl = grad_s2

grad_wl = grad_sl *x x1
grad_x1 = grad_sl * wl

grad_w@ = grad_s@ * x0

Multiply gate grad_x@ = grad_s@ * w0

Fei-Fei Li, Justin Johnson, Serena Yeung



So far: backprop with scalars

What about vector-valued functions?

Fei-Fei Li, Justin Johnson, Serena Yeung



Recap: Vector derivatives

Scalar to Scalar
reR,yeR

Regular derivative:

dy
— R
(93:6

If X changes by a
small amount, how
much will y change?

Fei-Fei Li, Justin Johnson, Serena Yeung



Recap: Vector derivatives

Scalar to Scalar
reR,yeR
Regular derivative:

dy
or

If X changes by a
small amount, how
much will y change?

ceR

Fei-Fei Li, Justin Johnson, Serena Yeung

8y N (9 dy
— R (%)n - oz,

Vector to Scalar
reRY yeR

Derivative is Gradient:

For each element of x,
iIf it changes by a small
amount then how much
will y change?



Recap: Vector derivatives

Scalar to Scalar
reR,yeR
Regular derivative:

dy
oz
If X changes by a

small amount, how
much will y change?

ceR

Fei-Fei Li, Justin Johnson, Serena Yeung

(?y N [ 9y oy
— R (%)n - oz,

Vector to Scalar

reRY yeR

Derivative is Gradient:

For each element of x,
iIf it changes by a small
amount then how much
will y change?

Vector to Vector
reRY yeRM

Derivative is Jacobian:

8y7 n

Ay dy\
8”13 RN o ( aT > n,m 0-7;71

For each element of x, if it
changes by a small amount
then how much will each
element of y change?



Gradients

« Given afunction with 1 output and ninputs

f(ﬂ?) — f(xlaana 733?7,)

* Its gradient is avector of partial derivativeswith
respect to eachinput

of _[of of  of
Oz |0x1 Ozs’ " Ozp.

Christopher Manning



Jacobian Matrix: Generalization of Gradient

* Given a function with m outputs and n inputs

f(CL') — [fl(ajlva?Q, "'axn)a °°'7fm(xlax27 ,.’lfn)]

* [Its Jacobian is an m x n matrix of partial derivatives

- 01 0f1 7
ox1 "o ox
of _ | . - (a_f> oy,
. ’ . ox ).  Ox.
a.’L' afm afm 1] J
- Oxq "ot ox,, -

Christopher Manning



Chain Rule

* For one-variable functions: multiply derivatives
z =3y

y =’
dz dz dy
drx  dydx (3)(22) *

*  For multiple variables at once: multiply Jacobians

h = f(z)
z=Wx+0b
Gh_ahaz

ox  0zox

Christopher Manning



Example Jacobian: Elementwise activation Function

h
h = f(z),what is Oh., h,z ¢ R"

0z
h; = f(Zz)

Christopher Manning



Example Jacobian: Elementwise activation Function

h
h = f(z),what is Oh., h,z ¢ R"

0z
h; = f(Zz)

Function has n outputs and n inputs — n by n Jacobian

Christopher Manning



Example Jacobian: Elementwise activation Function

h
h = f(z),what is Oh., h,z ¢ R"

0z
h; = f(Zz)

h h;
(8_) — 0 = 0 f(z) definition of Jacobian
. . .

Christopher Manning



Example Jacobian: Elementwise activation Function

h = f(z),what is Oh.,

0z
h; = f(Zz)

oh\  oh; 0
(3_2’>ij T 0y 070 Y

10 if otherwise

Christopher Manning

h,z ¢ R"

definition of Jacobian

regular 1-variable derivative



Example Jacobian: Elementwise activation Function

h = f(z),what is Oh.,

0z
h; = f(Zz)

oh\  oh; 0
(3_2’>ij T 0y 070 Y

) (=) iti=

10 if otherwise
Oh fiz)
0z O

Christopher Manning

h,z ¢ R"

definition of Jacobian

regular 1-variable derivative



Backprop with Vectors

Loss L still a scalar!

DY = “local
\ gradients”
D, 9z 0, PxXDd —
| O 5 f ’
DOWH.Stree}’m Matrix-vector Oz -
gradients ultiply .
D\/ y ‘/aL Jacobian 2 ’

i 0% Y matrices “Upstream gradient”
Y For each element of z, how
D
y much does it influence L?

Fei-Fei Li, Justin Johnson, Serena Yeung



Fei-Fei Li, Justin

Backprop with Vectors

4D input x:

e

—_—

———_

Johnson, Serena Yeun

f(x) = max(0,x)
(elementwise)

4D outputy:

—_—

_
—_—

———_



Backprop with Vectors

4D input x:

Fei-Fei Li, Justin Johnson, Serena Yeung

1

-2 ]
3]
[ -1]

e

R

———_

f(x) = max(0,x)
(elementwise)

4D outputy:
— [ 1]
—— [ 0]
— [ 3]
—— [ 0]
4D dL/dy:
(4] —
[ -1] Upstream
5 1—— gradient
97




Backprop with Vectors

4D input x:

Fei-Fei Li, Justin Johnson, Serena Yeung

1

-2 ]
3]
[ -1]

e

R

———_

f(x) = max(0,x)
(elementwise)

Jacobian dy/dx
1 '
(00

1

0:

4D outputy:
— [ 1
—— [ 0]
— [ 3
—— [0

4D dL/dy:
—[4]——
— [ -1] Upstream
— [ 5 1—— gradient
—[9]—




Backprop with Vectors

4D input x:

Fei-Fei Li, Justin Johnson, Serena Yeung

1

-2 ]
3]
[ -1]

e

R

———_

f(x) = max(0,x)

(elementwise)
dy/dx] [dL/dy]
1 1[4 ]
[0000][-1]
1O0]J[5 ]
0][9

4D outputy:

— .1 1
—— [ 0]
— [ 3]
—— [ 0]

4D dL/dy:
—[4]—
— [ -1] Upstream
~— [ 51— gradient
——[9]—




Backprop with Vectors

4D input X:
[ 1]
(-2 ] ——
(3] —
1] ———

4D dL/dx:
(4] ——
(0] —
(5] —
(0] ——

Fei-Fei Li, Justin Johnson, Serena Yeung

f(x) = max(0,x)

(elementwise)
dy/dx] [dL/dy]
1 1[4 ]
000][-1.
1O0]J[5 ]
0][9

4D outputy:

[ 1]
—— [ 0]
—— [ 3]
—— [ 0]

4D dL/dy:
—[4]—
— [ -1] Upstream
~— [ 51— gradient
——[9]—




Jacobian is sparse:

off-diagonal entries
always zero! Never
explicitly form
Jacobian -- instead
use implicit
multiplication

1

-2 ]
3]

[ -1]

4D input x:

e

R

———_

4D dL/dx:

O 01O bH

Fei-Fei Li, Justin Johnson, Serena Yeung

-——

-—

-——

-—

f(x) = max(0,x)
(elementwise)

dy/dx] [dL/dy]
| 1 1[4 ]
000][-1.
LO]T[S ]
0J[9

Backprop with Vectors

4D outputy:

R

e

R

———_

1

[ 0 ]
3]
[0 ]

4D dL/dy:

-——

-—

-——

-—

| 4
[ -1]
e

9 ]

-—

-—

—

Upstream
gradient



A vectorized example: f(z, W) = ||W - z||* =, (W - )2

E Rn E Rﬂ)(ﬂ

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example: f(z, W) = ||W - z||* =, (W - )2

0.1 0.5
—0.3 0.8

Wiizr + -+ Winzn
q:W$: .

Wn,lml + Wn,nmn
f@=lad?=¢+ - +a

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example: f(z, W) = ||W - z||* =, (W - )2

0.1 0.5
—0.3 0.8

Wiizr + -+ Winzn
q:W$: .

Wn,lml + Wn,nmn
f@=lad?=¢+ - +a

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example: f(z, W) = ||W - z||* =, (W - )2

0.1 0.5
—0.3 0.8

o
[ 0.2 % @ .

/) 100

Wiizi+ -+ Winxy
gq=W .z =
Wapizi + -+ Wy noy
fl@)=llgll? =g+ - +q;

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example: f(z, W) = ||W - z||* = >, (W -

0.1 0.5
—0.3 0.8

[ 0.22 }
0.26

0.116
[0.2 % " /\ .

0.4
X
1o,
Wiizr + -+ Winzn g&% — 2@5
Wn,lml + -+ Wn,nmn qu — 2q

fl@=dP?=q¢+ - +4

Fei-Fei Li, Justin Johnson, Serena Yeung

2



A vectorized example: f(z, W) = ||W - z||* = >, (W -

0.1 0.5
—0.3 0.8

[ 0.22 ]
0.26
i i 0.116
0.4 0.44 \__/ 1.00
X | 0.52 |
0
Wiizr + -+ Winzn g&% — 2@5
Wn,lml + -+ Wn,nmn qu — 2q

fl@=dP?=q¢+ - +4

Fei-Fei Li, Justin Johnson, Serena Yeung

2



A vectorized example: f(z, W) = ||W - z||* = >, (W -

0.1 0.5
—0.3 0.8

[ 0.22 |
| 0.26 |

0.4

| 0.52 |

Wiizr + -+ Winzn

fl@=dP?=q¢+ - +4

Fei-Fei Li, Justin Johnson, Serena Yeung

Wn,lml + Wn,nmn

2



A vectorized example: f(z, W) = ||W - z||* =, (W - )2

0.1 0.5
—0.3 0.8
[ 0.22 ]

0.26
| 0.26 | 0.116
[ Y = (12) [ 2 }—

044 ] N/ 1.00

oW, i
W1,12171 S R Wl,n$n of — Z oOf Oqg
' oW ; k Oqr OW; s
q= W .o = :
k
f(Q):HQHQZQ%_I""_I'q?% =2qz$?

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example: f(z, W) = ||W - z||* =, (W - )2

0.1 0.5
—0.3 0.8 |
0.088 0.176 W C 0.9
0.104 0.208 ] 0.96 m 0116
0.2 % f——{ L2 }—
0.4 0.44 \__/ 1.00
3Wq:,j k=itj
W1,12171 + -+ Wl,n$n of — Z of Oqg
o W > = . BWi,j k qu BWI ]
q — "L — :
s, S Cana
k
f(Q):HQHQZQ%_I""_I'q?% =2qz$?

Fei-Fei Li, Justin Johnson, Serena Yeung



A vectorized example: f(z, W) = ||W - z||?

= Z?:l (W - "1’“)12

Always check: The
gradient with
respect to a variable
should have the
same shape as the
variable

Oqy

0.1 0.5
~03 08 ]
oo o
' T | 026 /7~ 0.116
0.2 % f—[.2 }—
0.4 0.44 \__/ 1.00
- X i 052 ) aqk 1
— Y
3Wq:,j k=itj
Wiizi+ -+ Winxy BW Zk =
q — W T = ' 1,7 Q'k
Wn,lml + Wn,nmn

+q2

k
f(Q):HQHQZQ%_I_"' =2qz$?

Fei-Fei Li, Justin Johnson, Serena Yeung

oW,

=) (2ar)(Lr=iz;)



Recap

Tricks of the trade

— Preprocessing, initialization, normalization
— Dealing with limited data
Convergence of gradient descent
— How long will it take?

— Will it work at all?

Different optimization strategies
— Alternatives to SGD

— Learning rates

— Choosing hyperparameters
How to do the computation

— Computation graphs

— Vector notation (Jacobians)



