
CS 1678: Intro to Deep Learning

Neural Network Training
(Part 2)

Prof. Adriana Kovashka
University of Pittsburgh

February 16, 2021

Plan for this lecture

• Tricks of the trade
– Preprocessing, initialization, normalization
– Dealing with limited data

• Convergence of gradient descent
– How long will it take?
– Will it work at all?

• Different optimization strategies
– Alternatives to SGD
– Learning rates
– Choosing hyperparameters

• How to do the computation
– Computation graphs
– Vector notation (Jacobians)

Tricks of the trade

Practical matters

• Getting started: Preprocessing, initialization,
normalization, choosing activation functions

• Improving performance and dealing with sparse
data: regularization, augmentation, transfer
learning

• Hardware and software

• Extra reading/visualization resources

– https://www.deeplearning.ai/ai-notes/initialization/

– https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/initialization/
https://www.deeplearning.ai/ai-notes/optimization/

(Assume X [NxD] is data matrix,

each example in a row)
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 5 April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data

In practice, you may also see PCA and Whitening of the data

(data has diagonal

covariance matrix)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018Lecture 6 - 39

(covariance matrix is the

identity matrix)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data

Weight Initialization

• Q: what happens when W=constant init is used?

April 19, 2018
Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

- Another idea: Small random numbers

(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with

deeper networks.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 8 April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Weight Initialization

“Xavier initialization”

[Glorot et al., 2010]

Reasonable initialization.

(Mathematical derivation

assumes linear activations)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung https://www.deeplearning.ai/ai-notes/initialization/#IV

https://www.deeplearning.ai/ai-notes/initialization/#IV

Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they

have nice interpretation as a

saturating “firing rate” of a neuron

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they

have nice interpretation as a

saturating “firing rate” of a neuron

• 3 problems:

1. Saturated neurons “kill” the

gradients

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 12

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

sigmoid

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 201913

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they

have nice interpretation as a

saturating “firing rate” of a neuron

• 3 problems:

1. Saturated neurons “kill” the

gradients

2. Sigmoid outputs are not

zero-centered

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 14

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]

- Historically popular since they

have nice interpretation as a

saturating “firing rate” of a neuron

• 3 problems:

1. Saturated neurons “kill” the

gradients

2. Sigmoid outputs are not

zero-centered

3. exp() is a bit compute expensive

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]

- zero centered (nice)

- still kills gradients when saturated :(

[LeCun et al., 1991]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU

(Rectified Linear Unit)

[Krizhevsky et al., 2012]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

- Computes f(x) = max(0,x)

Activation Functions

ReLU

(Rectified Linear Unit)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output

- An annoyance:

hint: what is the gradient when x < 0?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

- Computes f(x) = max(0,x)

ReLU

gate

x

What happens when x = -10?

What happens when x = 0?

What happens when x = 10?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 201920

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

Leaky ReLU

[Mass et al., 2013]

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 201921

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

Leaky ReLU

[Mass et al., 2013]

[He et al., 2015]

- Does not saturate

- Computationally efficient

- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)

- will not “die”.

Parametric Rectifier (PReLU)

backprop into alpha

(parameter)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Activation Functions

Exponential Linear Units (ELU)

- All benefits of ReLU

- Closer to zero mean outputs

- Negative saturation regime

compared with Leaky ReLU

adds some robustness to noise

- Computation requires exp()

[Clevert et al., 2015]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Maxout “Neuron”

- Does not have the basic form of dot product ->

nonlinearity

- Generalizes ReLU and Leaky ReLU

- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 24

[Goodfellow et al., 2013]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

TLDR: In practice:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 22, 2019Lecture 7 -

April 22, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 25

- Use ReLU. Be careful with your learning rates

- Try out Leaky ReLU / Maxout / ELU / PReLU

- Try out tanh but don’t expect much

- Don’t use sigmoid

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make

each dimension zero-mean unit-variance, apply:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Batch Normalization

Lecture 6 - 26April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

N

D

1. compute the empirical mean and

variance independently for each

dimension.

2. Normalize

“you want zero-mean unit-variance activations? just make them so.”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

And then allow the network to squash

the range if it wants to:

Note, the network can learn:

to recover the identity

mapping.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Normalize:

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

- Improves gradient flow through

the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization

- Acts as a form of regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 29 April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer

functions differently:

The mean/std are not computed

based on the batch. Instead, a single

fixed empirical mean of activations

during training is used.

(e.g. can be estimated during training

with running averages)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 30 April 19, 2018

Batch Normalization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

Babysitting the Learning Process

• Preprocess data

• Choose architecture

• Initialize and check initial loss with no regularization

• Increase regularization, loss should increase

• Then train – try small portion of data, check you can

overfit

• Add regularization, and find learning rate that can make

the loss go down

• Check learning rates in range [1e-3 … 1e-5]

• Coarse-to-fine search for hyperparameters (e.g. learning

rate, regularization)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Important Parameter Important Parameter

U
n
im

p
o
rt

an
t
P

ar
am

et
er

U
n
im

p
o
rt

an
t
P

ar
am

et
er

Illustration of Bergstra et al., 2012 by Shayne
Longpre, copyright CS231n 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019

32

Random Search for
Hyper-Parameter Optimization

Bergstra and Bengio, 2012

Grid Layout Random Layout

Fei-Fei Li, Justin Johnson, Serena Yeung

Grid and Random Search

big gap = overfitting

=> increase regularization strength?

no gap
=> increase model capacity?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

April 19, 2018

Monitor and Visualize Accuracy

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Dealing with sparse data

• Deep neural networks require lots of data,

and can overfit easily

• The more weights you need to learn, the

more data you need

• That’s why with a deeper network, you need

more data for training than for a shallower

network

• Ways to prevent overfitting include:
• Using a validation set to stop training or pick parameters

• Regularization

• Data augmentation

• Transfer learning

Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney

Determining best number of hidden units

• Too few hidden units prevent the network from

adequately fitting the data.

• Too many hidden units can result in over-fitting.

• Use internal cross-validation to empirically

determine an optimal number of hidden units.

e
rr

o
r

on training data

on test data

0 # hidden units

Ray Mooney

more neurons = more capacity

Effect of number of neurons

Andrej Karpathy

(you can play with this demo over at ConvNetJS: http://cs.stanford.

edu/people/karpathy/convnetjs/demo/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger

regularization instead:

Effect of regularization

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Regularization

• L1, L2 regularization (weight decay)

• Dropout
• Randomly turn off some neurons

• Allows individual neurons to independently be responsible

for performance

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Load image

and label

“cat”

Compute

loss

CNN

Data Augmentation

April 24, 2018 Lecture 7 - 40

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

April 24, 2018 Lecture 7 - 41

Load image

and label

“cat”

Compute

loss

CNN

Transform image

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

Horizontal Flips

Fei-Fei Li & Justin
Johnson & Serena
Yeung

April 24, 2018 Lecture 7 - 42

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops
ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. For each size, use 10 224 x 224 crops: 4 corners + center, +

flips

April 24, 2018 Lecture 7 - 43

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Data Augmentation

Get creative for your problem!

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions

- …

April 24, 2018 Lecture 7 - 44

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung; Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug

Transfer learning

• If you have sparse data in your domain of

interest (target), but have rich data in a

disjoint yet related domain (source),

• You can train the early layers on the source

domain, and only the last few layers on the

target domain:

Set these to the already learned

weights from another network

Learn these on your own task

1. Train on

source (large

dataset)

2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer learning

Adapted from Andrej Karpathy

Another option: use network as feature extractor,

train SVM/LR on extracted features for target task

Source: classify 20 animal classes Target: 10 car classes

Mini-batch gradient descent

• In classic gradient descent, we compute the

gradient from the loss for all training

examples

• Could also only use some of the data for

each gradient update

• We cycle through all the training examples

multiple times

• Each time we’ve cycled through all of them

once is called an ‘epoch’

• Allows faster training (e.g. on GPUs),

parallelization

Training: Best practices

• Center (subtract mean from) your data

• Use Xavier initialization for weights

• Use RELU or leaky RELU or ELU or PReLU

• Use batch normalization

• Use data augmentation

• Use regularization

• Use mini-batch

• Learning rate: too high? Too low?

• Use cross-validation for hyperparameters

Spot the CPU! (central processing unit)

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Spot the GPUs! (graphics processing unit)

Lecture 8 - April 26, 2018

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

CPU vs GPU

Fei-Fei Li & Justin Johnson & Serena Yeung

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Cores Clock

Speed

Memory Price Speed

CPU

(Intel Core

i7-7700k)

4
(8 threads with

hyperthreading)

4.2 GHz System

RAM

$385 ~540 GFLOPs FP32

GPU

(NVIDIA

RTX 2080 Ti)

4352 1.6 GHz 11 GB

GDDR6

$1199 ~13.4 TFLOPs FP32

GPU

(NVIDIA

Quadro RTX

5000)

3072 1.6 GHz 16 GB

GDDR6

$2,299 ~11.2 TFLOPs FP32

TPU

NVIDIA

TITAN V

5120 CUDA,

640 Tensor
1.5 GHz 12GB

HBM2

$2999 ~14 TFLOPs FP32

~112 TFLOP FP16

TPU

Google Cloud

TPU

? ? 64 GB

HBM

$4.50

per

hour

~180 TFLOP

CPU: Fewer cores,

but each core is

much faster and

much more

capable; great at

sequential tasks

GPU: More cores,

but each core is

much slower and

“dumber”; great for

parallel tasks

TPU: Specialized

hardware for deep

learning

Google Cloud TPU

= 180 TFLOPs of compute!

NVIDIA Tesla V100

= 125 TFLOPs of compute

Lecture 6 - 52

TensorFlow: Tensor Processing Units

April 18, 2019Fei-Fei Li & Justin Johnson & Serena YeungNVIDIA Tesla P100 = 11 TFLOPs of compute

GTX 580 = 0.2 TFLOPs

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Google Cloud TPU Pod

= 64 Cloud TPUs

= 11.5 PFLOPs of compute!

Google Cloud TPU

= 180 TFLOPs of compute!

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

Lecture 6 - 53

April 18, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

TensorFlow: Tensor Processing Units

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

https://www.tensorflow.org/versions/master/programmers_guide/using_tpu

CPU vs GPU in practice

(CPU performance not

well-optimized, a little unfair)

66x 67x 71x 64x 76x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018

Data from https://github.com/jcjohnson/cnn-benchmarks

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

CPU / GPU Communication

Lecture 8 -April 26, 2018

Model

is here
Data is here

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

If you aren’t careful, training can

bottleneck on reading data and

transferring to GPU!

Solutions:

- Read all data into RAM

- Use SSD instead of HDD

- Use multiple CPU threads

to prefetch data

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Software: A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)

PyTorch
(Facebook)

CNTK
(Microsoft)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 8 - April 26, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

PaddlePaddle
(Baidu)

MXNet
(Amazon)

And others...

Chainer

JAX
(Google)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Convergence of training

Successful training

• We want training to converge (stop) at a
reasonable place

• Stopping is not guaranteed – e.g. imagine
taking larger and larger steps…

• Stopping in a good place is not guaranteed

Will backprop do the right thing?

Adapted from Bhiksha Raj

• In classification problems, classification error
is a non-differentiable function of weights

• The divergence function minimized (loss) is
only a proxy for classification error

• Minimizing loss may not minimize
classification error

• With these three points, backprop finds the
right answer

Will backprop do the right thing?

(1,0), +1

(0,1), +1

(-1,0), -1

Adapted from Bhiksha Raj

Will backprop do the right thing?

• Now add a fourth point

• With large enough t, 0 contribution of 4th point to derivative of L2 error
(e.g. if sigmoid/tanh used)

• Local optimum solution found bybackprop

• Does not separate the points even thoughthey are linearly separable!

• Another algorithm (perceptron, in blue) does find the optimal separator

(1,0), +1

(0,1), +1

(-1,0), -1

(0,-t), +1

Adapted from Bhiksha Raj

Will backprop do the right thing?

• Adding a “spoiler” (or a small number ofspoilers)

– Perceptron finds the linear separator

– For bounded w, backprop does not find a separator

– A single additional input does not change the lossfunction significantly

• Backprop is minimally changed by new training instances

– Prefers consistency over perfection

• Anecdotal: Variance decreases with depth and data

Bhiksha Raj

Loss surfaces

• Usually Loss(W) is not convex, so there are
many local minima

• However, in deep networks, these minima are
reasonably similar – not true in small
networks

• What are desirable properties of the loss
surface?

Convexity

• A surface is “convex” if it continuously curves upward

– We can connect any two points above the surface without
intersecting it

– Many mathematical definitions that are equivalent

• Caveat: Neural net loss surface generally not convex

Adapted from Bhiksha Raj

Convex set

Non-convex set

The loss surface

• Gradient descent makes the assumption that
loss/objective has a single global optimum

• What about local optima?

Adapted from Bhiksha Raj

The loss surface

• Popular hypothesis:

– Most local minima are equivalent

•And close to global minimum

– This is not true for smallnetworks

– In large networks, saddle points are far more
common than local minima

•Frequency exponential in networksize

• Saddle point: A point where:

– The slope is zero

– The surface increases in some directions, but
decreases in others

•Some of the Eigenvalues of the Hessian are positive;
others are negative

– Gradient descent algs often get “stuck” in saddle points

Bhiksha Raj

The controversial loss surface

• Baldi and Hornik (89), “Neural Networks and Principal Component
Analysis: Learning from Examples Without Local Minima” : An MLP with
a single hidden layer has only saddle points and nolocal minima

• Dauphin et. al (2015), “Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization” : An exponential
number of saddle points in large networks

• Chomoranksa et. al (2015), “The loss surface of multilayer networks” :
For large networks, most local minima lie in a band and areequivalent

• Swirscz et. al. (2016), “Local minima in training of deep networks”, In
networks of finite size, trained on finite data, you can have horrible
local minima

• Watch this space…

Adapted from Bhiksha Raj

Conditions for convergence

• So far we have assumed training arrives at a local
minimum

• Does it always converge?

• How long does it take?

• Hard to analyze for a neural network, but we can
look at the problem through the lens of convex
optimization

Adapted from Bhiksha Raj

Convergence and convergence rate

• An iterative algorithm is said to
converge to a solution if thevalue
updates arrive at a fixed point

• Where the gradient is 0 and further
updates do not change the estimate

• The algorithm may not converge

• It may jitter around thelocal
minimum

• It may even diverge

• Conditions for convergence?

Bhiksha Raj

Convergence and convergence rate

• Convergence rate: how fast iterations arrive
at the solution

• Generally quantified as:

• If R is a constant (or upper-bounded):
convergence is linear

Adapted from Bhiksha Raj

With non-optimal step size

Bhiksha Raj

Multivariate quadratic surface

• Optimal learning rate is different for the different
coordinates

• The learning rate must be lower than twice the smallest
optimal learning rate for anycomponent

– Otherwise the learning will diverge

• This, however, makes the learning very slow

• Convergence is particularly slow if the following is
large (the “condition” number is small)

Adapted from Bhiksha Raj

Dependence on learning rate

Bhiksha Raj

Convexity

• For quadratic (strongly)
convex functions,
gradient descent is
exponentially fast

• For generic (Lifschitz
Smooth) convex
functions however, it is
very slow

• In neural networks, we
may have neither…

Adapted from Bhiksha Raj https://christianjhoward.me/blog/index.php/2018/03/19/exponential-convergence-of-gradient-descent-with-lipschitz-smoothness

https://christianjhoward.me/blog/index.php/2018/03/19/exponential-convergence-of-gradient-descent-with-lipschitz-smoothness-and-strong-convexity/

Optimization strategies

Getting to the minimum

• Gradient descent is just one strategy, but has
several problems

• What other “steps” can we take?

• How far in the direction of decreasing gradient
do we go? With what speed/acceleration?

• What about overshooting minima?

W_1

W_2

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 - 77 April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Optimization

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

What if loss changes quickly in one direction and slowly in another?

What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Loss function has high condition number: ratio of largest to smallest

singular value of the Hessian matrix is large

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

What if the loss

function has a

local minima or

saddle point?

Zero gradient,

gradient descent

gets stuck

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 - 80

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Our gradients come from

minibatches so they can be noisy!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Optimization:

Problems with SGD

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

SGD

- Build up “velocity” as a running mean of gradients

- Rho gives “friction”; typically rho=0.9 or 0.99

Sutskever et al, “On the importance of initialization and momentum in deep learning”, ICML 2013

SGD+Momentum

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

SGD + Momentum

Lecture 7 - 82April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Added element-wise scaling of the gradient based

on the historical sum of squares in each dimension

“Per-parameter learning rates”

or “adaptive learning rates”

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

AdaGrad

Lecture 7 - 83April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Duchi et al, “Adaptive subgradient methods for online learning and stochastic optimization”, JMLR 2011

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q: What happens with AdaGrad? Progress along “steep” directions is damped;

progress along “flat” directions is accelerated

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Q2: What happens to the step size over long time?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

AdaGrad

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

AdaGrad

RMSProp

Tieleman and Hinton, 2012

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

RMSProp

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Lecture 7 - 87 April 24, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Kingma and Ba, “Adam: A method for stochastic optimization”, ICLR2015

Momentum

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that

first and second moment

estimates start at zero

Adam with beta1 = 0.9,
beta2 = 0.999, and learning_rate = 1e-3 or 5e-4

is a great starting point for many models!

Adam

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Optimizers comparison

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

https://imgur.com/a/Hqolp

https://imgur.com/a/Hqolp

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay:

1/t decay:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

April 24, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Q: Which one of these learning

rates is best to use?

A: All of them! Start with large

learning rate and decay over time

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201990

Fei-Fei Li, Justin Johnson, Serena Yeung

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have

learning rate as a hyperparameter.

Loss
Learning rate decay!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018

Epoch

Lecture 7 - 91 April 24, 2018

Adapted from Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Also see https://openreview.net/pdf?id=r1eOnh4YPB

https://openreview.net/pdf?id=r1eOnh4YPB

Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 92
time

Bad initialization a prime suspect

Fei-Fei Li, Justin Johnson, Serena Yeung

Loss

time

Loss plateaus: Try

learning rate decay

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

93

Fei-Fei Li, Justin Johnson, Serena Yeung

Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 - 94

time

Learning rate step decay Loss was still going down

when learning rate dropped,

you decayed too early!

Fei-Fei Li, Justin Johnson, Serena Yeung

Loss

w1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201995

First-Order Optimization

Fei-Fei Li, Justin Johnson, Serena Yeung

w1

(1) Use gradient form linear approximation

(2) Step to minimize the approximation

Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201996

First-Order Optimization

Fei-Fei Li, Justin Johnson, Serena Yeung

w1

(1) Use gradient and Hessian to form quadratic approximation

(2) Step to the minima of the approximation

Loss

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201997

Second-Order Optimization

Fei-Fei Li, Justin Johnson, Serena Yeung

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:

Hessian has O(N^2) elements

Inverting takes O(N^3)

N = (Tens or Hundreds of) Millions

Q: Why is this bad for deep learning?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201998

Second-Order Optimization

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung

Partial solution: Quasi-Newton methods (e.g. BGFS)

approximate inverse Hessian

http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote07.html

http://www.cs.cornell.edu/courses/cs4780/2015fa/web/lecturenotes/lecturenote07.html

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 99

Step 1: Check initial loss

Without weight decay (regularization), sanity check loss

at initialization

e.g. log(C) for softmax with C classes

Choosing Hyperparameters

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
0

Step 1: Check initial loss

Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of

training data (~5-10 minibatches); fiddle with architecture,

learning rate, weight initialization

Loss not going down? LR too low, bad initialization

Loss explodes to Inf or NaN? LR too high, bad initialization

Choosing Hyperparameters

Fei-Fei Li, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
1

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Use the architecture from the previous step, use all training

data, turn on small weight decay, find a learning rate that

makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

Good weight decay to try: 1e-4, 1e-5, 0

Choosing Hyperparameters

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
2

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid search, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around

what worked from Step 3, train a few models for ~1-5 epochs.

Choosing Hyperparameters

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
3

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20

epochs) without learning rate decay

Choosing Hyperparameters

Fei-Fei Li, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 10
4

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down

Step 4: Coarse grid, train for ~1-5 epochs

Step 5: Refine grid, train longer

Step 6: Look at loss curves

Choosing Hyperparameters

Fei-Fei Li, Justin Johnson, Serena Yeung

Losses may be noisy, use a

scatter plot and also plot moving

average to see trends better

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 201910
5

Training Loss Train / ValAccuracy

Look at learning curves!

Fei-Fei Li, Justin Johnson, Serena Yeung

Accuracy

time

Train

Accuracy still going up, you

need to train longer

Val

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

106

Fei-Fei Li, Justin Johnson, Serena Yeung

Accuracy

time

Train

Huge train / val gap means

overfitting! Increase regularization,

get more data

Val

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

107

Fei-Fei Li, Justin Johnson, Serena Yeung

Accuracy

time

Train

No gap between train / val means

underfitting: train longer, use a

bigger model

Val

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

108

Fei-Fei Li, Justin Johnson, Serena Yeung

Track the ratio of weight updates / weight magnitudes:

ratio between the updates and values: ~ 0.0002 / 0.02 = 0.01 (about okay)

want this to be somewhere around 0.001 or so

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 - 109

Fei-Fei Li, Justin Johnson, Serena Yeung

Mini batch size

Bhiksha Raj; Goyal et al. “Accurate, Large Minibatch SGD:Training ImageNet in 1 Hour”

1. Train multiple independent models

2. At test time average their results
(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 11
1

Model Ensembles

Fei-Fei Li, Justin Johnson, Serena Yeung

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple

snapshots of a single model during training!

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung 11
2

Fei-Fei Li, Justin Johnson, Serena Yeung

Model Ensembles: Tips and Tricks
Instead of training independent models, use multiple

snapshots of a single model during training!

Cyclic learning rate schedules can

make this work even better!

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 24, 2018Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

58

Loshchilov and Hutter, “SGDR: Stochastic gradient descent with restarts”, arXiv 2016

Huang et al, “Snapshot ensembles: train 1, get M for free”, ICLR 2017

Figures copyright Yixuan Li and Geoff Pleiss, 2017. Reproduced with permission.

Fei-Fei Li, Justin Johnson, Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2019Lecture 7 -

April 25, 2019Fei-Fei Li & Justin Johnson & Serena Yeung

114

- Improve your training error:
- Optimizers

- Learning rate schedules

- Improve your test error:
- Regularization

- Choosing hyperparameters

- Model ensembles

Summary

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung

Computation graphs

How do we compute the gradient?

• Derive on paper? Tedious

• What about vector-valued functions?

x

W

hinge

loss

R

+ L

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
117

April 11, 2019

s (scores)

Computational graphs

*

Fei-Fei Li, Justin Johnson, Serena Yeung

Chain rule:

e.g. x = -2, y = 5, z = -4

Backpropagation: a simple example

Want:
Upstream

gradient

Local

gradient

April 13, 2017

Fei-Fei Li, Justin Johnson, Serena Yeung

f

“local gradient”

April 11, 2019

Adapted from Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
120

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
121

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Upstream

gradient

Local

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Upstream

gradient

Local

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Upstream

gradient

Local

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Upstream

gradient

Local

gradient

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

[upstream gradient] x [local gradient]

[0.2] x [1] = 0.2

[0.2] x [1] = 0.2 (both inputs!)

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

[upstream gradient] x [local gradient]

x0: [0.2] x [2] = 0.4

w0: [0.2] x [-1] = -0.2

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Sigmoid

Sigmoid

function

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
130

April 11, 2019

Computational graph

representation may not

be unique. Choose one

where local gradients at

each node can be easily

expressed!

Fei-Fei Li, Justin Johnson, Serena Yeung

Another example:

Sigmoid

Sigmoid

function

Sigmoid local

gradient:

Computational graph

representation may not

be unique. Choose one

where local gradients at

each node can be easily

expressed!

[upstream gradient] x [local gradient]

[1.00] x [(1 - 0.73) (0.73)] = 0.2

Fei-Fei Li, Justin Johnson, Serena Yeung

add gate: gradient distributor

3

2

2

4

max

mul gate: “swap multiplier”

2

5

5*3=15

3

5*2=10

max gate: gradient router

4

0

5

9

4

7

2

Patterns in gradient flow

Fei-Fei Li, Justin Johnson, Serena Yeung

2

copy gate: gradient adder

7

7

4+2=6

+ 7 × 6

5

9

Backprop Implementation:

“Flat” code Forward pass:

Compute output

Backward pass:

Compute grads

Fei-Fei Li, Justin Johnson, Serena Yeung

Backprop Implementation:

“Flat” code Forward pass:

Compute output

Base case

Fei-Fei Li, Justin Johnson, Serena Yeung

Backprop Implementation:

“Flat” code Forward pass:

Compute output

Sigmoid

Fei-Fei Li, Justin Johnson, Serena Yeung

Backprop Implementation:

“Flat” code Forward pass:

Compute output

Add gate

Fei-Fei Li, Justin Johnson, Serena Yeung

Backprop Implementation:

“Flat” code Forward pass:

Compute output

Add gate

Fei-Fei Li, Justin Johnson, Serena Yeung

Backprop Implementation:

“Flat” code Forward pass:

Compute output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
138

Multiply gate

Fei-Fei Li, Justin Johnson, Serena Yeung

Backprop Implementation:

“Flat” code Forward pass:

Compute output

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
139

Multiply gate

Fei-Fei Li, Justin Johnson, Serena Yeung

So far: backprop with scalars

What about vector-valued functions?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 4 -
140

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

Recap: Vector derivatives

Scalar to Scalar

Regular derivative:

If x changes by a

small amount, how

much will y change?

Lecture 4 - 141

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

Regular derivative:

If x changes by a

small amount, how

much will y change?

Derivative is Gradient:

For each element of x,

if it changes by a small

amount then how much

will y change?

Lecture 4 - 142

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

Recap: Vector derivatives

Scalar to Scalar Vector to Scalar

Regular derivative:

If x changes by a

small amount, how

much will y change?

Derivative is Gradient:

For each element of x,

if it changes by a small

amount then how much

will y change?

Vector to Vector

Derivative is Jacobian:

For each element of x, if it

changes by a small amount

then how much will each

element of y change?

Lecture 4 - 143

Fei-Fei Li, Justin Johnson, Serena Yeung

Gradients

• Given a function with 1 output and n inputs

• Its gradient is a vector of partial derivativeswith

respect to eachinput

Christopher Manning

Jacobian Matrix: Generalization of Gradient

• Given a function with m outputs and n inputs

• Its Jacobian is an m x n matrix of partial derivatives

Christopher Manning

Chain Rule

• For one-variable functions: multiplyderivatives

• For multiple variables at once: multiplyJacobians

Christopher Manning

Example Jacobian: Elementwise activationFunction

Christopher Manning

Function hasn outputs and n inputs →n by n Jacobian

148

Christopher Manning

Example Jacobian: Elementwise activationFunction

Example Jacobian: Elementwise activationFunction

Christopher Manning

Example Jacobian: Elementwise activationFunction

Christopher Manning

Example Jacobian: Elementwise activationFunction

Christopher Manning

“Downstream

gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

y z
[D x D]

“local

gradients”

[Dx x Dz]

f

Jacobian

matrices “Upstream gradient”

For each element of z, how

much does it influence L?
Dy

Dx

Matrix-vector

multiply

Backprop with Vectors

Lecture 4 - 152

Fei-Fei Li, Justin Johnson, Serena Yeung

f(x) = max(0,x)

(elementwise)

4D input x:

[1]

[-2]

[3]

[-1]

4D output y:

[1]

[0]

[3]

[0]

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 153

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung

f(x) = max(0,x)

(elementwise)

4D input x:

[1]

[-2]

[3]

[-1]

4D output y:

[1]

[0]

[3]

[0]

[4]

[-1]

[5]
[9]

4D dL/dy:

Upstream

gradient

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 154

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung

f(x) = max(0,x)

(elementwise)

4D input x:

[1]

[-2]

[3]

[-1]

4D output y:

[1]

[0]

[3]

[0]

4D dL/dy:

[4]

[-1]

[5]

[9]

Jacobian dy/dx

[1 0 0 0]

[0 0 0 0]

[0 0 1 0]

[0 0 0 0]

Upstream

gradient

Lecture 4 - 155

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung

f(x) = max(0,x)

(elementwise)

4D input x:

[1]

[-2]

[3]

[-1]

4D output y:

[1]

[0]

[3]

[0]

4D dL/dy:

[4]

[-1]

[5]

[9]

[dy/dx] [dL/dy]

[1 0 0 0] [4]

[0 0 0 0] [-1]

[0 0 1 0] [5]

[0 0 0 0] [9]

Upstream

gradient

Lecture 4 - 156

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung

f(x) = max(0,x)

(elementwise)

4D input x:

[1]

[-2]

[3]

[-1]

4D output y:

[1]

[0]

[3]

[0]

4D dL/dy:

[4]

[-1]

[5]

[9]

[dy/dx] [dL/dy]

[1 0 0 0] [4]

[0 0 0 0] [-1]

[0 0 1 0] [5]

[0 0 0 0] [9]

Upstream

gradient

4D dL/dx:

[4]

[0]

[5]

[0]

Lecture 4 - 157

April 11, 2019

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung

f(x) = max(0,x)

(elementwise)

4D input x:

[1]

[-2]

[3]

[-1]

4D output y:

[1]

[0]

[3]

[0]

4D dL/dy:

[4]

[-1]

[5]

[9]

[dy/dx] [dL/dy]

[1 0 0 0] [4]

[0 0 0 0] [-1]

[0 0 1 0] [5]

[0 0 0 0] [9]

Upstream

gradient

Jacobian is sparse:

off-diagonal entries

always zero! Never

explicitly form

Jacobian -- instead

use implicit

multiplication

Lecture 4 - 158

April 11, 2019

4D dL/dx:

[4]

[0]

[5]

[0]

Backprop with Vectors

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 159

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 160

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 161

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 162

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 163

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 164

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 165

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 166

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Lecture 4 - 167

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

A vectorized example:

Always check: The

gradient with

respect to a variable

should have the

same shape as the

variable

Lecture 4 - 168

April 11, 2019

Fei-Fei Li, Justin Johnson, Serena Yeung

Recap

• Tricks of the trade
– Preprocessing, initialization, normalization
– Dealing with limited data

• Convergence of gradient descent
– How long will it take?
– Will it work at all?

• Different optimization strategies
– Alternatives to SGD
– Learning rates
– Choosing hyperparameters

• How to do the computation
– Computation graphs
– Vector notation (Jacobians)

