
CS 1678: Intro to Deep Learning

Neural Network Basics

Prof. Adriana Kovashka
University of Pittsburgh

January 28, 2021



Plan for this lecture (next few classes)

• Definition 
– Architecture

– Basic operations

– Biological inspiration

• Goals
– Loss functions  

• Training
– Gradient descent

– Backpropagation 

• Hands-on exercise



Definition



Neural network definition

• Raw activations: 

• Nonlinear activation function h (e.g. sigmoid, 

tanh, RELU): e.g. z = RELU(a) = max(0, a)

Figure from Christopher Bishop 



• Layer 2

• Layer 3 (final)

• Outputs

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)



Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Activation functions

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung



A multi-layer neural network…

• Is a non-linear classifier

• Can approximate any continuous function to arbitrary 

accuracy given sufficiently many hidden units

Lana Lazebnik



Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs 

• transmit information to other neurons

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy



Biological analog

A biological neuron An artificial neuron

Jia-bin Huang



Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Biological analog



Feed-forward networks

• Cascade neurons together

• Output from one layer is the input to the next

• Each layer has its own sets of weights

HKUST



Feed-forward networks

• Inputs multiplied by initial set of weights

HKUST



Feed-forward networks

• Intermediate “predictions” computed at first 

hidden layer

HKUST



Feed-forward networks

• Intermediate predictions multiplied by second 

layer of weights

• Predictions are fed forward through the 

network to classify

HKUST



Feed-forward networks

• Compute second set of intermediate 

predictions

HKUST



Feed-forward networks

• Multiply by final set of weights

HKUST



Feed-forward networks

• Compute output (e.g. probability of a 

particular class being present in the sample)

HKUST



Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 

W
e

ig
h

ts
 t

o
 l
e
a

rn
!

W
e

ig
h

ts
 t

o
 l
e
a

rn
!

W
e

ig
h

ts
 t

o
 l
e
a

rn
!

W
e

ig
h

ts
 t

o
 l
e
a

rn
!



Goals



How do we train deep networks? 

• No closed-form solution for the weights (can’t 

set up a system A*w = b, solve for w) 

• We will iteratively find such a set of weights 

that allow the outputs to match the desired 

outputs

• We want to minimize a loss function (a 

function of the weights in the network)

• For now, let’s simplify and assume there’s a 

single layer of weights in the network, and no 

activation function (i.e., output is a linear 

combination of the inputs) 



Classification goal

Example dataset: CIFAR-10  

10 labels

50,000 training images  

each image is 32x32x3

10,000 test images.

Andrej Karpathy



Classification scores

[32x32x3]

array of numbers 0...1  

(3072 numbers total)

f(x,W)

image parameters

10 numbers,  

indicating class  

scores

Andrej Karpathy



Linear classifier 

[32x32x3]

array of numbers 0...1

10 numbers,  

indicating class  

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy



Linear classifier 

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy



Linear classifier 

Going forward: Loss function/Optimization

1. Define a loss function  

that quantifies our  

unhappiness with the  

scores across the training  

data.

2. Come up with a way of  

efficiently finding the  

parameters that minimize  

the loss function.  

(optimization)

TODO:

Adapted from Andrej Karpathy

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1



Linear classifier 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car  

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) 

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

and the full training loss is the mean  

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Slide from Fei-Fei, Johnson, Yeung

E.g. Suppose that we found a W such that L = 0.  

Is this W unique?

No! 2W is also has L = 0!

How do we choose between W and 2W?



Weight Regularization

Data loss: Model predictions  

should match training data
Regularization: Prevent the model  

from doing too well on training data

= regularization strength  

(hyperparameter)

Simple examples  

L2 regularization: 

L1 regularization:

Elastic net (L1 + L2):

More complex:

Dropout

Batch normalization

Stochastic depth / pooling, etc

Why regularize?

- Express preferences over weights

- Make the model simple so it works on test data

Adapted from Fei-Fei, Johnson, Yeung



Weight Regularization

Expressing preferences

L2 Regularization

L2 regularization likes to  

“spread out” the weights

Slide from Fei-Fei, Johnson, Yeung



Weight Regularization

Preferring simple models

y
f1 f2

x

Regularization pushes against fitting the data

too well so we don’t fit noise in the data



Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:cat

car

frog

3.2

5.1

-1.7

scores = unnormalized log probabilities of the classes.

where

Another loss: Cross-entropy

Andrej Karpathy



cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Cross-entropy

Adapted from Fei-Fei, Johnson, Yeung

Probabilities  

must be >= 0

Probabilities  

must sum to 1

Aside:

- This is multinomial logistic regression

- Choose weights to maximize the likelihood of the observed x/y data

(Maximum Likelihood Estimation; more discussion in CS 1675)



Another loss: Cross-entropy

Adapted from Fei-Fei, Johnson, Yeung

cat

car

frog

3.2

5.1

-1.7

24.5

164.0

0.18

0.13

0.87

0.00

exp normalize

Probabilities  

must be >= 0

Probabilities  

must sum to 1

compare 1.00

0.00

0.00

Kullback–Leibler

divergence

unnormalized

log-probabilities / logits
unnormalized

probabilities
probabilities correct

probs



Other losses

• Triplet loss (Schroff, FaceNet, CVPR 2015)

• Anything you want! (almost)

a denotes anchor

p denotes positive

n denotes negative



Training



To minimize loss, use gradient descent

Andrej Karpathy



How to minimize the loss function? 

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).

Andrej Karpathy



Loss gradients

• Denoted as (diff notations):

• i.e. how does the loss change as a function 

of the weights

• We want to change the weights in such a 

way that makes the loss decrease as fast as 

possible  



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy



gradient dW:

[-2.5,

?,

?,

?,
?,

?,

?,
?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

Andrej Karpathy



gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

Andrej Karpathy



gradient dW:

[-2.5,

0.6,

?,

?,
?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Andrej Karpathy



gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Andrej Karpathy



This is silly. The loss is just a function of W:

want

Calculus

= ...

Andrej Karpathy



gradient dW:

[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

dW = ...

(some function  

data and W)

Andrej Karpathy



Gradient descent

• We’ll update weights

• Move in direction opposite to gradient:

L

Learning rate
Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2



Gradient descent

• Iteratively subtract the gradient with respect 

to the model parameters (w)

• I.e., we’re moving in a direction opposite to 

the gradient of  the loss

• I.e., we’re moving towards smaller loss



Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)



Comments on training algorithm

• Not guaranteed to converge to zero training error, may 

converge to local optima or oscillate indefinitely.

• However, in practice, does converge to low error for 

many large networks on real data.

• Local minima – not a huge problem in practice for deep 

networks.

• Thousands of epochs (epoch = network sees all training 

data once) may be required, hours or days to train.

• May be hard to set learning rate and to select number of 

hidden units and layers.

• When in doubt, use validation set to decide on 

design/hyperparameters.

• Neural networks had fallen out of fashion in 90s, early 

2000s; now significantly improved performance (deep 

networks trained with dropout and lots of data).

Adapted from Ray Mooney, Carlos Guestrin, Dhruv Batra 



Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of error from 

higher layers to lower layers



Gradient descent in multi-layer nets

• How to update the weights at all layers?

• Answer: backpropagation of error from 

higher layers to lower layers

Figure from Andrej Karpathy



Backpropagation: Graphic example

First calculate error of output units and use this 

to change the top layer of weights.

output

hidden

input

Update weights into j

(store diff, update @end)

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)



Backpropagation: Graphic example

Next calculate error for hidden units based on 

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Finally update bottom layer of weights based on 

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Computing gradient for each weight

• We need to move weights in direction 

opposite to gradient of loss wrt that weight: 

wkj = wkj – η dL/dwkj (output layer)

wji = wji – η dL/dwji (hidden layer)

• Loss depends on weights in an indirect way, 

so we’ll use the chain rule and compute:

dL/dwkj = dL/dyk dyk/dak dak/dwkj

dL/dwji = dL/dzj dzj/daj daj/dwji



Gradient for output layer weights

• Loss depends on weights in an indirect way,   

so we’ll use the chain rule and compute:

dL/dwkj = dL/dyk dyk/dak dak/dwkj

• How to compute each of these?

• dL/dyk : need to know form of error function
• Example: if L = (yk – yk’)

2, where yk’ is the ground-truth 

label, then dL/dyk = 2(yk – yk’)

• dyk/dak : need to know output layer activation
• If h(ak)=σ(ak), then d h(ak)/d ak = σ(ak)(1-σ(ak))

• dak/dwkj : zj since ak is a linear combination
• ak = wk:

T z = Σj wkj zj



Gradient for hidden layer weights

• We’ll use the chain rule again and compute:

dL/dwji = dL/dzj dzj/daj daj/dwji

• Unlike the previous case (weights for output 
layer), the error (dL/dzj) is hard to compute 

(indirect, need chain rule again)

• We’ll simplify the computation by doing it 

step by step via backpropagation of error

• You could directly compute this term– you 

will get the same result as with backprop (do 

as an exercise!)



Backprop – rough notation

• The following is a framework, slightly imprecise

• Let us denote the inputs at a layer i by ini, the 

linear combination of inputs computed at that 
layer as rawi, the activation as acti

• We define a new quantity that will roughly 
correspond to accumulated error, erri :

erri = d L / d acti * d acti / d rawi

• Then we can write the updates as

w = w – η * erri * ini



Backprop – formulation

• We’ll write the weight updates as follows

➢wkj = wkj - η δk zj for output units

➢wji = wji - η δj xi for hidden units

• What are δk, δj? 
• They store error, gradient wrt raw activations (i.e. dL/da)

• They’re of the form dL/dzj dzj/daj

• The latter is easy to compute – just use derivative of 

activation function

• The former is easy for output – e.g. (yk – yk’)

• It is harder to compute for hidden layers

• dL/dzj = ∑k wkj δk (where did this come from?)

Figure from Chris Bishop



Deriving backprop (Bishop Eq. 5.56)

• In a neural network:

• Gradient is (using chain rule):

• Denote the “errors” as:

• Also: 

Equations from Bishop



Deriving backprop (Bishop Eq. 5.56)

• For output (identity output, L2 loss):

• For hidden units (using chain rule again):

• Backprop formula:

Equations from Bishop, also see https://en.wikipedia.org/wiki/Chain_rule#Example

https://en.wikipedia.org/wiki/Chain_rule#Example


Putting it all together

• Example: use sigmoid at hidden layer and 

output layer, loss is L2 between 

true/predicted labels



Example algorithm for sigmoid, L2 error

• Initialize all weights to small random values

• Until convergence (e.g. all training examples’ error 

small, or error stops decreasing) repeat:

• For each (x, y’=class(x)) in training set:

– Calculate network outputs: yk

– Compute errors (gradients wrt activations) for each unit:

» δk = yk (1-yk) (yk – yk’) for output units

» δj = zj (1-zj) ∑k wkj δk for hidden units

– Update weights:

» wkj = wkj - η δk zj for output units

» wji = wji - η δj xi for hidden units

Adapted from R. Hwa, R. Mooney

Recall: wji = wji – η dE/dzj dzj/daj daj/dwji



Another example 

• Two layer network w/ tanh at hidden layer:

• Derivative:

• Minimize:

• Forward propagation:



Another example

• Errors at output (identity function at output):

• Errors at hidden units:

• Derivatives wrt weights:



Same example with graphic and math

First calculate error of output units and use this 

to change the top layer of weights.

output

hidden

input

Update weights into j

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i



Same example with graphic and math

Next calculate error for hidden units based on 

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Same example with graphic and math

Finally update bottom layer of weights based on 

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Another way of keeping track of error

Computation graphs

• Accumulate upstream/downstream gradients 

at each node

• One set flows from inputs to outputs and can 

be computed without evaluating loss

• The other flows from outputs (loss) to inputs



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Fei-Fei Li & Andrej 
Karpathy & Justin
Johnson

13 Jan 2016

Lecture 4 - 22

Andrej Karpathy

Generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

“local gradient”

f

gradients

Generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 27

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Lecture 4 - 10

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 11

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 12

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 13

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 14

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 15

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 16

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 17

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 18

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 19

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 20

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 21

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example



Summary

• Feed-forward network architecture 

• Training deep neural nets
• We need an objective function that measures and guides us 

towards good performance

• We need a way to minimize the loss function: gradient 

descent

• We need backpropagation to propagate error towards all 

layers and change weights at those layers

• Next: Practices for preventing overfitting, 

training with little data, examining conditions 

for success, alternative optimization 

strategies


