CS 1678: Intro to Deep Learning
Advanced Topics

Prof. Adriana Kovashka
University of Pittsburgh
November 8, 2021
Plan for this lecture

• Alternative representations
 – I. Graph networks (pp 3-29)

• Alternative learning mechanisms
 – II. Self supervision (pp 30-69)
 – III. Reinforcement learning (pp 70-111)

• Alternative tasks
 – IV. Generation (pp 112-198)

• V. Bias and ethics (pp 199-257)
Part I: Graph Networks

• Types of graph networks
 – Graph convolutional networks
 – Graph attention networks

• Applications
 – Semi-supervised learning
 – Visual question answering
Types of data typically handled with Deep Learning

- **Speech data**

- **Natural language processing (NLP)**

- **Grid games**
Graph-structured data

A lot of real-world data does not “live” on grids

Social networks
Citation networks
Communication networks
Multi-agent systems

Knowledge graphs

Protein interaction networks

Standard deep learning architectures like CNNs and RNNs don’t work here!
Graph Neural Networks (GNNs)

The bigger picture:

Notation: $G = (A, X)$
- Adjacency matrix $A \in \mathbb{R}^{N \times N}$
- Feature matrix $X \in \mathbb{R}^{N \times F}$

Main idea: Pass messages between pairs of nodes & agglomerate
Graph convolutional networks

Graph: $G = (\mathcal{V}, \mathcal{E})$

Adjacency matrix: A

\[
\begin{pmatrix}
\begin{array}{cccc}
A & B & C & D & E \\
A & 0 & 1 & 1 & 1 & 0 \\
B & 1 & 0 & 0 & 1 & 1 \\
C & 1 & 0 & 0 & 1 & 0 \\
D & 1 & 1 & 1 & 0 & 1 \\
E & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\end{pmatrix}
\]

Kipf and Welling, “Semi-supervised learning with deep generative models”, ICLR 2017 (slides by Thomas Kipf)
Recap: Convolutional neural networks (on grids)

Single CNN layer with 3x3 filter:

\[h_0 \quad h_1 \quad \ldots \]

Update for a single pixel:
- Transform messages individually \(W_i h_i \)
- Add everything up \(\sum_i W_i h_i \)

\(h_i \) in \(\mathbb{R}^F \) are (hidden layer) activations of a pixel/node

Full update:
\[
 h_4^{(l+1)} = \sigma \left(W_0^{(l)} h_0^{(l)} + W_1^{(l)} h_1^{(l)} + \cdots + W_8^{(l)} h_8^{(l)} \right)
\]
Graph convolutional networks

Input: Feature matrix $X \in \mathbb{R}^{N \times E}$, preprocessed adjacency matrix \hat{A}

$$X = H^{(0)}$$

$$H^{(l+1)} = \sigma \left(\hat{A} H^{(l)} W^{(l)} \right)$$
Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this undirected graph:

Calculate update for node in red:

\[
\begin{align*}
\text{Update rule:} \\
\mathbf{h}_i^{(l+1)} &= \sigma \left(\mathbf{h}_i^{(l)} \mathbf{W}_0^{(l)} + \sum_{j \in \mathcal{N}_i} \frac{1}{c_{ij}} \mathbf{h}_j^{(l)} \mathbf{W}_1^{(l)} \right)
\end{align*}
\]

Scalability: subsample messages [Hamilton et al., NIPS 2017]

- \(\mathcal{N}_i\): neighbor indices
- \(c_{ij}\): norm. constant (fixed/trainable)
Graph neural networks with attention

Monti et al. (CVPR 2017), Hoshen (NIPS 2017), Veličković et al. (ICLR 2018)

\[
\tilde{h}_i' = \sigma \left(\frac{1}{K} \sum_{k=1}^{K} \sum_{j \in \mathcal{N}_i} \alpha_{ij}^k \mathbf{W}^k \tilde{h}_j \right)
\]

\[
\alpha_{ij} = \frac{\exp \left(\text{LeakyReLU} \left(\tilde{a}_i^T [\mathbf{W} \tilde{h}_i \| \mathbf{W} \tilde{h}_j] \right) \right)}{\sum_{k \in \mathcal{N}_i} \exp \left(\text{LeakyReLU} \left(\tilde{a}_i^T [\mathbf{W} \tilde{h}_i \| \mathbf{W} \tilde{h}_k] \right) \right)}
\]
A brief history of graph neural nets

“Spatial methods”
- Original GNN: Gori et al. (2005)
- GG-NN: Li et al. (ICLR 2016)
- MoNet: Monti et al. (CVPR 2017)
- GCN: Kipf & Welling (ICLR 2017)

“Spectral methods”
- Spectral Graph CNN: Bruna et al. (ICLR 2015)
- ChebNet: Defferrard et al. (NIPS 2016)
- Neural MP: Gilmer et al. (ICML 2017)

“DL on graph explosion”
- Relation Nets: Santoro et al. (ICLR 2018)
- Programs as Graphs: Hamilton et al. (NIPS 2017)
- NRI: Kipf et al. (ICML 2018)

Other early work:
- Duvenaud et al. (NIPS 2015)
- Dai et al. (ICML 2016)
- Niepert et al. (ICML 2016)
- Battaglia et al. (NIPS 2016)
- Atwood & Towsley (NIPS 2016)
- Sukhbaatar et al. (NIPS 2016)

(slide inspired by Alexander Gaunt’s talk on GNNs)
What do learned representations look like?

Forward pass through **untrained** 3-layer GCN model

Parameters initialized randomly

What else are graph representations good for?
Semi-supervised classification on graphs

Setting:
Some nodes are labeled (black circle)
All other nodes are unlabeled

Task:
Predict node label of unlabeled nodes

Evaluate loss on labeled nodes only:

\[\mathcal{L} = - \sum_{l \in \mathcal{Y}_L} \sum_{f=1}^{F} Y_{lf} \ln Z_{lf} \]

- \(\mathcal{Y}_L \) set of labeled node
- \(\mathcal{Y} \) indices label matrix
- \(\mathcal{Z} \) GCN output (after softmax)
Application: Classification on citation networks

Input: Citation networks (nodes are papers, edges are citation links, optionally bag-of-words features on nodes)

Target: Paper category (e.g. stat.ML, cs.LG, …)

Model: 2-layer GCN \[Z = f(X, A) = \text{softmax} \left(\hat{A} \text{ReLU} \left(\hat{A} X W^{(0)} \right) W^{(1)} \right) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Citeseer</th>
<th>Cora</th>
<th>Pubmed</th>
<th>NELL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ManiReg [3]</td>
<td>60.1</td>
<td>59.5</td>
<td>70.7</td>
<td>21.8</td>
</tr>
<tr>
<td>SemiEmb [24]</td>
<td>59.6</td>
<td>59.0</td>
<td>71.1</td>
<td>26.7</td>
</tr>
<tr>
<td>LP [27]</td>
<td>45.3</td>
<td>68.0</td>
<td>63.0</td>
<td>26.5</td>
</tr>
<tr>
<td>DeepWalk [18]</td>
<td>43.2</td>
<td>67.2</td>
<td>65.3</td>
<td>58.1</td>
</tr>
<tr>
<td>Planetoid* [25]</td>
<td>64.7 (26s)</td>
<td>75.7 (13s)</td>
<td>77.2 (25s)</td>
<td>61.9 (185s)</td>
</tr>
<tr>
<td>GCN (this paper)</td>
<td>70.3 (7s)</td>
<td>81.5 (4s)</td>
<td>79.0 (38s)</td>
<td>66.0 (48s)</td>
</tr>
<tr>
<td>GCN (rand. splits)</td>
<td>67.9 ± 0.5</td>
<td>80.1 ± 0.5</td>
<td>78.9 ± 0.7</td>
<td>58.4 ± 1.7</td>
</tr>
</tbody>
</table>

Kipf & Welling, Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017
Visual Question Answering (VQA)

Task: Given an image and a natural language open-ended question, generate a natural language answer.

Visual Question Answering (VQA)

Image Embedding

Convolution Layer + Non-Linearity
Pooling Layer
Convolution Layer + Non-Linearity
Pooling Layer
Fully-Connected

4096-dim

Neural Network Softmax over top K answers

Input
(Features II)
Softmax classifier

Question Embedding

“How many horses are in this image?”

LSTM

1024-dim

Visual Question Answering (VQA)

Figure 2. Our proposed framework: given an image, a CNN is first applied to produce the attribute-based representation $V_{att}(I)$. The internal textual representation is made up of image captions generated based on the image-attributes. The hidden state of the caption-LSTM after it has generated the last word in each caption is used as its vector representation. These vectors are then aggregated as $V_{cap}(I)$ with average-pooling. The external knowledge is mined from the KB (in this case DBpedia) and the responses encoded by Doc2Vec, which produces a vector $V_{know}(I)$. The 3 vectors V are combined into a single representation of scene content, which is input to the VQA LSTM model which interprets the question and generates an answer.
Decoding image advertisements

• What message does the ad convey (action), and what arguments does it provide for taking the suggested action (reason)?
• Multiple-choice task: Given k options for action-reason statements, pick one that matches the image

- I should drink Evian because it helps you recover
- I should drink Evian because it will keep me like a baby
- I should buy Evian because it keeps us young
Retrieve the best action-reason statement

Ye et al., TPAMI 2019
Experimental results (image features only)

• We outperform prior art by a large margin, for both statement ranking and classification

<table>
<thead>
<tr>
<th>Method</th>
<th>Rank (Lower ↓ is better)</th>
<th>Recall@3 (Higher ↑ is better)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSA</td>
<td>Product</td>
</tr>
<tr>
<td>2-way Nets VSE</td>
<td>4.836 (± 0.090)</td>
<td>4.170 (± 0.023)</td>
</tr>
<tr>
<td></td>
<td>4.155 (± 0.091)</td>
<td>3.202 (± 0.019)</td>
</tr>
<tr>
<td>VSE++ Hussain-Ranking</td>
<td>4.139 (± 0.094)</td>
<td>3.110 (± 0.019)</td>
</tr>
<tr>
<td>ADVISE (ours)</td>
<td>3.013 (± 0.075)</td>
<td>2.469 (± 0.015)</td>
</tr>
</tbody>
</table>

• Our methods accurately capture the rhetoric, even in deliberately confusing ads

VSE++ on Ads: I should wear Revlon makeup because it will make me more attractive

ADVISE (ours): I should stop smoking because it doesn't make me pretty

Ye and Kovashka, ECCV 2018
Incorporating external knowledge

- Expand image representation using DBPedia
- Represent regions, slogans, KB nuggets in a graph
- Not all nuggets relevant
- All may be ignored due to non-generalizable shortcuts
- To prevent overfitting to shortcuts, we randomly mask parts of training samples (e.g. words in KB nugget, slogan)

Ye, Zhang and Kovashka, WACV 2021
Incorporating external knowledge

• Training via metric learning: match image to human-annotated action-reason statements

• Image representation is a graph

• Slogan node updates:

\[
t_i^{(1)} = \alpha_{i,0} t_i^{(0)} + \sum_{j=1}^{\phi(t_i)} \alpha_{i,j} k_{i,j}
\]

original meaning descriptions from extra knowledge

• Global node update:

\[
h = \sum_{i=1}^{V} \beta_i v_i + \sum_{i=|V|+1}^{(|V|+|T|)} \beta_i t_i^{(1)}
\]

messages from proposals messages from slogans

• Edge weights \(\alpha, \beta\) allow model to choose what knowledge to use

Ye, Zhang and Kovashka, WACV 2021
Incorporating external knowledge

• We stochastically mask aspects of training data, to prevent model from relying too much on word-matching or object-matching

• Three strategies; can also learn how to mask:
 • M_t randomly drops a detected textual (T) slogan, with a probability of 0.5
 • M_s randomly sets the KB query words (e.g. “WWF” or “Nike”) in the human-annotated statements (S) to the out-of-vocabulary token, with probability 0.5
 • M_k replaces the DBpedia queries in the retrieved knowledge contents with the out-of-vocabulary token
Quantitatively:
Without masking we retrieve relevant KB info with accuracy 25%, vs 54% with masking.

Fig. 4: Examples of the learned graphs (best with zoom). We show the ad image and annotated action-reason statements on the left, the graph learned without masking in the middle, and that learned with masking (our approach) on the right. We show slogans in blue, DBpedia comments in orange, and the global node as a star. Arrow thickness is correlated with learned weights α, β. For visualization we removed all edges with small weights (threshold=0.05). We see our method more effectively leverages external information.
Incorporating external knowledge

• Outperform prior state of the art

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSE [31]</td>
<td>62.0</td>
</tr>
<tr>
<td>ADNET [6]</td>
<td>65.0</td>
</tr>
<tr>
<td>ADVISE [31]</td>
<td>69.0</td>
</tr>
<tr>
<td>CYBERAGENT [18]</td>
<td>82.0</td>
</tr>
<tr>
<td>Rhetoric [32]</td>
<td>83.3</td>
</tr>
<tr>
<td>Ours</td>
<td>87.3</td>
</tr>
</tbody>
</table>

• Using external knowledge helps when data masked

<table>
<thead>
<tr>
<th>Method</th>
<th>(P@1)</th>
<th>(P@3)</th>
<th>(P@5)</th>
<th>(P@10)</th>
<th>(R@1)</th>
<th>(R@3)</th>
<th>(R@5)</th>
<th>(R@10)</th>
<th>Min Rank</th>
<th>Ave Rank</th>
<th>Med Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results on the Challenge-15 task</td>
<td></td>
</tr>
<tr>
<td>V,T</td>
<td>87.3</td>
<td>76.6</td>
<td>55.1</td>
<td>30.6</td>
<td>28.4</td>
<td>74.2</td>
<td>87.9</td>
<td>97.5</td>
<td>1.26</td>
<td>3.02</td>
<td>2.77</td>
</tr>
<tr>
<td>V,T+K</td>
<td>87.3</td>
<td>76.6</td>
<td>55.1</td>
<td>30.6</td>
<td>28.4</td>
<td>74.3</td>
<td>87.9</td>
<td>97.6</td>
<td>1.25</td>
<td>3.02</td>
<td>2.77</td>
</tr>
<tr>
<td>V,T+K(M_t,M_s,M_k)</td>
<td>87.3</td>
<td>77.5</td>
<td>55.9</td>
<td>30.8</td>
<td>28.4</td>
<td>75.2</td>
<td>89.2</td>
<td>98.2</td>
<td>1.23</td>
<td>2.91</td>
<td>2.69</td>
</tr>
<tr>
<td>Results on the Sampled-100 task</td>
<td></td>
</tr>
<tr>
<td>V,T</td>
<td>79.8</td>
<td>66.5</td>
<td>46.9</td>
<td>26.2</td>
<td>26.0</td>
<td>64.4</td>
<td>74.9</td>
<td>83.5</td>
<td>2.38</td>
<td>7.52</td>
<td>5.86</td>
</tr>
<tr>
<td>V,T+K</td>
<td>80.0</td>
<td>67.0</td>
<td>47.0</td>
<td>26.1</td>
<td>26.0</td>
<td>64.9</td>
<td>75.1</td>
<td>83.4</td>
<td>2.29</td>
<td>7.49</td>
<td>5.81</td>
</tr>
<tr>
<td>V,T+K(M_t,M_s,M_k)</td>
<td>80.2</td>
<td>67.9</td>
<td>47.9</td>
<td>26.8</td>
<td>26.1</td>
<td>65.8</td>
<td>76.6</td>
<td>85.4</td>
<td>2.14</td>
<td>6.56</td>
<td>5.19</td>
</tr>
<tr>
<td>Results on the Sampled-500 task</td>
<td></td>
</tr>
<tr>
<td>V,T</td>
<td>65.5</td>
<td>52.3</td>
<td>37.8</td>
<td>21.7</td>
<td>21.3</td>
<td>50.5</td>
<td>60.4</td>
<td>69.0</td>
<td>8.18</td>
<td>30.1</td>
<td>21.6</td>
</tr>
<tr>
<td>V,T+K</td>
<td>65.4</td>
<td>52.3</td>
<td>38.0</td>
<td>21.9</td>
<td>21.3</td>
<td>50.6</td>
<td>60.7</td>
<td>69.6</td>
<td>7.60</td>
<td>30.0</td>
<td>21.4</td>
</tr>
<tr>
<td>V,T+K(M_t,M_s,M_k)</td>
<td>64.8</td>
<td>52.4</td>
<td>38.3</td>
<td>22.1</td>
<td>21.1</td>
<td>50.7</td>
<td>61.1</td>
<td>70.6</td>
<td>6.89</td>
<td>25.1</td>
<td>18.2</td>
</tr>
</tbody>
</table>

Ye, Zhang and Kovashka, WACV 2021
Part II: Self-Supervised Learning

- Learn representations from context in raw data
- Language – predict nearby words [already covered]
 - Word2Vec
 - Transformers, BERT
- Vision – predict pixels from other pixels
 - Predict nearby patches in an image
 - Predict order of frames in a video
 - Predict what you will see as you move
 - Predict physics

Jitendra Malik: "Supervision is the opium of the AI researcher"
Alyosha Efros: "The AI revolution will not be supervised"
Yann LeCun: “Self-supervised learning is the cake, supervised learning is the icing on the cake, reinforcement learning is the cherry on the cake"
Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta

ICCV 2015
ImageNet + Deep Learning

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- ...

Do we even need semantic labels?

Do we even need this task?

Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013]

house, where the professor lived without his wife and child; or so he said jokingly sometimes: “Here’s where I live. My house.” His daughter often added, without resentment, for the visitor’s information, “It started out to be for me, but it’s really his.” And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked “Kitty” and half full of eternal mule, but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter’s preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would

Deep Net
Context Prediction for Images

Semantics from a non-semantic task

Randomly Sample Patch
Sample Second Patch

Relative Position Task

8 possible locations

Architecture

Softmax loss
Fully connected

Fully connected

Max Pooling
Convolution
Convolution
Convolution
LRN
Max Pooling
Convolution
LRN
Max Pooling
Convolution

Tied Weights

Max Pooling
Convolution
Max Pooling
Convolution
Max Pooling
Convolution

Patch 1

Patch 2

What is learned?

<table>
<thead>
<tr>
<th>Input</th>
<th>Ours</th>
<th>ImageNet AlexNet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-Training for R-CNN

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]
VOC 2007 Performance
(pretraining for R-CNN)

<table>
<thead>
<tr>
<th>Condition</th>
<th>% Average Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet Labels</td>
<td>54.2</td>
</tr>
<tr>
<td>Rel. Position</td>
<td>46.3</td>
</tr>
<tr>
<td>No Pretraining</td>
<td>40.7</td>
</tr>
</tbody>
</table>

Which will be better?

• Option 1: pretrain (unsup) on dataset B
• Option 2: pretrain (sup) on dataset A
• Test on dataset B
Shuffle and Learn: Unsupervised Learning using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert
ECCV 2016
Fig. 1: (a) A video imposes a natural temporal structure for visual data. In many cases, one can easily verify whether frames are in the correct temporal order (shuffled or not). Such a simple sequential verification task captures important spatiotemporal signals in videos. We use this task for unsupervised pre-training of a Convolutional Neural Network (CNN). (b) Some examples of the automatically extracted positive and negative tuples used to formulate a classification task for a CNN.
Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form positive and negative tuples based on whether the three input frames are in the correct temporal order. (b) Our triplet Siamese network architecture has three parallel network stacks with shared weights upto the fc7 layer. Each stack takes a frame as input, and produces a representation at the fc7 layer. The concatenated fc7 representations are used to predict whether the input tuple is in the correct temporal order.

Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51 datasets. We compare different initializations and finetune them for action recognition.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Initialization</th>
<th>Mean Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>UCF101</td>
<td>Random</td>
<td>38.6</td>
</tr>
<tr>
<td></td>
<td>(Ours) Tuple verification</td>
<td>50.2</td>
</tr>
<tr>
<td>HMDB51</td>
<td>Random</td>
<td>13.3</td>
</tr>
<tr>
<td></td>
<td>UCF Supervised</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>(Ours) Tuple verification</td>
<td>18.1</td>
</tr>
</tbody>
</table>
Learning image representations tied to ego-motion

Dinesh Jayaraman and Kristen Grauman
ICCV 2015
The kitten carousel experiment
[Held & Hein, 1963]

Key to perceptual development:
self-generated motion + visual feedback

active kitten
passive kitten
Problem with today’s visual learning

Status quo: Learn from “disembodied” bag of labeled snapshots.

Our goal: Learn in the context of acting and moving in the world.

Our idea: Ego-motion \leftrightarrow vision

Goal: Teach computer vision system the connection: “how I move” \leftrightarrow “how my visual surroundings change”

Ego-motion motor signals + Unlabeled video

Ego-motion ↔ vision: view prediction

After moving:

Ego-motion ↔ vision for recognition

Learning this connection requires:

➢ Depth, 3D geometry
➢ Semantics
➢ Context

Also key to recognition!

Can be learned without manual labels!

Our approach: unsupervised feature learning using egocentric video + motor signals

Approach idea: Ego-motion equivariance

Invariant features: unresponsive to some classes of transformations

\[z(gx) \approx z(x) \]

Equivariant features: predictably responsive to some classes of transformations, through simple mappings (e.g., linear)

\[z(gx) \approx M_g z(x) \]

Invariance *discards* information; equivariance *organizes* it.

Approach idea: Ego-motion equivariance

Training data
Unlabeled video + motor signals

Equivariant embedding
organized by ego-motions

Pairs of frames related by similar ego-motion should be related by same feature transformation

Our approach: unsupervised feature learning using egocentric video + motor signals

1. Extract training frame pairs from video

2. Learn ego-motion-equivariant image features

3. Train on target recognition task in parallel

Training frame pair mining

Discovery of ego-motion clusters

\(g = \text{left turn} \)

\(g = \text{forward} \)

\(g = \text{right turn} \)

Ego-motion equivariant feature learning

Given:

Desired: for all motions g and all images x,
\[z_\theta(gx) \approx M_g z_\theta(x) \]

Unsupervised training

Supervised training

Results: Recognition

Learn from **unlabeled car video** (KITTI)

 Exploit features for **static scene classification**
(SUN, 397 classes)

Geiger et al, IJRR ’13

Xiao et al, CVPR ’10
Results: Recognition

Do ego-motion equivariant features improve recognition?

Up to 30% accuracy increase over state of the art!

The Curious Robot: Learning Visual Representations via Physical Interactions

Lerrel Pinto, Dhiraj Gandhi, Yuanfeng Han, Yong-Lae Park, and Abhinav Gupta

ECCV 2016
Embodied representations

Fig. 2. Examples of successful (left) and unsuccessful grasps (right). We use a patch based representation: given an input patch we predict a 18-dim vector which represents whether the center location of the patch is graspable at 0°, 10°, ..., 170°.
Pushing

Objects and push action pairs

Fig. 4. Examples of initial state and final state images taken for the push action. The arrows demonstrate the direction and magnitude of the push action.
Fig. 6. Examples of the data collected by the poking action. On the left we show the object poked, and on the right we show force profiles as observed by the tactile sensor.
Pose/viewpoint invariance

Fig. 7. Examples of objects in different poses provided to the embedding network.
Fig. 8. Our shared convolutional architecture for four different tasks.
Classification/retrieval performance

Fig. 10. The first column corresponds to query image and rest show the retrieval. Note how the network learns that cups and bowls are similar (row 5).
Classification/retrieval performance

Table 1. Classification accuracy on ImageNet Household, UW RGBD and Caltech-256

<table>
<thead>
<tr>
<th>Model</th>
<th>Household</th>
<th>UW RGBD</th>
<th>Caltech-256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root network with random init.</td>
<td>0.250</td>
<td>0.468</td>
<td>0.242</td>
</tr>
<tr>
<td>Root network trained on robot tasks (ours)</td>
<td>0.354</td>
<td>0.693</td>
<td>0.317</td>
</tr>
<tr>
<td>AlexNet trained on ImageNet</td>
<td>0.625</td>
<td>0.820</td>
<td>0.656</td>
</tr>
</tbody>
</table>

Table 2. Image Retrieval with Recall@k metric

<table>
<thead>
<tr>
<th>Model</th>
<th>Instance level</th>
<th>Category level</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k=1</td>
<td>k=5</td>
<td>k=10</td>
<td>k=20</td>
</tr>
<tr>
<td>Random Network</td>
<td>0.062</td>
<td>0.219</td>
<td>0.331</td>
<td>0.475</td>
</tr>
<tr>
<td>Our Network</td>
<td>0.720</td>
<td>0.831</td>
<td>0.875</td>
<td>0.909</td>
</tr>
<tr>
<td>AlexNet</td>
<td>0.686</td>
<td>0.857</td>
<td>0.903</td>
<td>0.941</td>
</tr>
</tbody>
</table>

Part III: Reinforcement Learning

• Basics: actions, states, rewards, MDP
• Different techniques (Q learning, policy gradients, actor-critic, etc.)
• Example applications
Reinforcement Learning

State s_t → Agent → Environment → Action a_t → Next state s_{t+1}

Reward r_t
Cart-Pole Problem

Objective: Balance a pole on top of a movable cart

State: angle, angular speed, position, horizontal velocity

Action: horizontal force applied on the cart

Reward: 1 at each time step if the pole is upright
Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step
Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise
How can we mathematically formalize the RL problem?
Markov Decision Process

- Mathematical formulation of the RL problem
- **Markov property**: Current state completely characterises the state of the world

Defined by: \((\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathbb{P}, \gamma)\)

\(\mathcal{S}\) : set of possible states
\(\mathcal{A}\) : set of possible actions
\(\mathcal{R}\) : distribution of reward given (state, action) pair
\(\mathbb{P}\) : transition probability i.e. distribution over next state given (state, action) pair
\(\gamma\) : discount factor
Markov Decision Process

- At time step $t=0$, environment samples initial state $s_0 \sim p(s_0)$
- Then, for $t=0$ until done:
 - Agent selects action a_t
 - Environment samples reward $r_t \sim R(. | s_t, a_t)$
 - Environment samples next state $s_{t+1} \sim P(. | s_t, a_t)$
 - Agent receives reward r_t and next state s_{t+1}

- A policy u is a function from S to A that specifies what action to take in each state
- **Objective**: find policy u^* that maximizes cumulative discounted reward: $\sum_{t>0} \gamma^t r_t$
A simple MDP: Grid World

actions = {
1. right
2. left
3. up
4. down
}

states

Objective: reach one of terminal states (greyed out) in least number of actions

Set a negative “reward” for each transition (e.g. \(r = -1 \))
A simple MDP: Grid World

Random Policy

Optimal Policy
The optimal policy u^*

We want to find optimal policy u^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
The optimal policy u^*

We want to find optimal policy u^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability…)?
Maximize the **expected sum of rewards**!

Formally: $\pi^* = \underset{\pi}{\arg \max} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t | \pi \right]$ with $s_0 \sim p(s_0), a_t \sim \pi(\cdot | s_t), s_{t+1} \sim p(\cdot | s_t, a_t)$
Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) $s_0, a_0, r_0, s_1, a_1, r_1, \ldots$

How good is a state?
The **value function** at state s, is the expected cumulative reward from following the policy from state s:

$$V^\pi(s) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, \pi \right]$$

How good is a state-action pair?
The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^\pi(s, a) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung
Bellman equation

The optimal Q-value function Q^* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi \right]$$

Q^* satisfies the following Bellman equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Intuition: if the optimal state-action values for the next time-step $Q^*(s', a')$ are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s', a')$

The optimal policy u^* corresponds to taking the best action in any state as specified by Q^*
Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

\[Q(s, a; \theta) \approx Q^*(s, a) \]

If the function approximator is a deep neural network => **deep q-learning**!
Q-network Architecture

\[Q(s, a; \theta) : \]
neural network with weights \(\theta \)

A single feedforward pass to compute Q-values for all actions from the current state \(\Rightarrow \) efficient!

Current state \(s_t: 84x84x4 \) stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Last FC layer has 4-d output (if 4 actions), corresponding to
\(Q(s_t, a_1), Q(s_t, a_2), Q(s_t, a_3), Q(s_t, a_4) \)

Number of actions between 4-18 depending on Atari game

\([Mnih \ et \ al. \ NIPS \ Workshop \ 2013; \ Nature \ 2015]\)
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

1. Initialize replay memory \mathcal{D} to capacity N
2. Initialize action-value function Q with random weights
3. for episode = 1, M do
 1. Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 2. for $t = 1, T$ do
 1. With probability ϵ select a random action a_t
 2. otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 3. Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 4. Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 5. Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
 6. Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}
 7. Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a' ; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$
 8. Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3
 3. end for
4. end for
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights

for episode = 1, M do
 Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 for $t = 1, T$ do
 With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}
 Set $y_j = \begin{cases}
 r_j & \text{for terminal } \phi_{j+1} \\
 r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1}
 \end{cases}$
 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

 end for
end for
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

1. Initialize replay memory \mathcal{D} to capacity N
2. Initialize action-value function Q with random weights
3. For episode $= 1, M$ do
 1. Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 2. For $t = 1, T$ do
 1. With probability ϵ select a random action a_t
 2. Otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 3. Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 4. Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 5. Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
 6. Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}
 7. Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$
 8. Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3
 end for
end for

Play M episodes (full games)
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights

for episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for $t = 1, T$ do

With probability ϵ select a random action a_t
otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
Execute action a_t in emulator and observe reward r_t and image x_{t+1}
Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}

Set $y_j =$

\[
\begin{cases}
 r_j & \text{for terminal } \phi_{j+1} \\
 r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1}
\end{cases}
\]

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights

for episode $= 1, M$ do

Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for $t = 1, T$ do

With probability ϵ select a random action a_t
otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}

Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N

Initialize action-value function Q with random weights

for episode $= 1, M$ do

Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for $t = 1, T$ do

With probability ϵ select a random action a_t
otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}

Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

With small probability, select a random action (explore), otherwise select greedy action from current policy.
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights

for episode = 1, M do
 Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 for $t = 1, T$ do
 With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}
 Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$
 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3
 end for
end for

[& Mnih et al. NIPS Workshop 2013; Nature 2015]

Take the action (a_t), and observe the reward r_t and next state s_{t+1}
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

- Initialize replay memory \mathcal{D} to capacity N
- Initialize action-value function Q with random weights

for episode = 1, M do
 Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$
 for $t = 1, T$ do
 With probability ϵ select a random action a_t
 otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
 Execute action a_t in emulator and observe reward r_t and image x_{t+1}
 Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
 Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D}
 Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D}
 Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$
 Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3
 end for
end for

[Mnih et al. NIPS Workshop 2013; Nature 2015]
Putting it together: Deep Q-Learning with Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

- Initialize replay memory D to capacity N
- Initialize action-value function Q with random weights

for episode = 1, M do

- Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$

for $t = 1, T$ do

- With probability ϵ select a random action a_t
- otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$
- Execute action a_t in emulator and observe reward r_t and image x_{t+1}
- Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$
- Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

- Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

- Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}$

- Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3

end for

end for

[Experience Replay: Sample a random minibatch of transitions from replay memory and perform a gradient descent step]

What is a problem with Q-learning?
The Q-function can be very complicated!

Example: a robot grasping an object has a very high-dimensional state => hard to learn exact value of every (state, action) pair

But the policy can be much simpler: just close your hand
Can we learn a policy directly, e.g. finding the best policy from a collection of policies?
Policy Gradients

Formally, let’s define a class of parameterized policies: $\Pi = \{\pi_\theta, \theta \in \mathbb{R}^m\}$

For each policy, define its value:

$$J(\theta) = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t | \pi_\theta \right]$$

We want to find the optimal policy $\theta^* = \arg \max_{\theta} J(\theta)$

How can we do this?
Gradient ascent on policy parameters!
REINFORCE Algorithm (Williams 1992)

Gradient estimator: \[\nabla_{\theta} J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \]

Interpretation:
- If \(r(\tau) \) is high, push up the probabilities of the actions seen
- If \(r(\tau) \) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. **But in expectation, it averages out!**
Policy Gradients
REINFORCE Algorithm (Williams 1992)

Gradient estimator:
\[
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t | s_t)
\]

Interpretation:
- If \(r(\tau) \) is high, push up the probabilities of the actions seen
- If \(r(\tau) \) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were good. **But in expectation, it averages out!**

However, this also suffers from high variance because credit assignment is really hard. Can we help the estimator?
Gradient estimator: \(\nabla_\theta J(\theta) \approx \sum_{t \geq 0} r(\tau) \nabla_\theta \log \pi_\theta(a_t|s_t) \)

First idea: Push up probabilities of an action seen, only by the cumulative future reward from that state

\[
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} r_{t'} \right) \nabla_\theta \log \pi_\theta(a_t|s_t)
\]

Second idea: Use discount factor \(\gamma \) to ignore delayed effects

\[
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t' - t} r_{t'} \right) \nabla_\theta \log \pi_\theta(a_t|s_t)
\]
Problem: The raw value of a trajectory isn't necessarily meaningful. For example, if rewards are all positive, you keep pushing up probabilities of actions.

What is important then? Whether a reward is better or worse than what you expect to get.

Idea: Introduce a baseline function dependent on the state. Concretely, estimator is now:

\[
\nabla_\theta J(\theta) \approx \sum_{t \geq 0} \left(\sum_{t' \geq t} \gamma^{t-t'} r_{t'} - b(s_t) \right) \nabla_\theta \log \pi_\theta(a_t|s_t)
\]
How to choose the baseline?

Want to push up the probability of an action from a state, if this action was better than the expected value of what we should get from that state.

Intuitively, we are happy with an action a_t in a state s_t if $Q^\pi(s_t, a_t) - V^\pi(s_t)$ is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

$$\nabla_\theta J(\theta) \approx \sum_{t \geq 0} (Q^{\pi_\theta}(s_t, a_t) - V^{\pi_\theta}(s_t)) \nabla_\theta \log \pi_\theta(a_t|s_t)$$
Objective: $\sum_i A_i \log p(y_i|x_i)$

- $x_i = \text{state}$
- $y_i = \text{sampled action}$
- $A_i = \text{“advantage” e.g. +1/-1 for win/lose in simplest version, or discounted, or improvement over “baseline”}$
Policy Gradients vs Q-Learning

• Policy gradients suffers from high variance and instability; might want to make gradients smaller (e.g. relative to a baseline)
• Policy gradients can handle continuous action spaces (Gaussian policy)
• Estimating exact value of state-action pairs vs choosing what actions to take (value not important)
• Step-by-step (did I correctly estimate the reward at this time) vs delayed feedback (run policy and wait until game terminates)
Actor-Critic Algorithm

We can combine Policy Gradients and Q-learning by training both an actor (the policy) and a critic (the Q-function).

- The actor decides which action to take, and the critic tells the actor how good its action was and how it should adjust.
- Also alleviates the task of the critic as it only has to learn the values of (state, action) pairs generated by the policy.
- Can also incorporate Q-learning tricks e.g. experience replay.
- Define by the advantage function how much an action was better than expected:

\[
A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s)
\]
Fig. 1. The goal of our deep reinforcement learning model is to navigate towards a visual target with a minimum number of steps. Our model takes the current observation and the image of the target as input and generates an action in the 3D environment as the output. Our model learns to navigate to different targets in a scene without re-training.
RL for navigation

Figure 1: Our goal is to use scene priors to improve navigation in unseen scenes and towards novel objects. (a) There is no mug in the field of view of the agent, but the likely location for finding a mug is the cabinet near the coffee machine. (b) The agent has not seen a mango before, but it infers that the most likely location for finding a mango is the fridge since similar objects such as apple appear there as well. The most likely locations are shown with the orange box.

Figure 2: **Overview of the architecture.** Our model to incorporate semantic knowledge into semantic navigation. Specifically, we learn a policy network that decides an action based on the visual features of the current state, the semantic target category feature and the features extracted from the knowledge graph. We extract features from the parts of the knowledge graph that are activated.

Figure 1: Embodied Question Answering – EmbodiedQA– tasks agents with navigating rich 3D environments in order to answer questions. These agents must jointly learn language understanding, visual reasoning, and goal-driven navigation to succeed.
RL for question-answering

Figure 4: Our PACMAN navigator decomposes navigation into a planner and a controller. The planner selects actions and the controller executes these actions a variable number of times. This enables the planner to operate on shorter timescales, strengthening gradient flows.
RL for object detection

Figure 1. A sequence of actions taken by the proposed algorithm to localize a cow. The algorithm attends regions and decides how to transform the bounding box to progressively localize the object.
 RL for object detection

Figure 2. Illustration of the actions in the proposed MDP, giving 4 degrees of freedom to the agent for transforming boxes.

\[R_a(s, s') = \text{sign}(\text{IoU}(b', g) - \text{IoU}(b, g)) \]

\[R_\omega(s, s') = \begin{cases}
+\eta & \text{if } \text{IoU}(b, g) \geq \tau \\
-\eta & \text{otherwise}
\end{cases} \]

Caicedo and Lazebnik, “Active Object Localization with Deep Reinforcement Learning”, ICCV 2015
Part IV: Generation

- Motivation and taxonomy of methods
- Variational Autoencoders (VAEs)
- Generative Adversarial Networks (GANs)
- Applications and variants of GANs
- Dealing with sparse data, progressive training
Generative Models

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for $p_{\text{model}}(x)$
- Implicit density estimation: learn model that can sample from $p_{\text{model}}(x)$ w/o explicitly defining it
Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models can be used to enhance training datasets with diverse synthetic data
- Generative models of time-series data can be used for simulation

Adapted from Serena Young
Taxonomy of Generative Models

Generative models

Explicit density

Tractable density

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models (nonlinear ICA)

Implicit density

Approximate density

Variational

Variational Autoencoder

Markov Chain

Direct

GAN

Markov Chain

GSN

Boltzmann Machine

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
PixelRNN and PixelCNN
Fully visible belief network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \ldots, x_{i-1})$$

- Likelihood of image x
- Probability of i'th pixel value given all previous pixels

Will need to define ordering of “previous pixels”

Then maximize likelihood of training data

Complex distribution over pixel values \Rightarrow Express using a neural network!
PixelRNN

[van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Drawback: sequential generation is slow!
PixelCNN

[van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

\[
p(x) = \prod_{i=1}^{n} p(x_i | x_1, \ldots, x_{i-1})
\]

Training is faster than PixelRNN (can parallelize convolutions since context region values known from training images)

Generation must still proceed sequentially => still slow

Serena Young
Variational Autoencoders (VAEs)
Some background: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data

\[z \text{ usually smaller than } x \] (dimensionality reduction)

Q: Why dimensionality reduction?

A: Want features to capture meaningful factors of variation in data

\[\text{Originally: Linear + nonlinearity (sigmoid)} \]

Later: Deep, fully-connected

Later: ReLU CNN

Q: Why dimensionality reduction?

A: Want features to capture meaningful factors of variation in data
Some background: Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
"Autoencoding" - encoding itself

Decoder

Features

Encoder

Reconstructed input data

Reconstructed input data

Originally: Linear + nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Lecture 11 - Serena Young
Some background: Autoencoders

Train such that features can be used to reconstruct original data

Doesn’t use labels!

L2 Loss function:

$$\| x - \hat{x} \|^2$$

Reconstructed data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data

Reconstructed input data

Features

Decoder

Encoder

Serena Young
Some background: Autoencoders

Encoder can be used to initialize a **supervised** model.

Input data → **Features** → **Predicted Label**

Loss function (Softmax, etc)

Classifier

Fine-tune encoder jointly with classifier

Train for final task (sometimes with small data)

bird plane dog deer truck
Some background: Autoencoders

Features capture factors of variation in training data. Can we generate new images from an autoencoder?
Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data \(\{x^{(i)}\}_{i=1}^N \) is generated from underlying unobserved (latent) representation \(z \)

Sample from conditional
\[
p_{\theta^*}(x \mid z^{(i)})
\]

Sample from prior
\[
p_{\theta^*}(z)
\]

Intuition (remember from autoencoders!): \(x \) is an image, \(z \) is latent factors used to generate \(x \): attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Adapted from Serena Young
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model.

How should we represent this model?

Choose prior $p(z)$ to be simple, e.g. Gaussian.

Conditional $p(x|z)$ is complex (generates image) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Adapted from Serena Young
Variational Autoencoders

We want to estimate the true parameters θ^* of this generative model.

How to train the model?

Learn model parameters to maximize likelihood of training data

\[p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \]

Q: What is the problem with this?

Intractable!

Adapted from Serena Young

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders: Intractability

Data likelihood: \(p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz \)

Simple Gaussian prior

Intractable to compute \(p(x|z) \) for every \(z \)!

Decoder neural network

Posterior density also intractable: \(p_\theta(z|x) = p_\theta(x|z)p_\theta(z)/p_\theta(x) \)

Intractable data likelihood

- Solution: In addition to decoder network modeling \(p_\theta(x|z) \), define additional encoder network \(q_\phi(z|x) \) that
 approximates \(p_\theta(z|x) \)

- This allows us to derive a lower bound on the data likelihood that is tractable, which we can optimize – overviewed briefly on next few slides (feel free to skip when reviewing)

Adapted from Serena Young

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

\[
\log p_\theta(x^{(i)}) = \mathbb{E}_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes' Rule)}
\]

\[
= \mathbb{E}_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{q_\phi(z | x^{(i)})} \right] \quad \text{(Multiply by constant)}
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + \mathbb{E}_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)}
\]

\[
= \mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z | x^{(i)}))
\]

We want to maximize the data likelihood.

Decoder network gives \(p_\theta(x|z) \), can compute estimate of this term through sampling. (Sampling differentiable through reparam. trick, see paper.)

This KL term (between Gaussians for encoder and \(z \) prior) has nice closed-form solution!

\(p_\theta(z|x) \) intractable (saw earlier), can't compute this KL term :(But we know KL divergence always \(\geq 0 \).
Variational Autoencoders

Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

\[\log p_\theta(x^{(i)}) = E_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \]

\((p_\theta(x^{(i)}) \) Does not depend on \(z \)

\[= E_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \]

(\text{Bayes’ Rule})

\[= E_z \left[\log \frac{p_\theta(x^{(i)} | z)p_\theta(z)}{q_\phi(z | x^{(i)})} \right] \]

(Multiply by constant)

\[= E_z \left[\log p_\theta(x^{(i)} | z) \right] - E_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + E_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \]

(Logarithms)

\[= E_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) \| p_\theta(z | x^{(i)})) \]

\[\geq 0 \]

\[L(x^{(i)}, \theta, \phi) \]

\textbf{Tractable lower bound} which we can take gradient of and optimize! (\(p_\theta(x|z) \) differentiable, KL term differentiable)
Now equipped with our encoder and decoder networks, let’s work out the (log) data likelihood:

\[
\log p_\theta(x^{(i)}) = E_{z \sim q_\phi(z|x^{(i)})} \left[\log p_\theta(x^{(i)}) \right] \quad (p_\theta(x^{(i)}) \text{ Does not depend on } z)
\]

\[
= E_z \left[\log \frac{p_\theta(x^{(i)} | z) p_\theta(z)}{p_\theta(z | x^{(i)})} \right] \quad \text{(Bayes’ Rule)}
\]

\[
= E_z \left[\log \frac{p_\theta(x^{(i)} | z) q_\phi(z | x^{(i)})}{q_\phi(z | x^{(i)})} \right] \quad \text{(Multiply by constant)}
\]

\[
= E_z \left[\log p_\theta(x^{(i)} | z) \right] - E_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z)} \right] + E_z \left[\log \frac{q_\phi(z | x^{(i)})}{p_\theta(z | x^{(i)})} \right] \quad \text{(Logarithms)}
\]

\[
= E_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z)) + D_{KL}(q_\phi(z | x^{(i)}) || p_\theta(z | x^{(i)}))
\]

\[
\mathcal{L}(x^{(i)}, \theta, \phi) \quad \geq 0
\]

\[
\log p_\theta(x^{(i)}) \geq \mathcal{L}(x^{(i)}, \theta, \phi)
\]

Variational lower bound ("ELBO")

Make approximate posterior distribution close to prior

Reconstruct the input data

Training: Maximize lower bound

\[
\theta^*, \phi^* = \arg \max_{\theta, \phi} \sum_{i=1}^{N} \mathcal{L}(x^{(i)}, \theta, \phi)
\]
Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic.

Mean and covariance of $z \mid x$

Encoder network
$q_\phi(z \mid x)$
(parameters ϕ)

\mathcal{X}

Mean and covariance of $x \mid z$

Decoder network
$p_\theta(x \mid z)$
(parameters θ)

\mathcal{Z}

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Adapted from Serena Young
Variational Autoencoders

Since we’re modeling probabilistic generation of data, encoder and decoder networks are probabilistic.

Sample z from $z | x \sim \mathcal{N}(\mu_z | x, \Sigma_z | x)$

Sample $x|z$ from $x | z \sim \mathcal{N}(\mu_x | z, \Sigma_x | z)$

Encoder network
$q_\phi(z | x)$
(parameters ϕ)

Encoder and decoder networks also called “recognition”/“inference” and “generation” networks

Decoder network
$p_\theta(x | z)$
(parameters θ)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
Variational Autoencoders

Putting it all together: maximizing the likelihood lower bound

\[
\mathbb{E}_z \left[\log p_\theta(x^{(i)} | z) \right] - D_{KL}(q_\phi(z | x^{(i)}) \parallel p_\theta(z))
\]

\[L(x^{(i)}, \theta, \phi) \]

Maximize likelihood of original input being reconstructed

Sample \(x | z \) from \(x | z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z}) \)

Decoder network

\[p_\theta(x | z) \]

Make approximate posterior distribution close to prior

Sample \(z \) from \(z | x \sim \mathcal{N}(\mu_{z|x}, \Sigma_{z|x}) \)

Encoder network

\[q_\phi(z | x) \]

For every minibatch of input data: compute this forward pass, and then backprop!
Sample z from prior
Use decoder network

\hat{x}

Sample $x|z$ from $x|z \sim \mathcal{N}(\mu_{x|z}, \Sigma_{x|z})$

$\mu_{x|z}$ $\Sigma_{x|z}$

Decoder network $p_\theta(x|z)$

Sample z from $z \sim \mathcal{N}(0, I)$

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

VAEs: Generating Data

Data manifold for 2-d z

Vary z_1

Vary z_2
VAEs: Generating Data

Diagonal prior on z => independent latent variables

Different dimensions of z encode interpretable factors of variation

Also good feature representation that can be computed using $q_\phi(z|x)$!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
VAEs: Generating Data

32x32 CIFAR-10

Labeled Faces in the Wild

Generating with little data for ads

• Faces are persuasive and carry meaning/sentiment

- Beauty
- Cars
- Chocolate
- Clothing
- Domestic Violence
- Human Rights
- Safety
- Self Esteem
- Soda

• We learn to generate faces appropriate for each ad category

• Because our data is so diverse yet limited in count, standard approaches that directly model pixel distributions don’t work well

Thomas and Kovashka, BMVC 2018
Generating with little data for ads

• Instead we model the distribution over attributes for each category (e.g. domestic violence ads contain “black eye”, beauty contains “red lips”)

• Generate an image with the attributes of an ad class

• Model attributes w/ help from external large dataset

Thomas and Kovashka, BMVC 2018
Generating with little data for ads

Reconstruction Alcohol Beauty Clothing D.V. Safety Soda

Ours

Conditional

Latent

StarGAN (T)StarGAN (C)

Thomas and Kovashka, BMVC 2018
Faces in left- and right-leaning media

• To illustrate the visual variability between left/right, we modify photos to be more left/right-leaning

• We model left/right using distributions over attributes (predicted using separate dataset, no extra annotations, Thomas & Kovashka BMVC 2018)

• Map attributes to pixels using large face dataset

Thomas and Kovashka, NeurIPS 2019
Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a lower bound

Pros:
- Principled approach to generative models
- Allows inference of $q(z|x)$, can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Adapted from Serena Young
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_\theta(x) = \prod_{i=1}^{n} p_\theta(x_i | x_1, \ldots, x_{i-1})$$

VAEs define intractable density function with latent z:

$$p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!
Instead, take game-theoretic approach: learn to generate from training distribution through 2-player game
Generative Adversarial Networks
Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?
Generative Adversarial Networks

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!

Input: Random noise

Output: Sample from training distribution
Training GANs: Two-player game

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Serena Young
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
Adversarial Networks Framework

D tries to output 1

Differentiable function D

x sampled from data

D tries to output 0

Differentiable function D

x sampled from model

Differentiable function G

Input noise Z

Discriminator
Real vs. Fake

Generator
\(x \sim G(z) \)
Training GANs: Two-player game

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in **minimax game**

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

Train jointly in **minimax game**

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

- Discriminator (\(\theta_d\)) wants to **maximize objective** such that \(D(x)\) is close to 1 (real) and \(D(G(z))\) is close to 0 (fake)
- Generator (\(\theta_g\)) wants to **minimize objective** such that \(D(G(z))\) is close to 1 (discriminator is fooled into thinking generated \(G(z)\) is real)

Serena Yeung
Training GANs: Two-player game

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

Alternate between:

1. **Gradient ascent** on discriminator

\[
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

2. **Gradient descent** on generator

\[
\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))
\]
Training GANs: Two-player game

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

Alternate between:

1. **Gradient ascent** on discriminator

\[
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

2. **Gradient descent** on generator

\[
\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))
\]

In practice, optimizing this generator objective does not work well!

When sample is likely fake, want to learn from it to improve generator. But gradient in this region is relatively flat!

Adapted from Serena Young
Training GANs: Two-player game

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Minimax objective function:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

Alternate between:
1. **Gradient ascent** on discriminator
 \[
 \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
 \]
2. **Instead**: **Gradient ascent** on generator, different objective
 \[
 \max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))
 \]

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Adapted from Serena Young
Training GANs: Two-player game

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014

Putting it together: GAN training algorithm

\[
\text{for number of training iterations do}\n\text{for } k \text{ steps do}\n\quad \text{• Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z).\n\quad \text{• Sample minibatch of } m \text{ examples } \{x^{(1)}, \ldots, x^{(m)}\} \text{ from data generating distribution } p_{\text{data}}(x).\n\quad \text{• Update the discriminator by ascending its stochastic gradient:}\n\quad \quad \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]\n\text{end for}\n\quad \text{• Sample minibatch of } m \text{ noise samples } \{z^{(1)}, \ldots, z^{(m)}\} \text{ from noise prior } p_g(z).\n\quad \text{• Update the generator by ascending its stochastic gradient (improved objective):}\n\quad \quad \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))\n\text{end for}\n\]
Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images

Discriminator network: try to distinguish between real and fake images

After training, use generator network to generate new images
Alternative loss functions

<table>
<thead>
<tr>
<th>Name</th>
<th>Paper Link</th>
<th>Value Function</th>
</tr>
</thead>
</table>
| GAN | Arxiv | \[L^G_{GAN} = E[\log(D(x))] + E[\log(1 - D(G(z)))] \]
| | | \[L^D_{GAN} = E[\log(D(G(z))] \] |
| LSGAN | Arxiv | \[L^G_{LSGAN} = E[(D(x) - 1)^2] + E[D(G(z))]^2] \]
| | | \[L^D_{LSGAN} = E[(D(G(z)) - 1)^2] \] |
| WGAN | Arxiv | \[L^G_{WGAN} = E[D(G(z))] \]
| | | \[L^D_{WGAN} = E[D(x)] - E[D(G(z))] \] |
| | | \[W_D \leftarrow \text{clip by value}(W_D, -0.01, 0.01) \] |
| WGAN_GP| Arxiv | \[L^G_{WGAN,GP} = L^G_{WGAN} + \lambda E[(\| D_D(ax - (1 - aG(z))] - 1)^2] \]
| | | \[L^D_{WGAN,GP} = L^D_{WGAN} \] |
| DRAGAN | Arxiv | \[L^G_{DRAGAN} = L^G_{GAN} + \lambda E[(\| D_D(ax - (1 - a\hat{x}p))] - 1)^2] \]
| | | \[L^D_{DRAGAN} = L^D_{GAN} \] |
| CGAN | Arxiv | \[L^G_{CGAN} = E[\log(D(x,c))] + E[\log(1 - D(G(z),c))] \]
| | | \[L^D_{CGAN} = E[\log(D(G(x),c))] \] |
| InfoGAN| Arxiv | \[L^G_{InfoGAN} = L^G_{GAN} - \lambda L_I(c,c') \]
| | | \[L^D_{InfoGAN} = L^D_{GAN} - \lambda L_I(c,c') \] |
| ACGAN | Arxiv | \[L^G_{ACGAN} = L^G_{GAN} + E[P(\text{class} = c|x)] + E[P(\text{class} = c|G(z))] \]
| | | \[L^D_{ACGAN} = L^D_{GAN} + E[P(\text{class} = c|G(z))] \] |
| EBGAN | Arxiv | \[L^G_{EBGAN} = D_{AE}(G(z)) + \lambda \cdot PT \]
| | | \[L^D_{EBGAN} = \max(0,m - D_{AE}(G(z))) \] |
| BEGAN | Arxiv | \[L^G_{BEGAN} = D_{AE}(G(z)) \]
| | | \[L^D_{BEGAN} = D_{AE}(x) - k_t D_{AE}(G(z)) \] |
| | | \[k_{t+1} = k_t + \lambda(y D_{AE}(x) - D_{AE}(G(z))) \] |

https://github.com/hwalsuklee/tensorflow-generative-model-collections
https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
GAN training is challenging

- Vanishing gradient – when discriminator is very good
- Mode collapse – too little diversity in the samples generated
- Lack of convergence because hard to reach Nash equilibrium
- Loss metric doesn’t always correspond to image quality; Frechet Inception Distance (FID) is a decent choice
Tips and tricks

• Use batchnorm, ReLU
• Regularize norm of gradients
• Use one of the new loss functions
• Add noise to inputs or labels
• Append image similarity to avoid mode collapse
• Use labels, extra info when available (CGAN)
• ...

https://github.com/soumith/talks/blob/master/2017-ICCV_Venice/How_To_Train_a_GAN.pdf
Conditional GANs

D

Discriminator

x
y
(real image & label)

x

Generator

z
y
(latent space & label)

https://medium.com/@jonathan_hui/gan-cgan-infogan-using-labels-to-improve-gan-8ba4de5f9c3d
GANs

G: generate fake samples that can fool D

D: classify fake samples vs. real images

[Goodfellow et al. 2014]
Conditional GANs

Adapted from Jun-Yan Zhu
Edges → Images

Edges from [Xie & Tu, 2015]

Pix2pix / CycleGAN
$\textit{Sketches} \rightarrow \textit{Images}$

Trained on Edges \rightarrow Images

Data from [Eitz, Hays, Alexa, 2012]

Pix2pix / CycleGAN
#edges2cats

[Christopher Hesse]

Ivy Tasi @ivymyt

@gods_tail

@matthematician

Vitaly Vidmirov @vvid

https://affinelayer.com/pixsrv/

Pix2pix / CycleGAN
Paired x_i y_i

Unpaired X Y
Cycle Consistency

Discriminator D_Y: $L_{GAN}(G(x), y)$
Real zebras vs. generated zebras

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
Discriminator D_X: $L_{GAN}(F(y), x)$
Real horses vs. generated horses

Discriminator D_Y: $L_{GAN}(G(x), y)$
Real zebras vs. generated zebras

Zhu et al., "Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks", ICCV 2017
Cycle Consistency

Forward cycle loss: $\|F(G(x)) - x\|_1$

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017
Cycle Consistency

Forward cycle loss: \[\|F(G(x)) - x\|_1 \]

Zhu et al., “Unpaired Image-To-Image Translation Using Cycle-Consistent Adversarial Networks”, ICCV 2017

Helps cope with mode collapse
Training Details: Objective

\[\mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)] + \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x)))] , \]

\[\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1] . \]

\[\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{\text{GAN}}(G, D_Y, X, Y) + \mathcal{L}_{\text{GAN}}(F, D_X, Y, X) + \lambda \mathcal{L}_{\text{cyc}}(G, F) , \]

\[G^*, F^* = \arg \min_{G,F} \max_{D_X,D_Y} \mathcal{L}(G, F, D_X, D_Y) . \]
Celebrities Who Never Existed

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Creative Adversarial Networks

CAN: Top ranked by human subjects

(Elgammal et al., 2017)
Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018
SinGAN

Stagewise generation

Stagewise generation

Input: Scene graph

Graph Convolution

Layout prediction

Cascaded Refinement Network

Output: Image

Johnson et al., “Image Generation from Scene Graphs”, CVPR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

There’s waves everywhere!

But where’s the shore?

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

G

Latent $\rightarrow 4 \times 4 \rightarrow$ Real or fake $\rightarrow 4 \times 4$

D

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Progressive generation

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
Part V: Ethics (Politics, Privacy, Bias)

• Deep fakes
• Privacy
• Security and adversarial perturbations
• Bias
• AI for the people
“Deepfakes”

You can be anyone you want...
Detection methods

FaceForensics++: Learning to Detect Manipulated Facial Images

Andreas Rössler1 Davide Cozzolino2 Luisa Verdoliva2 Christian Riess3 Justus Thies1 Matthias Nießner1

1Technical University of Munich 2University Federico II of Naples 3University of Erlangen-Nuremberg

Figure 1: FaceForensics++ is a dataset of facial forgeries that enables researchers to train deep-learning-based approaches in a supervised fashion. The dataset contains manipulations created with four state-of-the-art methods, namely, Face2Face, FaceSwap, DeepFakes, and NeuralTextures.

"We describe a forensic technique that models facial expressions and movements that typify an individual’s speaking pattern. Although not visually apparent, these correlations are often violated by the nature of how deep-fake videos are created and can, therefore, be used for authentication.

Agarwal et al., “Protecting World Leaders Against Deep Fakes”, CVPR Workshops, 2019
Incredible Pace of Synthetic Media Generation

- Interactive audio
- Attribute-guided face generation
- Unsupervised text generation
- Fake resumes
- Video dialog replacement
- Fake dating profiles
- Fake rental ads
- Scenes from sketches

ENTIRE GUEST SUITE
Luxury Condo 3 Bed + 3 Bath
Port Melbourne

- 8 guests
- 3 bedrooms
- 4 beds
- 2 baths

Bathroom (with seating for 2 more people), basin and eclectic French garden and kitchen. 24/7 carpeted charc. Laundrymemberly: More balcony – Garden – Metro, Liverpool Street (15 min walk) Walking distance to Wyckofferdon
State of the Art Detection is Statistically Based, Narrow, or Both

Audio: ASVspoof
- Hand-crafted Features
- Neural Networks
- Temporal Neural Networks
- Fusion

(Lavrentyeva et al. 2017)

Text: GLTR
- Input text
- Word Prediction Probability

NY Times:
- I've been a gamer for over ten years.

AI:
- I've been a gamer for over ten years.

AI methods choose more predictable next-words than humans, statistically

(MIT-IBM Watson AI lab, HarvardNLP 2019)

Image/Video: DARPA MediFor
- Noise Fingerprint Network
- Manipulation detection heatmap

(MediFor: USC/ISI, Univ. Naples 2019)
DARPA

Expected Threats

Targeted Personal Attacks
Peele 2017

AI Multimedia Algorithms

Generated Events at Scale

AI Multimedia Algorithms

Ransomfake concept: Identity Attacks as a service (IAaaS)
Bricman 2019

AI Multimedia Algorithms

Forged Evidence

Identity Attacks

Examples of possible fakes:
- Substance abuse
- Foreign contacts
- Compromising events
- Social media postings
- Financial inconsistencies
- Forging identity

On a rainy spring day, a vast, violent group gathered in front of the US Capitol to protest recent cuts in Social Security.

Believable fake events

Text
Video & Audio
Image

Highly realistic video

Undermines key individuals and organizations

Matt Turek
GANs for Privacy (Action Detection)

Ren et al., “Learning to Anonymize Faces for Privacy Preserving Action Detection”, ECCV 2018
Adversarial Attacks

https://bair.berkeley.edu/blog/2017/12/30/yolo-attack/
Adversarial Attacks

Adversarial Attacks

Tom Goldstein https://www.cs.umd.edu/~tomg/projects/invisible/
Adversarial Attacks

This object-recognition dataset stumped the world’s best computer vision models

Objects are posed in varied positions and shot at odd angles to spur new AI techniques.

Bias in the Vision and Language of Artificial Intelligence
What do you see?

● Bananas
● Stickers
● Dole Bananas
● Bananas at a store
● Bananas on shelves
● Bunches of bananas
● Bananas with stickers on them
● Bunches of bananas with stickers on them on shelves in a store

...We don’t tend to say

Yellow Bananas
What do you see?

Green Bananas
Unripe Bananas
What do you see?

Ripe Bananas
Bananas with spots
Bananas good for banana bread
What do you see?

Yellow Bananas?

Yellow is prototypical for bananas
Prototype Theory

One purpose of categorization is to reduce the infinite differences among stimuli to behaviourally and cognitively usable proportions.

There may be some central, prototypical notions of items that arise from stored typical properties for an object category (Rosch, 1975).

May also store exemplars (Wu & Barsalou, 2009).

- Fruit
- Bananas “Basic Level”
- Unripe Bananas, Cavendish Bananas
A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?
A man and his son are in a terrible accident and are rushed to the hospital in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my son!"

How could this be?

“Female doctor”
“Doctor”

“Female doctor”
The majority of test subjects overlooked the possibility that the doctor is a she - including men, women, and self-described feminists.

Wapman & Belle, Boston University
Human Reporting Bias

The frequency with which people write about actions, outcomes, or properties is not a reflection of real-world frequencies or the degree to which a property is characteristic of a class of individuals.
Bias in Language

Extreme *she* occupations
1. homemaker 2. nurse 3. receptionist
4. librarian 5. socialite 6. hairdresser
7. nanny 8. bookkeeper 9. stylist
10. housekeeper 11. interior designer 12. guidance counselor

Extreme *he* occupations
1. maestro 2. skipper 3. protege
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster
10. magician 11. fighter pilot 12. boss

Figure 1: The most extreme occupations as projected on to the *she–he* gender direction on g2vNEWS. Occupations such as *businesswoman*, where gender is suggested by the orthography, were excluded.

Gender stereotype *she–he* analogies.
- sewing-carpentry
- nurse-surgeon
- blond-burly
- giggle-chuckle
- sassy-snappy
- volleyball-football
- register-nurse-physician
- interior designer-architect
- feminism-conservatism
- vocalist-guitarist
- diva-superstar
- cupcakes-pizzas
- housewife-shopkeeper
- softball-baseball
- cosmetics-pharmaceuticals
- petite-lanky
- charming-affable
- hairdresser-barber

Gender appropriate *she–he* analogies.
- queen-king
- waitress-waiter
- ovarian cancer-prostate cancer
- sister-brother
- mother-father
- convent-monastery

Figure 2: **Analogy examples.** Examples of automatically generated analogies for the pair *she–he* using the procedure described in text. For example, the first analogy is interpreted as *she:sewing :: he:carpentry* in the original w2vNEWS embedding. Each automatically generated analogy is evaluated by 10 crowd-workers are to whether or not it reflects gender stereotype. Top: illustrative gender stereotypic analogies automatically generated from w2vNEWS, as rated by at least 5 of the 10 crowd-workers. Bottom: illustrative generated gender-appropriate analogies.

Bolukbasi et al., “Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings”, NIPS 2016
Bias in Language

http://wordbias.umiacs.umd.edu/
Bias in Vision

Wrong	Right for the Right Reasons	Right for the Wrong Reasons	Right for the Right Reasons

Fig. 1: Examples where our proposed model (Equalizer) corrects bias in image captions. The overlaid heatmap indicates which image regions are most important for predicting the gender word. On the left, the baseline predicts gender incorrectly, presumably because it looks at the laptop (not the person). On the right, the baseline predicts the gender correctly but it does not look at the person when predicting gender and is thus not acceptable. In contrast, our model predicts the correct gender word and correctly considers the person when predicting gender.

Burns et al., “Women also Snowboard: Overcoming Bias in Captioning Models”, ECCV 2018
Bias in Vision

Figure 2. In our bias mitigation approach, we learn a task-specific model with an adversarial loss that removes features corresponding to a protected variable from an intermediate representation in the model – here we illustrate our pipeline to visualize the removal of features in image space through an auto-encoder network.

Figure 3. Images after adversarial removal of gender when applied to the image space. The objective was to preserve information about objects and verbs, e.g. scissors, banana (COCO) or vaulting, lifting (imSitu) while removing gender correlated features.
Training data are collected and annotated

Model is trained

Media are filtered, ranked, aggregated, or generated

People see output
Biases in Data
Biases in Data

Selection Bias: Selection does not reflect a random sample

Map of Amazon Mechanical Turk Workers

CREDIT
© 2013–2016 Michael Yoshitaka Erlewine and Hadas Kotek

Margaret Mitchell
Out-group homogeneity bias: Tendency to see outgroup members as more alike than ingroup members
It's possible that you have an appropriate amount of data for every group you can think of but that some groups are represented less positively than others.

Margaret Mitchell
Biases in Data → Biased Labels

Annotations in your dataset will reflect the worldviews of your annotators.

Margaret Mitchell
Predicting Future Criminal Behavior

Margaret Mitchell
Predicting Policing

- Algorithms identify potential crime hot-spots
- Based on where crime is previously reported, not where it is known to have occurred
- Predicts future events from past

CREDIT
Predicting Sentencing

- Prater (who is white) rated **low risk** after shoplifting, despite two armed robberies; one attempted armed robbery.

- Borden (who is black) rated **high risk** after she and a friend took (but returned before police arrived) a bike and scooter sitting outside.

- Two years later, Borden has not been charged with any new crimes. Prater serving 8-year prison term for grand theft.

CREDIT

ProPublica, Northpointe: Risk in Criminal Sentencing, 2016.
Predicting Criminality

Israeli startup, Faception

“Faception is first-to-technology and first-to-market with proprietary computer vision and machine learning technology for profiling people and revealing their personality based only on their facial image.”

Offering specialized engines for recognizing “High IQ”, “White-Collar Offender”, “Pedophile”, and “Terrorist” from a face image.

Main clients are in homeland security and public safety.
Predicting Criminality

“Automated Inference on Criminality using Face Images” Wu and Zhang, 2016. arXiv

1,856 closely cropped images of faces; Includes “wanted suspect” ID pictures from specific regions.

“[…] angle θ from nose tip to two mouth corners is on average 19.6% smaller for criminals than for non-criminals …”

See our longer piece on Medium, “Physiognomy’s New Clothes”
It’s up to us to influence how AI evolves.
Today

Find local optimum given task, data, etc

Get paper published, product launched

Get paper award, 15 minutes of fame for __thing__

Positive outcomes for humans and their environment.

Margaret Mitchell
The development of AI should be guided by a concern for its impact on human society.

AI should **augment** human skills, not replace them.

AI must incorporate more of the versatility, nuance, and depth of the human **intellect**.
From academic backwater to center of attention in 5 years

What happened?

The Deep Learning Revolution
Hello,
hurt!

I am hurt

Hello, hurt! 😊

The limits of chatbot conversation

Fei-Fei Li
Dog’s Owner (Angry)

Frustrated with dog

Couch (Torn Up)

Dog (Guilty)

Upset About damage

Responsible for damage

About damage

Fei-Fei Li
Dog’s Owner (Angry)

Couch (Torn Up)

Frustrated with dog

Dog (Guilty)

Upset

Context

Situational Awareness

Prior Knowledge

Responsible for damage

About damage

Fei-Fei Li
Curiosity-based Learning

- A baby’s learning is exploratory, curiosity-driven, multi-modal, active and social.
- Can we model this process and apply it in machines?

Mrowca, Haber, Fei-Fei & Yamins, *CogSci*, 2018
“Thinking slow” Commonsense knowledge and reasoning

- Reasoning requires combining previously acquired knowledge to address new tasks
- Can a neural network reason more like a human?

He served chicken.

Not like serving a tennis ball

He probably cooked it first!

The trophy wouldn’t fit in the suitcase because it was too big.

The trophy? The suitcase?

Hudson and Manning, 2018
~50% current work activities can be theoretically automated now

100% current work activities can be potentially enhanced by intelligent technology
Enhancing human care with intelligent systems
Hospital-Acquired Infections

99,000 Deaths
Annually

Unmonitored Elderly Fall Injuries

$36.4 Billion
Annually

A. Houser, W. Fox-Grage & K. Ujvari, AARP Public Policy Institute, 2012
Annual Review of Medicine 2012
From: Inconsistent hand hygiene

To: Intelligent monitors placed throughout hospitals

A. Haque, E. Peng, A. Luo, A. Alahi, S. Yeung & L. Fei-Fei, *ECCV, 2016*
From: Ineffective wearables, lack of human caretakers

To: Intelligent monitors placed throughout senior living homes

Giving human specialists more time
Lowers costs

Improves safety and outcomes

Reduces burden on human caregivers
An algorithm for automating simple radiology analysis

More time for human specialists to do what they do best

Z. Li, C. Wang, M. Han, Y. Xue, W. Wei, Li-J. Li, L. Fei-Fei, CVPR, 2018