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Plan for This Lecture

• Motivation for probabilistic graphical models

• Directed models: Bayesian networks

• Undirected models: Markov random fields 
(briefly)

• Directed models for sequence classification: 
Hidden Markov models



Probabilities: Example Use 

Apples and Oranges

Chris Bishop



Marginal, Joint, Conditional

Marginal Probability

Conditional ProbabilityJoint Probability

Chris Bishop



Sum and Product Rules

Sum Rule

Product Rule

Chris Bishop



Independence

Marginal: P satisfies (X ⊥ Y) if and only if

P(X=x,Y=y) = P(X=x) P(Y=y),          
xVal(X), yVal(Y)

Conditional: P satisfies (X ⊥ Y | Z) if and only if

P(X,Y|Z) = P(X|Z) P(Y|Z),      
xVal(X), yVal(Y), zVal(Z)

Dhruv Batra



Bayes’ Theorem

Chris Bishop



Probabilistic Graphical Models

• It is sometimes desirable to have not only a 
prediction y given features x, but a measure of 
confidence  P(y|x) 

• Let x be a d-dim vector, each dim can take 2 values

• For each such vector x, y=1 or y=0

• We need statistics about how frequently y=1 occurs 
with each of 2d possible feature vectors → 2d

parameters to estimate

• Thus we require an unrealistic amount of data to 
estimate parameters (probabilities); graphical 
models allow simplifying assumptions



A simple alternative: Naïve Bayes

• Assume all features are independent given 
the class i.e. P(x|y) = Πd P(xd|y)

• Model P(xd=1|y=1) and P(xd=1|y=0), for all 
d → 2d parameters (as opposed to 2d)

• Then use Bayes rule to compute P(y|x) = 
P(x|y) P(y) / Z = Πd P(xd|y) P(y) / Z

• Where Z is a normalizing constant 



Naïve Bayes example  

If J=1 Prob W=1 Prob B=1 Prob C=1 Prob R=1

True 0.8 0.2 0.7 0.5

False 0.3 0.5 0.3 0.4

jazz

Waking 
Life

Borat
Cinema 
Paradiso

Requiem 
for a 

Dream



Advantages of Graphical Models

• If no assumption of independence is made, must 
estimate an exponential number of parameters

• If we assume all variables independent, efficient training 
and inference possible, but assumption too strong 

• Graphical models use graphs over random variables to 
specify variable dependencies (relationships)
• Allows for less restrictive independence assumptions while 

limiting the number of parameters that must be estimated
• Allows some interpretability 

• Bayesian networks: Directed acyclic graphs indicate 
causal structure

• Markov networks: Undirected graphs capture general 
dependencies

Adapted from Ray Mooney



Bayesian Networks

• Directed Acyclic Graph (DAG)

• Nodes are random variables

• Edges indicate causal influences

Burglary Earthquake

Alarm

JohnCalls MaryCalls

Ray Mooney



Conditional Probability Tables

• Each node has a conditional probability table (CPT) that 
gives the probability of each of its values given every possible 
combination of values for its parents
• Roots of the DAG that have no parents are given prior probabilities

Burglary Earthquake

Alarm

JohnCalls MaryCalls

P(B)

.001

P(E)

.002

B E P(A)

T T .95

T F .94

F T .29

F F .001

A P(M)

T .70

F .01

A P(J)

T .90

F .05

Ray Mooney



Aside: Naïve Bayes version

Burglary

AlarmJohnCalls MaryCalls



CPT Comments

• Probability of false not given since rows must add 
to 1

• Example requires 10 parameters rather than 25–
1=31 for specifying the full joint distribution

• Number of parameters in the CPT for a node is 
exponential in the number of parents

Ray Mooney



Bayes Net Inference

• Given known values for some evidence variables, 
determine the posterior probability of some query 
variables

• Example: Given that John calls, what is the 
probability that there is a Burglary?

Burglary Earthquake

Alarm

JohnCalls MaryCalls

??? John calls 90% of the time there
is an Alarm and the Alarm detects
94% of Burglaries so people
generally think it should be fairly high.

However, this ignores the prior
probability of John calling. 

Ray Mooney



Bayes Net Inference

• Example: Given that John calls, what is the 
probability that there is a Burglary?

Burglary Earthquake

Alarm

JohnCalls MaryCalls

???
John also calls 5% of the time when there
is no Alarm. So over 1,000 days we 
expect 1 Burglary and John will probably 
call. However, he will also call with a false 
report 50 times on average. So the call is 
about 50 times more likely a false report: 
P(Burglary | JohnCalls) ≈ 0.02

P(B)

.001

A P(J)

T .90

F .05

Ray Mooney



Bayes Nets (not yet useful)

• No independence encoded

Chris Bishop



Bayes Nets (formulation)

• More interesting: Some independences encoded

General Factorization

Chris Bishop



Conditional Independence

a is independent of b given c

Equivalently

Notation

Chris Bishop



Conditional Independence: Example 1

Node c is “tail to tail” for path from a to b: 
No independence of a and b follows from this path

Chris Bishop



Conditional Independence: Example 1

Node c is “tail to tail” for path from a to b: 
Observing c blocks the path thus making a and b conditionally independent

Chris Bishop



Conditional Independence: Example 2

Node c is “head to tail” for path from a to b: 
No independence of a and b follows from this path

Chris Bishop

Σc p(c|a) p(b|c) = 
Σc p(c|a) p(b|c, a) = // next slide

Σc p(b, c|a) =
p(b|a)



Node c is “head to tail” for path from a to b: 
Observing c blocks the path thus making a and b conditionally independent

Conditional Independence: Example 2

Chris Bishop



Conditional Independence: Example 3

Note: this is the opposite of Example 1, with c unobserved.

Node c is “head to head” for path from a to b: 
Unobserved c blocks the path thus making a and b independent

Chris Bishop



Conditional Independence: Example 3

Note: this is the opposite of Example 1, with c observed.

Node c is “head to head” for path from a to b: 
Observing c unblocks the path thus making a and b conditionally dependent

Chris Bishop



Example: “Am I out of fuel?”

B = Battery (0=flat, 1=fully charged)
F = Fuel Tank (0=empty, 1=full)
G = Fuel Gauge Reading

(0=empty, 1=full)

and hence

Chris Bishop



Example: “Am I out of fuel?”

Probability of an empty tank increased by observing G  = 0. 

Chris Bishop



Example: “Am I out of fuel?”

Probability of an empty tank reduced by observing B  = 0. 
This is referred to as “explaining away”.

Chris Bishop



D-separation
• A, B, and C are non-intersecting subsets of nodes in a 

directed graph.
• A path from A to B is blocked if it contains a node such that 

either
a) the arrows on the path meet either head-to-tail or tail-

to-tail at the node, and the node is in the set C, or
b) the arrows meet head-to-head at the node, and 

neither the node, nor any of its descendants, are in the 
set C.

• If all paths from A to B are blocked, A is said to be d-
separated from B by C. 

• If A is d-separated from B by C, the joint distribution over 
all variables in the graph satisfies                       .

Chris Bishop



D-separation: Example

Chris Bishop



Naïve Bayes

Conditioned on the class z, 
the distributions of the input variables x1, …, xD are independent.

Are the x1, …, xD marginally independent?

Chris Bishop



Bayes Nets vs. Markov Nets

• Bayes nets represent a subclass of joint 
distributions that capture non-cyclic causal
dependencies between variables.

• A Markov net can represent any joint 
distribution.

Ray Mooney



Cliques and Maximal Cliques

Clique

Maximal Clique

Chris Bishop



Joint Distribution for a Markov Net

• The distribution of a Markov net is described 
in terms of a set of potential functions, ψc, 
for each clique C in the graph.

• For each joint assignment of values to the 
variables in clique C, ψc assigns a non-
negative real value that represents the 
compatibility of these values.

Adapted from Ray Mooney



Joint Distribution for a Markov Net

where                   is the potential over clique C and 

is the normalization coefficient; note: MK-state variables →KM terms in Z.

Energies and the Boltzmann distribution

Chris Bishop



Illustration: Image De-Noising 

Original Image Noisy Image

Chris Bishop



Illustration: Image De-Noising

yi in {+1, -1}: labels in noisy image (which we have),
xi in {+1, -1}: labels in noise-free image 

(which we want to recover), 
i is the index over pixels

Adapted from Chris Bishop

Prior

Pixels are like their neighbors

Pixels of noisy and noise-free images are related

xj



Illustration: Image De-Noising

Noisy Image Restored Image (ICM)

Chris Bishop



Aside: Graphical vs other models

• Some graphical models are generative i.e. 
model p(x) not just p(y|x)

• Consider relationships of the features 

• Somewhat interpretable 

• We’ll also discuss one model appropriate
for sequence classification (e.g. weather)



41

Classifying Connected Samples 

(Sequences)

• Standard classification problem assumes 

individual cases are disconnected and 

independent (i.i.d.: independently and 

identically distributed).

• Many problems do not satisfy this 

assumption and involve making many 

connected decisions which are mutually 

dependent.

Adapted from Ray Mooney
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Markov Chains

• A finite state machine with probabilistic 

state transitions.

• Makes Markov assumption that next state 

only depends on the current state and 

independent of previous history.

Ray Mooney



Markov Chains

• General joint probability distribution:

• First-order Markov chain:

Figures from Chris Bishop

43



Markov Chains

• Second-order Markov chain:

Figures from Chris Bishop

44



Hidden Markov Models

• Latent variables (z) satisfy Markov property

• Observed variables/predictions (x) do not

• Example: x = words, z = parts of speech

Figures from Chris Bishop

45
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Example: Part Of Speech Tagging

• Annotate each word in a sentence with a 

part-of-speech marker.

John  saw  the  saw  and  decided  to  take  it     to   the   table.

NNP VBD DT  NN  CC  VBD     TO VB  PRP IN DT    NN

Adapted from Ray Mooney
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English Parts of Speech

• Noun (person, place or thing)

– Singular (NN):  dog, fork

– Plural (NNS):  dogs, forks

– Proper (NNP, NNPS): John, Springfields

– Personal pronoun (PRP): I, you, he, she, it

– Wh-pronoun  (WP): who, what

• Verb (actions and processes)

– Base, infinitive (VB):  eat

– Past tense (VBD):  ate

– Gerund (VBG):  eating

– Past participle (VBN):  eaten

– Non 3rd person singular present tense (VBP): eat

– 3rd person singular present tense: (VBZ): eats

– Modal (MD): should, can

– To (TO): to (to eat)

Ray Mooney
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English Parts of Speech (cont.)

• Adjective (modify nouns)
– Basic (JJ): red, tall

– Comparative (JJR): redder, taller

– Superlative (JJS): reddest, tallest

• Adverb (modify verbs)
– Basic (RB): quickly

– Comparative (RBR): quicker

– Superlative (RBS): quickest

• Preposition (IN): on, in, by, to, with

• Determiner:
– Basic (DT) a, an, the

– WH-determiner (WDT): which, that

• Coordinating Conjunction (CC): and, but, or,

• Particle (RP): off (took off), up (put up)

Ray Mooney
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Ambiguity in POS Tagging

• “Like” can be a verb or a preposition

– I like/VBP candy.

– Time flies like/IN an arrow.

• “Around” can be a preposition, particle, or 

adverb

– I bought it at the shop around/IN the corner.

– I never got around/RP to getting a car.

– A new Prius costs around/RB $25K.

• Context from other words can help classify 

Adapted from Ray Mooney



Aside: Why talking about HMMs

• A probabilistic graphical model

• Introduce sequence classification, nice way 

to model dynamical processes

• Introduce dealing with latent variables (not 

observed during training)

50



First Attempt: Markov Model

• No hidden variables

• Assume all POS are annotated by a human

• We can then reason about transitions

between POS

• Goal: tag (classify) all words in a sentence 

with their POS

51
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Sample Markov Model for POS

0.95

0.05

0.85

0.05
stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Det Noun

PropNoun

Verb

Ray Mooney
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Sample Markov Model for POS

0.95

0.05

0.85

0.05
stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Det Noun

PropNoun

Verb

P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076

Ray Mooney
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Hidden Markov Models

• Probabilistic generative model for sequences.

• Assume an underlying set of hidden 
(unobserved) states in which the model can 
be (e.g. parts of speech, abbreviated POS).

• Assume probabilistic transitions between 
states over time (e.g. transition from POS to 
another POS as sequence is generated).

• Assume probabilistic generation of tokens 
from states (e.g. words generated per POS).

• Advantages of using hidden (un-annotated) 
variables?

Ray Mooney



55

Sample HMM for POS

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

start
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1
0.25

start
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

Johnstart
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

Johnstart
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bitstart
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bitstart
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit thestart
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit thestart
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit the applestart
0.1

0.5

0.4

Ray Mooney
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Sample HMM Generation

PropNoun

JohnMary
Alice

Jerry

Tom

Noun

cat
dog

car
pen

bed
apple

Det

a the
the

the

that

a
thea

Verb

bit

ate saw
played

hit

0.95

0.05

0.85

gave
0.05

stop

0.5

0.1

0.8

0.1

0.1

0.25

0.25

John bit the applestart
0.1

0.5

0.4

Ray Mooney



• A set of N +2 states S={s0,s1,s2, … sN, sF}
– Distinguished start state:  s0

– Distinguished final state: sF

• A set of M possible observations V={v1,v2…vM}

• A state transition probability distribution A={aij}

• Observation probability distribution for each state j 
B={bj(k)}

• Total parameter set λ={A,B} 66

Formal Definition of an HMM

FjiNjisqsqPa itjtij ===== + ,0 and ,1         )|( 1

Mk1   1     )|at  ()( == NjsqtvPkb jtkj

Niaa iF

N

j

ij =+
=

01
1

Ray Mooney



Example

• States = weather (hot/cold)

• Observations = number of ice-creams eaten

67
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Three Useful HMM Tasks

• Compute observation likelihood: How likely 

is a given sequence of words, regardless of 

how they might be POS-tagged?

• Estimate most likely state sequence: What is 

the most likely underlying sequence of tags 

for the observed sequence of words? 

• Maximum likelihood training: Estimate 

transition/emission probabilities given  

training data (not discussed in this class)

Adapted from Ray Mooney
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HMM: Observation Likelihood

• Given a sequence of observations, O, and a model 
with a set of parameters, λ, what is the probability 
that this observation was generated by this model: 
P(O| λ) ?

• Allows HMM to be used as a language model: 
Assigns a probability to each string saying how 
likely that string is to be generated by the 
language.

• Example uses:
– Sequence Classification

– Most Likely Sequence

Adapted from Ray Mooney
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Sequence Classification

• Assume an HMM is available for each category 
(i.e. language or word).

• What is the most likely category for a given 
observation sequence, i.e. which category’s HMM 
is most likely to have generated it?

• Used in speech recognition to find most likely 
word model to have generated a given sound or 
phoneme sequence.

Austin Boston

? ?

P(O | Austin) > P(O | Boston) ?

ah  s  t  e  n

O

Ray Mooney
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Most Likely Sequence

• Of two or more possible sequences, which 
one was most likely generated by a given 
model?

• Used to score alternative word sequence 
interpretations in speech recognition.

Ordinary English

dice precedent core

vice president Gore

O1

O2

?

?

P(O2 | OrdEnglish) > P(O1 | OrdEnglish) ?

Ray Mooney
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HMM: Observation Likelihood

Naïve Solution

• Consider all possible state sequences, Q, of length 
T that the model could have traversed in 
generating the given observation sequence.

• Compute 

– the probability of a given state sequence from A, and

– multiply it by the probabilities (from B) of generating 
each of the given observations in each of the 
corresponding states in this sequence, 

– to get P(O,Q| λ) = P(O| Q, λ) P(Q| λ) .

• Sum this over all possible state sequences to get 
P(O| λ).

• Computationally complex: O(TNT).

Adapted from Ray Mooney



Example

• States = weather (hot/cold), observations = number 

of ice-creams eaten

• What is the probability of observing {3, 1, 3}?

73



Example

• What is the probability of observing {3, 1, 3} and 

the state sequence being {hot, hot, cold}?

• What is the probability of observing {3, 1, 3}?

74

…
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HMM: Observation Likelihood

Efficient Solution

• Due to the Markov assumption, the probability of 

being in any state at any given time t only relies 

on the probability of being in each of the possible 

states at time t−1.

• Forward Algorithm: Uses dynamic programming 

to exploit this fact to efficiently compute 

observation likelihood in O(TN2) time.

– Compute a forward trellis that compactly and implicitly 

encodes information about all possible state paths.

Ray Mooney



Forward Probabilities

• Let t(j) be the probability of being in state 

j after seeing the first t observations (by 

summing over all initial paths leading to j).

76

)|  ,,...,()( 21  jttt sqoooPj ==

Ray Mooney



Forward Step

77

s1

s2

sN

•

•

•

sj

t-1(i) t(i)

a1j

a2j

aNj

a2j

• Consider all possible ways of 

getting to sj at time t by coming 

from all possible states si and 

determine probability of each.

• Sum these to get the total 

probability of being in state sj  at 

time t while accounting for the 

first t −1 observations.

• Then multiply by the probability 

of actually observing ot in sj.

Ray Mooney



Forward Trellis 

78

s1

s2

sN

•

•

•

•

•

•

s0
sF

•

•

•

•

•

•

•

•

•

• • •

• • •

• • •

• • •

t1 t2 t3 tT-1 tT

• Continue forward in time until reaching final time 

point, and sum probability of ending in final state.

Ray Mooney



Computing the Forward Probabilities

• Initialization

• Recursion

• Termination

79
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Ray Mooney
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Example

80
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Forward Computational Complexity

• Requires only O(TN2) time to compute the 

probability of an observed sequence given a 

model.

• Exploits the fact that all state sequences 

must merge into one of the N possible states 

at any point in time and the Markov 

assumption that only the last state effects 

the next one.

81
Ray Mooney
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Three Useful HMM Tasks

• Compute observation likelihood: How likely 

is a given sequence of words, regardless of 

how they might be POS-tagged?

• Estimate most likely state sequence: What is 

the most likely underlying sequence of tags 

for the observed sequence of words? 

• Maximum likelihood training: Estimate 

transition/emission probabilities given  

training data (not discussed in this class)

Adapted from Ray Mooney
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Most Likely State Sequence (Decoding)

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence, Q=q1,q2,…qT, 

that generated this sequence from this model?

John gave the dog an apple. 

Ray Mooney
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence, Q=q1,q2,…qT, 

that generated this sequence from this model?

John gave the dog an apple. 

Det Noun PropNoun Verb 

Ray Mooney



85

Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence, Q=q1,q2,…qT, 

that generated this sequence from this model?

John gave the dog an apple. 

Det Noun PropNoun Verb 

Ray Mooney



86

Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence, Q=q1,q2,…qT, 

that generated this sequence from this model?

John gave the dog an apple. 

Det Noun PropNoun Verb 

Ray Mooney
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence, Q=q1,q2,…qT, 

that generated this sequence from this model?

John gave the dog an apple. 

Det Noun PropNoun Verb 

Ray Mooney
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence, Q=q1,q2,…qT, 

that generated this sequence from this model?

John gave the dog an apple. 

Det Noun PropNoun Verb 

Ray Mooney
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Most Likely State Sequence

• Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence, Q=q1,q2,…qT, 

that generated this sequence from this model?

• Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 

Ray Mooney
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HMM: Most Likely State Sequence

Efficient Solution

• Could use naïve algorithm, examining every 

possible state sequence of length T.

• Dynamic Programming can also be used to 

exploit the Markov assumption and efficiently 

determine the most likely state sequence for a 

given observation and model.

• Standard procedure is called the Viterbi 

algorithm (Viterbi, 1967) and also has O(TN2) 

time complexity.

Ray Mooney



Viterbi Scores

• Recursively compute the probability of the most 

likely subsequence of states that accounts for the 

first t observations and ends in state sj.
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• Also record “backpointers” that subsequently allow 

backtracing the most probable state sequence.

▪ btt(j) stores the state at time t-1 that maximizes the 

probability that system was in state sj at time t (given 

the observed sequence).

Ray Mooney



Computing the Viterbi Scores

• Initialization

• Recursion

• Termination
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Analogous to Forward algorithm except take max instead of sum
Ray Mooney



Computing the Viterbi Backpointers

• Initialization

• Recursion

• Termination
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Final state in the most probable state sequence. Follow 

backpointers to initial state to construct full sequence.
Ray Mooney



Viterbi Backpointers 
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Ray Mooney



Viterbi Backtrace 
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s0
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•
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•
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t1 t2 t3 tT-1 tT

Most likely Sequence: s0 sN s1 s2 …s2 sF

Ray Mooney



HMM Learning

• Supervised Learning:  All training 

sequences are completely labeled (tagged).

• Unsupervised Learning: All training 

sequences are unlabelled (but generally 

know the number of tags, i.e. states).

96
Adapted from Ray Mooney



Supervised Parameter Estimation

• Estimate state transition probabilities based on tag 

bigram and unigram statistics in the labeled data.

• Estimate the observation probabilities based on 

tag/word co-occurrence statistics in the labeled data.

• Use appropriate smoothing if training data is sparse.
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Maximum Likelihood Training

• Given an observation sequence, O, what set of 
parameters, λ, for a given model maximizes the 
probability that this data was generated from this 
model (P(O| λ))?

• Used to train an HMM model and properly induce 
its parameters from a set of training data.

• Only need to have an unannotated observation 
sequence (or set of sequences) generated from the 
model. Does not need to know the correct state 
sequence(s) for the observation sequence(s). In 
this sense, it is unsupervised.

Ray Mooney
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HMM: Maximum Likelihood Training

Efficient Solution

• There is no known efficient algorithm for finding 

the parameters, λ, that truly maximizes P(O| λ).

• However, using iterative re-estimation, the Baum-

Welch algorithm (a.k.a. forward-backward), a 

version of a standard statistical procedure called 

Expectation Maximization (EM), is able to locally 

maximize P(O| λ).

• Recall: K-means (also an example of EM)

Adapted from Ray Mooney
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Sketch of Baum-Welch  (EM) Algorithm 

for Training HMMs

Assume an HMM with N states.

Randomly set its parameters λ=(A,B) 

(making sure they represent legal distributions)

Until convergence (i.e. λ no longer changes) do:

E Step:  Use the forward/backward procedure to  

determine the probability of various possible 

state sequences for generating the training data

M Step: Use these probability estimates to 

re-estimate values for all of the parameters λ

Ray Mooney


