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Plan for This Lecture

* Motivation for probabilistic graphical models
* Directed models: Bayesian networks

* Undirected models: Markov random fields
(briefly)

* Directed models for sequence classification:
Hidden Markov models




Probabilities: Example Use

Apples and Oranges

Chris Bishop



Marginal, Joint, Conditional

&)
=
Marginal Probability
Y5 g }TJ _ _ G
L
Joint Probability Conditional Probability
p(X =2, Y =y;) = == p(Y:yﬂX:%):C—:

Chris Bishop



Sum and Product Rules

Sum Rule

Product Rule

Chris Bishop



Independence

Marginal: P satisfies (X L Y) if and only if

P(X=x,Y=y) = P(X=x) P(Y=y),
VxeVal(X), yeVal(Y)

Conditional: P satisfies (X LY | Z) if and only if

P(X,Y|Z) = P(X]|Z) P(Y]|Z),
VxeVal(X), yeVal(Y), zeVal(Z)

Dhruv Batra



Bayes’ Theorem

Chris Bishop



Probabilistic Graphical Models

It is sometimes desirable to have not only a
prediction y given features x, but a measure of
confidence P(y/x)

Let x be a d-dim vector, each dim can take 2 values
For each such vector x, y=1 or y=0

We need statistics about how frequently y=1 occurs
with each of 29 possible feature vectors = 29
parameters to estimate

Thus we require an unrealistic amount of data to
estimate parameters (probabilities); graphical
models allow simplifying assumptions




A simple alternative: Naive Bayes

Assume all features are independent given
the classi.e. P(x|y) =M, P(x4]y)

Model P(x,=1|y=1) and P(x,=1|y=0), for all
d =2 2d parameters (as opposed to 29)
Then use Bayes rule to compute P(y|x) =
P(x|y) Ply) / Z=T4P(x4ly) Ply) / Z

Where Z is a normalizing constant




Naive Bayes example

. Requiem
Cinema N

Paradiso

for a
Dream

True 0.8 0.2 0.7 0.5
False 0.3 0.5 0.3 0.4




Advantages of Graphical Models

* If no assumption of independence is made, must
estimate an exponential number of parameters

* If we assume all variables independent, efficient training
and inference possible, but assumption too strong

* Graphical models use graphs over random variables to
specify variable dependencies (relationships)

* Allows for less restrictive independence assumptions while
limiting the number of parameters that must be estimated

* Allows some interpretability

e Bayesian networks: Directed acyclic graphs indicate
causal structure

* Markov networks: Undirected graphs capture general
dependencies

Adapted from Ray Mooney



Bayesian Networks

* Directed Acyclic Graph (DAG)
* Nodes are random variables
* Edges indicate causal influences

Burglary Earthquake

Ray Mooney



Conditional Probability Tables

* Each node has a conditional probability table (CPT) that
gives the probability of each of its values given every possible
combination of values for its parents

* Roots of the DAG that have no parents are given prior probabilities

Burglary Earthquake

P(A)

A | P(M)
.70
F | .01

P(E)
002

P(B)
001

A | PQ)
T | .90
F [ .05

—

Ray Mooney



Aside: Naive Bayes version

Burglary




CPT Comments

* Probability of false not given since rows must add
tol

* Example requires 10 parameters rather than 2°—
1=31 for specifying the full joint distribution

* Number of parameters in the CPT for a node is
exponential in the number of parents

Ray Mooney



Bayes Net Inference

* Given known values for some evidence variables,

determine the posterior probability of some query
variables

 Example: Given that John calls, what is the
probability that there is a Burglary?

Earthquake

John calls 90% of the time there
is an Alarm and the Alarm detects
94% of Burglaries so people
generally think it should be fairly high.

However, this ignores the prior

MaryCalls probability of John calling.

Ray Mooney



Bayes Net Inference

* Example: Given that John calls, what is the
probability that there is a Burglary?

P(B)
.001

John also calls 5% of the time when there
is no Alarm. So over 1,000 days we
expect 1 Burglary and John will probably
call. However, he will also call with a false
Alarm report 50 times on average. So the call is
about 50 times more likely a false report:
P(Burglary | JohnCalls) = 0.02

Burglary Earthquake

MaryCalls

A | PQ)
.90

—

Ray Mooney



Bayes Nets (not yet useful)

* No independence encoded

a

C
p(.’]fl, s 7:UK) :p($K|CU1,. . '7$K—1) .- p(ﬂf2|$1)p($1)

p(a,b,c) = p(cla, b)p(a, b) = p(cla, b)p(bla)p(a)

Chris Bishop



Bayes Nets (formulation)

* More interesting: Some independences encoded

p(x1,...,27)

T3

General Factorization

p(x) = H p(xk|pay,)

Chris Bishop



Conditional Independence

a is independent of b given c

p(alb, c) = p(alc)

Equivalently p(a,blc) = p(alb,c)p(db|c)
= plaje)p(ble)

Notation a1 blec

Chris Bishop



Conditional Independence: Example 1

Node c is “tail to tail” for path from a to b:
No independence of a and b follows from this path

Chris Bishop



Conditional Independence: Example 1

p(a,b,c) = p(alc)p(blc)p(c)

p(a,b|€) —

Node c is “tail to tail” for path from a to b:
Observing c blocks the path thus making a and b conditionally independent

Chris Bishop



Conditional Independence: Example 2

O—O0—0O

p(a, b, c) = p(a)p(cla)p(blc)

p(a,b) = p(a) Y _p(cla)p(ble) = p(a)p(bla)

2_p(c|a) p(b|c) =
a ‘M‘ b | @ ZZ EECla; Eibllcz a) = // next slide
2. p(b, cla) =
p(b|a)
Node c is “head to tail” for path from a to b:
No independence of a and b follows from this path

Chris Bishop



Conditional Independence: Example 2

p(a,blc) = p(;’(gi c)
_ p(a)p(cla)p(blc)
p(c)
= |p(alc)p(b|c)
allb|c

Node c is “head to tail” for path from a to b:
Observing c blocks the path thus making a and b conditionally independent

Chris Bishop



Conditional Independence: Example 3

; 3 p(a,b,¢) = p(a)p(b)p(cla, b)
p(a,b) = p(a)p(b)
a Il bl

Node c is “head to head” for path from a to b:
Unobserved ¢ blocks the path thus making a and b independent

Note: this is the opposite of Example 1, with c unobserved.

Chris Bishop



Conditional Independence: Example 3

all b]c

Node c is “head to head” for path from a to b:
Observing c unblocks the path thus making a and b conditionally dependent

Note: this is the opposite of Example 1, with c observed.

Chris Bishop



Example: “Am | out of fuel?”

B F p(G=1B=1,F =1)
p(G=1B=1,F=0)
p(G=1B=0,F =1)
p(G=1|B=0,F =0)

G
p(B=1) = 0.9
B = Battery (0=flat, 1=fully charged) p(F=1) = 0.9
F' = Fuel Tank (0O=empty, 1=full)
and hence

GG = Fuel Gauge Reading
(0O=empty, 1=full) p(F=0) = 0.1

Chris Bishop



Example: “Am | out of fuel?”

(G =0|F =0) = Z p(G =0|B,F =0)p(B) = 0.81
Be{0,1}

p(£=0) = 0.1

(G =0)= Z Z p(G = 0|B, F)p(B)p(F) = 0.315

Be{0,1} Fe{0,1}

p(G =0|F = 0)p(F =0)
p(G =0)

p(F =0|G =0)

P

0.257

Probability of an empty tank increased by observing G = 0.

Chris Bishop



Example: “Am | out of fuel?”

G

p(G=0|B=0,F=0)p(# =0)
ZFE{O,l}p(G =0[B =0, F)p(F)
~ (.111

p(F =0|G=0,B =0)

Probability of an empty tank reduced by observing B = 0.
This is referred to as “explaining away”.

Chris Bishop



D-separation

* A, B, and C' are non-intersecting subsets of nodes in a
directed graph.
* A path from A to B is blocked if it contains a node such that
either
a) the arrows on the path meet either head-to-tail or tail-
to-tail at the node, and the node is in the set C, or
b) the arrows meet head-to-head at the node, and
neither the node, nor any of its descendants, are in the
set C.
* If all paths from A to B are blocked, A is said to be d-
separated from B by C.
o If Ais d-separated from B by C, the joint distribution over
all variables in the graph satisfies A Il B | C.

Chris Bishop



D-separation: Example

all b|c

allb|f

Chris Bishop



Nailve Bayes

L1

Conditioned on the class z,
the distributions of the input variables x, ..., X, are independent.

Are the x, ..., X, marginally independent?

Chris Bishop



Bayes Nets vs. Markov Nets

* Bayes nets represent a subclass of joint
distributions that capture non-cyclic causal
dependencies between variables.

* A Markov net can represent any joint
distribution.

Ray Mooney



Cligues and Maximal Cliques

,
=)

Maximal Clique

Chris Bishop



Joint Distribution for a Markov Net

* The distribution of a Markov net is described
in terms of a set of potential functions, Y,
for each clique Cin the graph.

* For each joint assignment of values to the
variables in clique C, Y _assigns a non-
negative real value that represents the
compatibility of these values.

Adapted from Ray Mooney



Joint Distribution for a Markov Net

pe9) = - [T velxe)
C

where ¢ (Xc) is the potential over clique C' and
z =3 1]vexe)
x C

is the normalization coefficient; note: M K-state variables - K terms in Z.

Energies and the Boltzmann distribution

Yo (xc) = exp{—FE(xc)}

Chris Bishop



lllustration: Image De-Noising

Original Image Noisy Image

Chris Bishop



lllustration: Image De-Noising

y;in {+1, -1}: [abels in noisy image (which we have),

X;in {+1, -1}: labels in noise-free image
(which we want to recover),

i is the index over pixels

O

p(x,y) = 5 exp{—E(x,y)}

Pixels are like their neighbors

Pixels of noisy and noise-free images are related

Adapted from Chris Bishop



lllustration: Image De-Noising

Noisy Image Restored Image (ICM

Chris Bishop



Aside: Graphical vs other models

 Some graphical models are generative i.e.
model p(x) not just p(y|x)

* Consider relationships of the features
 Somewhat interpretable

 We’ll also discuss one model appropriate
for sequence classification (e.g. weather)




Classifying Connected Samples

gSeguencesz

- Standard classification problem assumes
Individual cases are disconnected and
Independent (i.1.d.: independently and
Identically distributed).

« Many problems do not satisfy this
assumption and involve making many
connected decisions which are mutually
dependent.

41
Adapted from Ray Mooney



Ray Mooney

Markov Chains

A finite state machine with probabilistic
state transitions.

» Makes Markov assumption that next state
only depends on the current state and
independent of previous history.

42



Markov Chains

 General joint probability distribution:

N
p(xla v :.XN) — Hp(xn|x1}* . -:Xﬂ-—l)
n=1

« First-order Markov chain:

N
p(xis- 5 xn) = p(xa) | [ p(enlxn-1)

Figures from Chris Bishop

43



Markov Chains

« Second-order Markov chain:

N
p(xla-“}XN) Xl P(X2|X1 H Knlxﬂ—laxn—ﬂ)
n=3

Figures from Chris Bishop

44



Hidden Markov Models

» Latent variables (z) satisfy Markov property

 Observed variables/predictions (x) do not
« Example: x = words, z = parts of speech

71 7o Lpn—1 Zn Zn41

Figures from Chris Bishop

45



Example: Part Of Speech Tagging

« Annotate each word In a sentence with a
part-of-speech marker.

John saw the saw and decided to take It to the table.
NNPVBD DT NN CC VvBD TOVB PRPINDT NN

Adapted from Ray Mooney

46



English Parts of Speech

* Noun (person, place or thing)

Singular (NN): dog, fork

Plural (NNS): dogs, forks

Proper (NNP, NNPS): John, Springfields
Personal pronoun (PRP): I, you, he, she, it
Wh-pronoun (WP): who, what

« Verb (actions and processes)

Ray Mooney

Base, infinitive (VB): eat

Past tense (VBD): ate

Gerund (VBG): eating

Past participle (VBN): eaten

Non 3" person singular present tense (VBP): eat
3" person singular present tense: (VBZ): eats
Modal (MD): should, can

To (TO): to (to eat)

47



English Parts of Speech (cont.)

 Adjective (modify nouns)
— Basic (JJ): red, tall
— Comparative (JJR): redder, taller
— Superlative (JJS): reddest, tallest

« Adverb (modify verbs)

— Basic (RB): quickly

— Comparative (RBR): quicker

— Superlative (RBS): quickest
 Preposition (IN): on, in, by, to, with
» Determiner:

— Basic (DT) a, an, the

— WH-determiner (WDT): which, that

« Coordinating Conjunction (CC): and, but, or,
- Particle (RP): off (took off), up (put up)

Ray Mooney

48



Ambiguity in POS Tagging

» “Like” can be a verb or a preposition
— | like/\VVBP candy.
— Time flies like/IN an arrow.

* “Around” can be a preposition, particle, or
adverb
— | bought it at the shop around/IN the corner.
— | never got around/RP to getting a car.
— A new Prius costs around/RB $25K.

 Context from other words can help classify

Adapted from Ray Mooney

49



Aside: Why talking about HMMs

* A probabilistic graphical model

* Introduce sequence classification, nice way
to model dynamical processes

* Introduce dealing with latent variables (not
observed during training)

50



First Attempt: Markov Model

No hidden variables
Assume all POS are annotated by a human

We can then reason about transitions
between POS

Goal: tag (classify) all words in a sentence
with their POS

51



Sample Markov Model for POS




Sample Markov Model for POS

0.5

0.1
start
Q P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076

Ray Mooney

0.1

53



Hidden Markov Models

 Probabilistic generative model for sequences.

« Assume an underlying set of hidden
(unobserved) states in which the model can
be (e.g. parts of speech, abbreviated POS).

 Assume probabilistic transitions between
states over time (e.g. transition from POS to
another POS as sequence Is generated).

« Assume probabilistic generation of tokens
from states (e.g. words generated per POS).

 Advantages of using hidden (un-annotated)
variables?

Ray Mooney

54



Sample HMM for POS

0.05

0.1

0.85

PropNoun

0.1
start

Ray Mooney

0.5

55



Sample HMM Generation

Ray Mooney

0.05

0.1

0.85

0.5

56



Sample HMM Generation

0.05

0.1

0.85

PropNoun

0.1
start

Ray Mooney

0.5

57



Sample HMM Generation

Ray Mooney

0.05

0.1

0.85

0.5

58



Sample HMM Generation

0.05
cat 0.1
dog
car be?
en appie
P 0.5
Noun 0.85
©
0.2
0.8
05 PropNoun 0.1

0.1 0.25 /
59

Ray Mooney



Sample HMM Generation

0.05

0.1

0.5
0.85

05 PropNoun 0.1

0.1 0.25 /
start ) john bit
60

Ray Mooney




Sample HMM Generation

0.05

05 PropNoun

0.1 '
start ) john bit
61

Ray Mooney




Sample HMM Generation

0.05

05 PropNoun

0.1 '
start ) John bit the
62

Ray Mooney




Sample HMM Generation

0.05

0.1

0.5
0.85

05 PropNoun

- 0.25 /
start ) John bit the
63

Ray Mooney




Sample HMM Generation

0.05

0.1

0.5
0.85

05 PropNoun

> 0.25 S
start ) John bit the apple

Ray Mooney




Sample HMM Generation

0.5

Ray Mooney

0.05

PropNoun

> 0.25 S
start ) John bit the apple



Formal Definition of an HMM

» Aset of N +2 states S={s,5,,S,, ... Sy S¢}
— Distinguished start state: s,
— Distinguished final state: s¢

A set of M possible observations V={v,,v,...vy,}
- A state transition probability distribution A={a;;}
a; =P(0.,=5;10,=5;) 1<, J<Nandi=0, J=F

N
q; +a =1 O0<I<N
j=1
» QObservation probability distribution for each state |
B={b;(k)} |
b, (k) =P(v, att[g,=s;) 1<J<N 1<k<M

 Total parameter set A={A,B} 66

Ray Mooney



Example

« States = weather (hot/cold)
e Observations = number of Ice-creams eaten

B1 Bz
P(1 | HOT) 2 P(1 | COLD) 5
P2|HOT) | = | .4 P2|cOoD)|=1]4
P(3 | HOT) 4 P(3 | COLD) 1

A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden vanables).




Three Useful HMM Tasks

» Compute observation likelihood: How likely
IS a given sequence of words, regardless of

how they might be POS-tagged?

 Estimate most likely state sequence: What is
the most likely underlying sequence of tags
for the observed sequence of words?

» Maximum likelihood training: Estimate
transition/emission probabilities given
training data (not discussed in this class)

Adapted from Ray Mooney

68



HMM: Observation Likelihood

 Given a sequence of observations, O, and a model

with a set of parameters, A, what is the probability

that this observation was generated by this model:
P(O|A) ?

* Allows HMM to be used as a language model:
Assigns a probability to each string saying how

likely that string Is to be generated by the
language.

« Example uses:

— Sequence Classification
— Most Likely Sequence

Adapted from Ray Mooney

69



Sequence Classification

« Assume an HMM is available for each category
(1.e. language or word).

« What is the most likely category for a given
observation sequence, 1.e. which category’s HMM
IS most likely to have generated it?

» Used in speech recognition to find most likely
word model to have generated a given sound or
phoneme sequence.

Austin P(O | Austin) > P(O | Boston) ? Boston 70

Ray Mooney



Most Likely Sequence

Ray Mooney

« Of two or more possible sequences, which

one was most likely generated by a given
model?

 Used to score alternative word sequence
Interpretations in speech recognition.

?

Ol
@recede@
? a@residen@

02

P(O, | OrdEnglish) > P(O, | OrdEnglish) ?

Ordinary English

71



HMM: Observation Likelihood
Naive Solution

 Consider all possible state sequences, Q, of length
T that the model could have traversed in
generating the given observation sequence.

« Compute

— the probability of a given state sequence from A, and

— multiply it by the probabilities (from B) of generating
each of the given observations in each of the
corresponding states in this sequence,

— toget P(O,Q| &) =P(O| Q, 1) P(Q| A) .
« Sum this over all possible state sequences to get
P(O| A).

« Computationally complex: O(TNT).

Adapted from Ray Mooney

72



Example

- States = weather (hot/cold), observations = number
of ice-creams eaten

* What is the probability of observing {3, 1, 3}?

B, B,
) EEIE
P(3 | HOT) 4 P(3 | COLD) 1

A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

73



Example

« What is the probability of observing {3, 1, 3} and
the state sequence being {hot, hot, cold}?

T T
P(0,0) = P(0|Q) x P(Q) =[] | P(oilg)| x|] | P(gilgi-1)
i=1 i=1

P(3 1 3,hot hot cold) = |P(hot|start) x P(hot/hot) x P(cold|hot)
x P(3|hot) x P(1/hot) x P(3|cold)

« What is the probability of observing {3, 1, 3}?
P(0)=) P(0,0)=) P(0|Q)P(Q)
Q Q

P(313)=P(3 1 3,cold cold cold)+ P(3 1 3,cold cold hot) + ..



HMM: Observation Likelihood
Efficient Solution

* Due to the Markov assumption, the probability of
being In any state at any given time t only relies
on the probability of being in each of the possible
states at time t—1.

» Forward Algorithm: Uses dynamic programming
to exploit this fact to efficiently compute
observation likelihood in O(TN?) time.

— Compute a forward trellis that compactly and implicitly
encodes information about all possible state paths.

Ray Mooney

75



Forward Probabilities

* Let a,(]) be the probability of being in state
] after seeing the first t observations (by
summing over all initial paths leading to j).

Qt(j) — P(Owozv“ot’ G =3, | 1)

yyyyyyyyy

76



Forward Step

Ray Mooney

 Consider all possible ways of
getting to s; at time t by coming
from all possible states s; and
determine probability of each.

« Sum these to get the total
probability of being In state s; at
time t while accounting for the
first t —1 observations.

« Then multiply by the probability
of actually observing o, In's;

7



Forward Trellis

 Continue forward in time until reaching final time
point, and sum probability of ending In final state.

Ray Mooney

78



Computing the Forward Probabilities

e Initialization

o, (]) = dy
« Recursion
- _
at(j): Zat—l(i)aij
i=1 |

e Termination

P(O[A4)=a;,,(S¢) = ZN:aT (1a

yyyyyyyyy

b (0,) 1<j<N

b (0) 1<j<N, 1<t<T

79



Example «(j)= 2

N

Olt_l(i)|aij _bj (0,)

2 _#Cic) * P(IC)

P(HIH) * P(1IH)
672

a*5

329

-

80



Forward Computational Complexity

 Requires only O(TN?) time to compute the

Ray Mooney

probability of an observed sequence given a
model.

Exploits the fact that all state sequences
must merge into one of the N possible states
at any point in time and the Markov
assumption that only the last state effects
the next one.

81



Three Useful HMM Tasks

» Compute observation likelihood: How likely
IS a given sequence of words, regardless of
how they might be POS-tagged?

 Estimate most likely state sequence: What is
the most likely underlying sequence of tags
for the observed sequence of words?

» Maximum likelihood training: Estimate
transition/emission probabilities given
training data (not discussed in this class)

Adapted from Ray Mooney

82



Most Likely State Sequence (Decoding)

 Glven an observation sequence, O, and a model, A,
what Is the most likely state sequence, Q=q,,d,,...0t,
that generated this sequence from this model?

83

Ray Mooney




Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what Is the most likely state sequence, Q=q,,d,,...0t,
that generated this sequence from this model?

John gave the dog an@

Det Noun PropNoun Verb

84
Ray Mooney



Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what Is the most likely state sequence, Q=q,,d,,...0t,
that generated this sequence from this model?

John gave the dog an@

Det Noun PropNoun Verb

85
Ray Mooney



Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what Is the most likely state sequence, Q=q,,d,,...0t,
that generated this sequence from this model?

~

N Y
John gave the dog an@

Det Noun PropNoun Verb

86
Ray Mooney



Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what Is the most likely state sequence, Q=q,,d,,...0t,
that generated this sequence from this model?

~

N
John gave the élog an@

Det Noun PropNoun Verb

87
Ray Mooney



Most Likely State Sequence

 Glven an observation sequence, O, and a model, A,
what Is the most likely state sequence, Q=q,,d,,...0t,
that generated this sequence from this model?

T\

N
John gave the é’og gn@

Det Noun PropNoun Verb

88
Ray Mooney



Ray Mooney

Most Likely State Sequence

Given an observation sequence, O, and a model, A,
what Is the most likely state sequence, Q=q,,d,,...0t,
that generated this sequence from this model?

Used for sequence labeling, assuming each state
corresponds to a tag, It determines the globally best
assignment of tags to all tokens in a sequence using a
principled approach grounded in probability theory.

\\
\ AN
John ga/e the gog gn@

Det Noun PropNoun Verb

89



HMM: Most Likely State Sequence
Efficient Solution

 Could use naive algorithm, examining every
possible state sequence of length T.

« Dynamic Programming can also be used to
exploit the Markov assumption and efficiently
determine the most likely state sequence for a
given observation and model.

- Standard procedure is called the Viterbi
algorithm (Viterbi, 1967) and also has O(TN?)
time complexity.

Ray Mooney

90



Viterbi Scores

 Recursively compute the probability of the most
likely subsequence of states that accounts for the

first t observations and ends In state Sj-
V(J)=_ max P(dy, G Ge s OrnsOp G =S5 | A)

Uo:C1s---Gtq

» Also record “backpointers” that subsequently allow
backtracing the most probable state sequence.

= bt,(J) stores the state at time t-1 that maximizes the
probability that system was in state s; at time t (given
the observed sequence).

91
Ray Mooney



Computing the Viterbi Scores

* Initialization
v (J) = anbj (0,) 1<J<N

e Recursion
N

vt(j):m_alxvt_l(i)aijb.(ot) 1< <N, 1<t<T

J

e Termination

N
P*=Vr,;(S¢) = FT;ISX Vr (&

Analogous to Forward algorithm except take max instead of sym

Ray Mooney



Computing the Viterbi Backpointers

 |nitialization
bt,(]) =S, 1< ] <N
* Recursion

N
bt,(J) =argmaxv,_,(1)a;b;(0,) 1< <N, 1<t<T

1=1

e Termination

N
. B :
Gy * =bt;,; (S¢) =argmax v; (i)a;
1=1
Final state in the most probable state sequence. Follow
backpointers to initial state to construct full sequence.

Ray Mooney

93
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Viterbl Backpointers

94
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Viterbl Backtrace

Most likely Sequence:

So S\ Sq Sp ««Sy Sk

95



HMM Learning

» Supervised Learning: All training

sequences are completely labeled (tagged).

» Unsupervised Learning: All training
sequences are unlabelled (but generally
know the number of tags, I.e. states).

Adapted from Ray Mooney

96



Supervised Parameter Estimation

 Estimate state transition probabilities based on tag
bigram and unigram statistics in the labeled data.

a9 — C(0 =50 = Sj)
: C(qt = Si)
 Estimate the observation probabilities based on
tag/word co-occurrence statistics in the labeled data.

C(g, =s,,0, =V
bj (k) _ (ql ] k)
C(qi = Sj)
« Use appropriate smoothing If training data Is sparse.
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Maximum Likelihood Training

 Glven an observation sequence, O, what set of
parameters, A, for a given model maximizes the
probability that this data was generated from this
model (P(O| 1))?

 Used to train an HMM model and properly induce
Its parameters from a set of training data.

* Only need to have an unannotated observation
sequence (or set of sequences) generated from the
model. Does not need to know the correct state
sequence(s) for the observation sequence(s). In
this sense, It Is unsupervised.

Ray Mooney
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HMM: Maximum Likelihood Training
Efficient Solution

 There Is no known efficient algorithm for finding
the parameters, A, that truly maximizes P(O| A).

« However, using iterative re-estimation, the Baum-
Welch algorithm (a.k.a. forward-backward), a
version of a standard statistical procedure called
Expectation Maximization (EM), is able to locally
maximize P(O| A).

* Recall: K-means (also an example of EM)

Adapted from Ray Mooney
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Sketch of Baum-Welch (EM) Algorithm
for Training HMMs

Assume an HMM with N states.
Randomly set its parameters A=(A,B)

(making sure they represent legal distributions)
Until convergence (i.e. A no longer changes) do:

E Step: Use the forward/backward procedure to
determine the probability of various possible
state sequences for generating the training data

M Step: Use these probability estimates to
re-estimate values for all of the parameters A
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