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Plan for This Lecture

• Ensemble methods: introduction

• Boosting 

– Algorithm 

– Application to face detection

• Decision trees

– Example

– Algorithm 



Learning Ensembles

• Learn multiple alternative definitions of a concept using 

different training data or different learning algorithms

• Train several classifiers: SVM, KNN, logistic regression, 

decision tree, neural network etc.

• Call these classifiers f1(x), f2(x), …, fM(x)

• Take majority of predictions:

y = majority( f1(x), f2(x), …, fM(x) )

• For regression use mean or median of the predictions

• Averaging is a form of regularization: each model can 

individually overfit but the average is able to overcome the 

overfitting

Ray Mooney, Subhransu Maji



Learning Ensembles

• Learn multiple alternative definitions of a concept using 
different training data or different learning algorithms

• Combine decisions of multiple definitions

Training Data

Data1 Data mData2        

Learner1 Learner2 Learner m       

Model1 Model2 Model m       

Model Combiner Final Model

Ray Mooney 



Value of Ensembles

• When combing multiple independent and
diverse decisions each of which is at least 
more accurate than random guessing, 
random errors cancel each other out, correct 
decisions are reinforced.

• Human ensembles are demonstrably better

– How many jelly beans in the jar?: Individual 
estimates vs. group average.

– Who Wants to be a Millionaire: Expert friend 
vs. audience vote.

• http://www.telegraph.co.uk/culture/books/3620109/Always-ask-the-audience.html

Adapted from Ray Mooney 

http://www.telegraph.co.uk/culture/books/3620109/Always-ask-the-audience.html


Homogenous Ensembles

• Use a single learning algorithm but manipulate 
training data to make it learn multiple models.
– Data1  Data2  …  Data m

– Learner1 = Learner2 = … = Learner m

• Different methods for changing training data:
– Bagging: Resample training data

– Boosting: Reweight training data

Adapted from Ray Mooney 



Bagging

• Create ensembles by repeatedly randomly resampling the 
training data.

• Given a training set of size n, create m samples of size n by 
drawing n examples from the original data, with 
replacement.

• Train m models and combine them using simple majority 
vote. 

• Decreases error by decreasing the variance in the results due 
to unstable (high-variance) learners, algorithms (like 
decision trees) whose output can change dramatically when 
the training data is slightly changed.

• However, often the errors of the different models are 
correlated, which defies the purpose of bagging.

Adapted from Ray Mooney 



Boosting

• Originally proposed in (Schapire, 1990), revised to be a 

practical algorithm, AdaBoost, for building ensembles that 

empirically improves generalization performance (Freund 

& Shapire, 1996).

• Relies on weak learners which only need to generate a 

hypothesis with a training accuracy greater than 0.5.

• Examples are given weights. At each iteration, a new 

hypothesis is learned and the examples are reweighted to 

focus the system on examples that the most recently 

learned classifier got wrong.

Adapted from Ray Mooney 



Boosting: Basic Algorithm

• General Loop:

Set all examples to have equal uniform weights.

For m from 1 to M do:

Find the weak learner hm that achieves lowest weighted training error

Increase the weights of examples that hm classifies incorrectly

• During testing: 
– Each of the M classifiers gets a weighted vote proportional to its 

accuracy on the training data; final classifier is a linear combination of 
all weak learners.

• Intuition/advantage: 
– Base (weak) learner must focus on correctly classifying the most highly 

weighted examples while strongly avoiding over-fitting.

• Assumption: 
– Weak learners must perform better than chance.

Ray Mooney, Lana Lazebnik, Kristen Grauman



Boosting Illustration

Weak 

Classifier 1

Paul Viola



Boosting Illustration

Weights

Increased

Paul Viola



Boosting Illustration

Weak 

Classifier 2

Paul Viola



Boosting Illustration

Weights

Increased

Paul Viola



Boosting Illustration

Weak 

Classifier 3

Paul Viola



Boosting Illustration

Final classifier is 

a combination of weak 

classifiers

Paul Viola



Figure from C. Bishop, 

notes from K. Grauman

(d) Normalize the weights so they sum to 1

Start with uniform 
weights on training 
examples.

Evaluate weighted error 
for each weak learner, 
pick best learner.

ym(xn) is the prediction, 
tn is ground truth for xn

Re-weight the examples:
Incorrectly classified 
get more weight.

Final classifier is 
combination of  weak 
ones, weighted according 
to error they had.

For M rounds

Optional: If error > 0.5, 
exit loop



Boosting application: Face detection

Detection

Lana Lazebnik



Viola-Jones face detector (CVPR 2001)

Main idea:

– Represent local texture with efficiently computable 

“rectangular” features within window of interest

– Select discriminative features to be weak classifiers

– Use boosted combination of them as final classifier

– Form a cascade of such classifiers, rejecting clear 

negatives quickly (not discussed)

Kristen Grauman

14,765 citations



Viola-Jones detector: features

Feature output is difference 

between adjacent regions

“Rectangular” filters

Value =  ∑ (pixels in white area) – ∑ (pixels in black area)

Kristen Grauman, Lana Lazebnik



Considering all 

possible filter 

parameters: position, 

scale, and type: 

180,000+ possible 

features associated 

with each 24 x 24 

window

Which subset of these features should we use to 

determine if a window has a face?

Use AdaBoost both to select the informative features and 

to form the classifier

Viola-Jones detector: features

Kristen Grauman



Viola-Jones detector: AdaBoost

• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-

faces) training examples, in terms of weighted error.

Outputs of a possible 

rectangle feature on 

faces and non-faces.

…

Resulting weak classifier:

For next round, reweight the 

examples according to 

errors, choose another 

filter/threshold combo.

Kristen Grauman



• First two features selected by boosting:

• This feature combination can yield 100% 

detection rate and 50% false positive rate

Boosting for face detection

Lana Lazebnik



Viola-Jones face detector: Results

Kristen Grauman



• Like the thresholded features=classifiers in 

face detection

• A single-level decision tree (discussed next)

Decision Stumps

Figure from Wikipedia



Decision Trees

• Tree-based classifiers

• Nodes test features, there is one branch for each value of the feature, 
and leaves specify the category

• Can be rewritten as a set of rules:
– red  circle → pos

– red  circle → A

– blue → B

– red  square → B

– green → C

– red  triangle → C

color

red blue
green

shape

circle square triangle

neg pos

pos neg neg

color

red blue
green

shape

circle square triangle

B C

A B C

Adapted from Ray Mooney 



What about continuous features?

• Continuous (real-valued) features can be handled by 
allowing nodes to split a real valued feature into two 
ranges based on a threshold (e.g. length < 3 and length 3)

• Classification trees have discrete class labels at the leaves.

Adapted from Ray Mooney 



Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: − <big, blue, circle>: −

color

red blue
green

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −

Ray Mooney 



shape

circle square triangle

Top-Down Decision Tree Induction

• Recursively build a tree top-down by divide and conquer.

<big, red, circle>: +       <small, red, circle>: +

<small, red, square>: − <big, blue, circle>: −

<big, red, circle>: +       

<small, red, circle>: +

<small, red, square>: −

color

red blue
green

<big, red, circle>: +       

<small, red, circle>: +

pos
<small, red, square>: −

neg pos

<big, blue, circle>: −
neg neg

Ray Mooney 



Decision Tree Induction Pseudocode

DTree(examples, features) returns a tree

If all examples are in one category, return a leaf node with that category label.

Else if the set of features is empty, return a leaf node with the category label that

is the most common in examples.

Else pick a feature F and create a node R for it

For each possible value vi of F:

Add an out-going edge E to node R labeled with the value vi.

Let examplesi be the subset of examples that have value vi for F

If examplesi is empty

then attach a leaf node to edge E labeled with the category that

is the most common in examples.

else call DTree(examplesi , features – {F}) and attach the resulting

tree as the subtree under edge E.

Return the subtree rooted at R.

Adapted from Ray Mooney 



Picking a Good Split Feature

• Goal is to have the resulting tree be as small as possible, 
per Occam’s razor.

• Finding a minimal decision tree (nodes, leaves, or depth) is 
an NP-hard optimization problem.

• Want to pick a feature that creates subsets of examples that 
are relatively “pure” in a single class so they are “closer” 
to being leaf nodes.

• There are a variety of heuristics for picking a good test, a 
popular one is based on information gain that originated 
with the ID3 system of Quinlan (1979).

Adapted from Ray Mooney 



Entropy

• Entropy (disorder, impurity) of a set of examples, S, relative to a binary 

classification is:

where p1 is the fraction of positive examples in S and p0 is the fraction 

of negatives.

• If all examples are in one category, entropy is zero (we define 

0log(0)=0)

• If examples are equally mixed (p1=p0=0.5), entropy is a maximum of 1.

• For multi-class problems with c categories, entropy generalizes to:
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Adapted from Ray Mooney 



Entropy Plot for Binary Classification

Ray Mooney 



Information Gain

• The information gain of a feature F is the expected reduction in 

entropy resulting from splitting on this feature.

where Sv is the subset of S having value v for feature F.

• Entropy of each resulting subset weighted by its relative size.

• Example:

– <big, red, circle>: +          <small, red, circle>: +

– <small, red, square>: − <big, blue, circle>: −

)()(),(
)(

v

FValuesv

v
SEntropy

S

S
SEntropyFSGain 



−=

2+, 2 −: E=1

size

big          small

1+,1− 1+,1−

E=1        E=1

Gain=1−(0.51 + 0.51) = 0

2+, 2 − : E=1

color

red          blue

2+,1− 0+,1−

E=0.918   E=0

Gain=1−(0.750.918 +

0.250) = 0.311

2+, 2 − : E=1

shape

circle      square

2+,1− 0+,1−

E=0.918   E=0

Gain=1−(0.750.918 +

0.250) = 0.311Ray Mooney 



Another Example Decision Tree Classifier

• Problem: decide whether to wait for a table at a restaurant, 

based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Lana Lazebnik



Another Example Decision Tree Classifier

Lana Lazebnik



Another Example Decision Tree Classifier

Lana Lazebnik



Overfitting

• Learning a tree that classifies the training data perfectly may 
not lead to the tree with the best generalization to unseen data.
– There may be noise in the training data that the tree is erroneously 

fitting.

– The algorithm may be making poor decisions towards the leaves of the 
tree that are based on very little data and may not reflect reliable 
trends.

hypothesis complexity

ac
cu

ra
cy

on training data

on test data

Ray Mooney 



Overfitting Noise in Decision Trees

• Category or feature noise can easily cause overfitting.

– Add noisy instance <medium, blue, circle>: pos (but really neg)

shape

circle square triangle

color

red bluegreen

pos neg pos

neg neg

Ray Mooney 



Overfitting Noise in Decision Trees

• Category or feature noise can easily cause overfitting.

– Add noisy instance <medium, blue, circle>: pos (but really neg)

shape

circle square triangle

color

red bluegreen

pos neg pos

neg

<big, blue, circle>: −

<medium, blue, circle>: +

small med big

posneg neg

• Noise can also cause different instances of the same feature 

vector to have different classes.  Impossible to fit this data 

and must label leaf with the majority class.

– <big, red, circle>: neg (but really pos)

Adapted from Ray Mooney 



Overfitting Prevention (Pruning) Methods

• Two basic approaches for decision trees
– Prepruning: Stop growing tree as some point during top-down 

construction when there is no longer sufficient data to make 
reliable decisions.

– Postpruning: Grow the full tree, then remove subtrees that do not 
have sufficient evidence.

• Label leaf resulting from pruning with the majority class of 
the remaining data. 

• Some methods for determining which subtrees to prune:
– Cross-validation: Reserve some training data as a hold-out set 

(validation set) to evaluate utility of subtrees.

– Minimum description length (MDL): Determine if the additional 
complexity of the hypothesis is less complex than just explicitly 
remembering any exceptions resulting from pruning.

Adapted from Ray Mooney 


