CS 1675: Intro to Machine Learning
Neural Networks

Prof. Adriana Kovashka
University of Pittsburgh
November 1, 2018

Plan for this lecture

* Neural network basics
— Definition and architecture
— Biological inspiration
* Training
— Loss functions
— Backpropagation
— Dealing with sparse data and overfitting
e Specialized variants (briefly)
— Convolutional networks (CNNs) — e.g. for images
— Recurrent networks (RNNs) — for sequences, language

Neural network definition

Figure 5.1 Network diagram for the two- hidden units
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables zp and
zp. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

-
+*
-
-
+*
-
+*
-
+*
-

D
+ Activations: a; =) w}z; +w
i=1

* Nonlinear activation function h (e.g. sigmoid,

I

tanh, RELU): .. — p(a,) sinhz e —e”

I

tanhry = ——— =
coshx eT g 7T

Figure from Christopher Bishop

Neural network definition

 Layer 2 D

Z I,Hru (1)

« Layer 3 (final)

j. —
* Outputs
1 (multiclass) ———
(binary) Y = o (ay) = - Uy = p(ax)
1 + exp(— a) Z‘j exp(a;)
* Finally:

(binary) M . D . o ”

7=1 =1

Activation functions

Sigmoid

oz)=1/(1+e=) ___~

tanh tanh(x)

— ~——*Z|.n

ReLU max(0,x) /

Andrej Karpathy

Leaky RelL U
max(0.1x, X)

/

/

Maxout max(wlz + by, wlz+b,)

ELU fla) = {1’ ifz >0

a(exp(z)—1) ifx<0

A multi-layer neural network

Input Hidden Layer Output
Layer Layer
Input #1 —=
Input #2 —=
~ Output
Input #3 —=
Input #4 —=

* Nonlinear classifier

« Can approximate any continuous function to arbitrary
accuracy given sufficiently many hidden units

Lana Lazebnik

Inspiration: Neuron cells

e Neurons
« accept information from multiple inputs
* transmit information to other neurons

« Multiply inputs by weights along edges
* Apply some function to the set of inputs at each node
 If output of function over threshold, neuron “fires”

Zo wo
axon from a neuro>n. Sy
impulses carried
toward cell body Woo
, branches
dendrites (of axon cell body Z
) f w;T; +b
nucleus 3 *~ terminals ¥ Zwimi g output axon
=2 ¢ A .
impulses carried \f& MR

N function

' away from cell body

Wo T2

Text: HKUST, figures: Andrej Karpathy

Biological analog

Axonal arborization

Output: o(w-x + b)

Sigmoid function:

a(l)= -
l+e

A biological neuron An artificial neuron

Jia-bin Huang

Biological analog

Hubel & Weisel featural hierarchy

topographical mapping '
hyrer—complex @ high leve!

5
@ mid level
D

O low level

cell
complex cells

simple cells

Hubel and Weisel’s architecture

Adapted from Jia-bin Huang

hidden layver 1 hidden laver 2 hidden layer 3

input layer

Multi-layer neural network

Multilayer networks

« (Cascade neurons together
« Output from one layer is the input to the next
« Each layer has its own sets of weights

HKUST

Feed-forward networks

* Predictions are fed forward through the
network to classify

HKUST

Feed-forward networks

* Predictions are fed forward through the
network to classify

Lo 5/
L1 4 . |
W% Ve

HKUST

Feed-forward networks

* Predictions are fed forward through the
network to classify

Lo - S
L1 . | .
I ’

HKUST

Feed-forward networks

* Predictions are fed forward through the
network to classify

. S S
X1 , ,

S : S
L2 . '

HKUST

Feed-forward networks

* Predictions are fed forward through the
network to classify

\\
\\

HKUST

Feed-forward networks

* Predictions are fed forward through the
network to classify

\\
\\

HKUST

Deep neural networks

Lots of hidden layers

Depth

power (usually)

nt

en laver 3

hidd

2

LY

hidden laver

hidden layer 1

yer

i

input 1

T

nt

Y

3 L
R

N

0

b Ll AR A

s1yb

>

LR =) 1] ol
') _

19

M &

s Er e ey ol M
;4

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

How do we train them?

* No closed-form solution for the weights

« We will iteratively find such a set of weights
that allow the outputs to match the desired
outputs

« We want to minimize a loss function (a
function of the weights in the network)

* For now let's simplify and assume there's a
single layer of weights in the network

Classification goal

airplane

bird
cat
deer
dog
frog
horse
ship

truck

Andrej Karpathy

T
“t y X - ;

il AR

| o) ™ g &
\ . Ty ~1 &
| /4 2 B
- / 4 L : M '
| ¥ . *2’ 34 ‘\‘
| & - st - 3 -
T35
| ‘
g . 4 - —
A N\ ’ T "

1 gV)
- s
e » &4 I3
o
| » . :) ol
o . | ' T 1
! ~ L ,. 2 W
~
d L - > . |
- . gt
N

!

JENEE

-
-

> wiPe
] |24 ¢
™ s | Wl
B K EYES e Ik

¥

Bl B B M€ &

Example dataset: CIFAR-10

« 10 labels

50,000 training images
each image is 32x32x3

10,000 test images.

Classification scores

flz,W) =Wz
x{ (X, W) 10 numbers,
x indicating class
e scores

[32x 32X 3]
array of numbers 0...1
(3072 numbers total)

Andrej Karpathy

Linear classifier

f(z, W)|=Wig 3072*L [(+b)]10x1

10x1 10x3072
\ 10 numbers,

Indicating class

s scores
[32x 32X 3]

array of numbers 0...1

parameters, or “weights”

Andrej Karpathy

Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05| 01 | 20 56 1.1 -96.8 | cat score

15113 | 21 | 0.0 231 4 3.2 | | 437.9 dog score

: 0 025| 0.2 | -0.3 -1.2 ;
input image 24 61.95 ship score

Andrej Karpathy

Linear classifier

Going forward: Loss function/Optimization

TODO:

1. Define aloss function
that quantifies our
unhappiness with the
scores across the training
data.

cat 3.2 1.3
2. Come up with a way of
car
5' 1 49 efficiently finding the

frog 1.7 20 3.1 parameters that minimize

the loss function.
(optimization)

Adapted from Andrej Karpathy

Linear classifier

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

Adapted from Andrej Karpathy

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,
and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Want: Syi >= Sj + 1
e Sj— S, + 1<=0

If true, loss is O
If false, loss is magnitude of violation

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. Hinge loss:
With some W the scores f(z, W) = Wz are:
Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

cat

car 5.1 4.9 2.5 = max(0, 5.1-3.2+1)

) _ +max(0, -1.7- 3.2 + 1)
frog 1.7 2.0 3.1 = max(0, 2.9) + max(0, -3.9)
Losses: | 2.9 o

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2

car 5.1
frog -1.7

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 2.9

Adapted from Andrej Karpathy

=max(0, 1.3-4.9+1)
+max(0,2.0-4.9+1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2
car 51
frog -1.7

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 29

Adapted from Andrej Karpathy

12.9

=max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5- (-3.1) + 1)
= max(0, 5.3+ 1)
+ max(0, 5.6 + 1)
=6.3+6.6
=12.9

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

Losses: 2.9 0

Adapted from Andrej Karpathy

Hinge loss:

Given an example (33i, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:
Li =34, max(0,s; — sy, + 1)

and the full training loss is the mean
over all examples in the training data:

N
L= % Zizl Li

L=(2.9 + 0+ 12.9)/3
=158/3=5.3

Linear classifier: Hinge loss

flx, W) =Wx

L = % sz\il Zj#yi max(0, f(zi; W); — f(zi; W)y, + 1)

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Weight Regularization

A = regularization strengt
(hyperparameter)
\

h

S

AR(W)

L= X5, X, max(0, f(ziW); — f(zi; W)y, +1) +

n common use:
_2 regularization
_1 regularization
Dropout

Adapted from Andrej Karpathy

RW) =32, W
R(W) — Zk Zl |Wkl|

Another loss: Softmax (cross-entropy)

PY = k| X = m3) = ;’;sj

where

scores = unnormalized log probabilities of the classes.

s = flzs; W)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

L; = —log P(Y = 4| X = z;)

car 51
frog -1.7

Andrej Karpathy

Another loss: Softmax (cross-entropy)

L; = —log(Eejyéj)
. Unnormalized probabilities
cat 3.2 24 5 0.13 |- L_i=-log(0.13)
car 5 1 ﬂD 164.0 normaliz>e 0.87 =0.89
frog -1.7 0.18 0.00
unnormalized log probabilities probabilities

Adapted from Andrej Karpathy

Other losses

« Triplet loss (Schroff, FaceNet, CVPR 2015)

N
S [17@) = IR - 1£@2) - I +a]

T

Negative m
Ar::{il{ir/,. LEARNING e
— .‘::’;_::r Negative

Anchor -
Positive Positive

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

« Anything you want! (almost)

a denotes anchor
p denotes positive
n denotes negative

To minimize loss, use gradient descent

Andrej Karpathy

Gradient descent in multi-layer nets

« How to update the weights at all layers?

* Answer: backpropagation of error from
higher layers to lower layers

/ 7] activations

“local gradient”

OL

% L
Z
oL

gradients

Figure from Andrej Karpathy

Computing gradient for each weight

We need to move weights in direction
opposite to gradient of loss wrt that weight:

w; = w; — n dE/dw;
W, = W — N dE/dw,

Loss depends on weights in an indirect way,
so we'll use the chain rule and compute:

dE/dw; = dE/dz; dz/da, daj/dw;
(and similarly for dE/dw,)

The error (dE/dz) Is hard to compute
(indirect, need chain rule again)

We’'ll simplify the computation by doing it
step by step via backpropagation of error

Backpropagation: Graphic example

First calculate error of output units and use this
to change the top layer of weights.

output K

Update weights into | e

hidden]

w®)

iInput i

Adapted from Ray Mooney, equations from Chris Bishop

Backpropagation: Graphic example

Next calculate error for hidden units based on
errors on the output units it feeds into.

Adapted from Ray Mooney, equations from Chris Bishop

Backpropagation: Graphic example

Finally update bottom layer of weights based on
errors calculated for hidden units.

output K

Update weights into i hidden j

iInput i

Adapted from Ray Mooney, equations from Chris Bishop

Generic example
-] activations

B

Andrej Karpathy

Generic example

Andrej Karpathy

-] activations

“local gradient”

gradients

Generic example

Andrej Karpathy

-] activations

“local gradient”

OL
0z

gradients

Generic example
-] activations

“local gradient”
OL
% 0z

gradients

Andrej Karpathy

Generic example
-] activations

“local gradient”
OL
% =
oL

gradients

Andrej Karpathy

Generic example

/ -] activations
“local gradient”
oL
% =
@ —

gradients

Andrej Karpathy

Another generic example

f(z,y,2) = (z +y)z
eg.x=-2,y=95,z=-4

Andrej Karpathy

g Nog
y S

4

Z

f

1%

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

L
y 9

Z

4

=12

q=—x+Yy %:1,%:1
of of
f=gqz W= %5 — 4
of of O
Want: I 37 o

Andrej Karpathy

oz ! y” 0z

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

L
y 9

Z

4

1%

q=—x+Yy %:1,%:1
of of
f=gqz W= %5 — 4
of of O
Want: I 37 o

Andrej Karpathy

oz ! y” 0z

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

L
y 9

Z

4

q=—x+Yy %:1,%:1
of of
f=gqz W= %5 — 4
of of O
Want: I 37 o

Andrej Karpathy

oz ! y” 0z

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

L
y 9

Z

4

=12

q=—x+Yy %:1,%:1
of of
f=gqz W= %5 — 4
of of O
Want: I 37 o

Andrej Karpathy

oz ! y” 0z

of
0z

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

L
y 9

=12

q=—x+Yy %:1,%:1
of of
f=gqz W= %5 — 4
of of O
Want: I 37 o

Andrej Karpathy

oz ! y” 0z

of
0z

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

_ 9 ., 0q
of of
f=qz %= %% =4
of Of Of

Want: Pz Ty Be

Andrej Karpathy

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

_ 9 ., 0q
of of
f=qz %= %% =4
of Of Of

Want: Pz Ty Be

Andrej Karpathy

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

_ 9 ., 0q
of of
f=qz W= %5 — 4
of Of of

Want: Pz Ty Be

Andrej Karpathy

Another generic example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

of of .
f=qz By gy 4 Chain rule: Oy
of _ 9f &
af df 8y~ 0Oq oy
Want: L o

oz ! y” 0z

Andrej Karpathy

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

_ 9 ., 0q
of of
f=qz W= %5 — 4
of Of of

Want:

oz ! y” 0z

Andrej Karpathy

Another generic example

f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

O Ay
of of .
f=gqz B PPy 9 Chain rule: Oz
of _of &
of of 0 oxr O0q Oz
Want: e

oz ! y” 0z

Andrej Karpathy

How to compute gradient in neural net?

 |n a neural network:

?

« Gradient is (using chain rule):
aE” o aE” aﬂ} — (S. o
‘ | e ‘ I B
C)"U[Jj i 9, a ", Wi
« Denote the “errors” as:
i oL,
(5), — -
' ()(I}
e Also: Oa
i
) — ~1
0 "U_J‘: ji

How to compute gradient in neural net?

« For output units (identity output, squared
error loss): 0 = Y. — ti
* For hidden units (using chain rule again):

Z OE. day

« Backprop formula:

0j = h' (a.-j) Z WO

k:

Example

« Two layer network w/ tanh at hidden layer:

el — o—a
h(a) = tanh(a) =
+ Derivative: h/(a) =1 — h(a)?
| K
« Minimize: E, = 5 Z(yk — t;-t_-)g
k=1 D _
» Forward propagation: a; = Ny wlx;
1=0
z; = tanh(a;)
M

_ (2
Y = E Wy, %]

j=0

Example

« Errors at output (identity function at output):

(Sh' — Yk — ih‘
: : 5, = h'(a; WOk
+ Errors at hidden units: S (a-"); e
.

(S}, — (1 — E’ff) Z Wl 0 L

k=1
* Derivatives wrt weights:
8 Eﬂ . a E n N
(l) — (l).j.'ir?'_., (2) — hkzj
ow ow,,

Same example with graphic and math

First calculate error of output units and use this
to change the top layer of weights.

O = Y — g output K
Update weights into |

dEz) 5, hidden j
E)'R_LJLJ
wlT = w(- pVE(w™)

iInput i

Adapted from Ray Mooney, equations from Chris Bishop

Same example with graphic and math

Next calculate error for hidden units based on
errors on the output units it feeds into.

Adapted from Ray Mooney, equations from Chris Bishop

Same example with graphic and math

Finally update bottom layer of weights based on
errors calculated for hidden units.

. output K

0; = (1 — ’zf) Z WO

k=1
Update weights into |

hidden]

OF)
— =0T

ow'Y

i input i

wl™ = w(™ - pVE(w™)

Adapted from Ray Mooney, equations from Chris Bishop

Example: algorithm for sigmoid, sqerror

« [Initialize all weights to small random values

« Until convergence (e.g. all training examples’ error
small, or error stops decreasing) repeat:
 Foreach (x, t=class(x)) Iintraining set:
— Calculate network outputs: v,
— Compute errors (gradients wrt activations) for each unit:

» O, = vy, (I-vy,) (y. - t,) for output units

» Oy = zy (L-zy) Xy Wiy Oy for hidden units
— Update weights:

» Wiy = Wy — I Oy Z. for output units

» Wy, = Wy, - on 0y Xy for hidden units

Recall: w; = w; —n dE/dz; dz/da; da/dw;
(j = h.-, ((1_.‘.}-) Z W} j (5 L

k

Adapted from R. Hwa, R. Mooney

Comments on training algorithm

Not guaranteed to converge to zero training error, may
converge to local optima or oscillate indefinitely.

However, in practice, does converge to low error for
many large networks on real data.

Thousands of epochs (epoch = network sees all training
data once) may be required, hours or days to train.

To avoid local-minima problems, run several trials
starting with different random weights (random restarts),
and take results of trial with lowest training set error.

May be hard to set learning rate and to select number of
hidden units and layers.

Neural networks had fallen out of fashion in 90s, early
2000s; back with a new name and significantly improved
performance (deep networks trained with dropout and
lots of data).

Ray Mooney, Carlos Guestrin, Dhruv Batra

Dealing with sparse data

Deep neural networks require lots of data,
and can overfit easily

The more weights you need to learn, the
more data you need

That's why with a deeper network, you need
more data for training than for a shallower

network

Ways to prevent overfitting include:
Using a validation set to stop training or pick parameters
Regularization
Transfer learning
Data augmentation

Over-training prevention

* Running too many epochs can result in over-fitting.

error

on test data

on training data

—
0 # training epochs

« Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

Adapted from Ray Mooney

Determining best number of hidden units

Ray Mooney

Too few hidden units prevents the network from
adequately fitting the data.

Too many hidden units can result in over-fitting.

error

on test data

on training data

——

0 # hidden units

Use internal cross-validation to empirically
determine an optimal number of hidden units.

Effect of number of neurons

3 hidde neurons | 6 hidden neurons 20 hidd neurons

more neurons = more capacity

Andrej Karpathy

Regularization

L1, L2 regularization (weight decay)

* Dropout

« Randomly turn off some neurons

« Allows individual neurons to independently be responsible
for performance

AN

O WAL, e = -

WO PR AT LALEA PN N, PP S s

/- e lﬁﬁ‘\);' (\.‘v"“" A A A

My AR T s, ,‘\(\J‘-‘ n

S 4 O A,

} Y v W '\,x.; | ZaS e

v kS .
L i i i i

0 200000 400000 GOODDD 200000 10030000

!
Number of weight updates

(a) Standard Neural Net (b) After applyving dropout.

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Effect of regularization

Do not use size of neural network as a regularizer. Use stronger
regularization instead:

A=0.01

(you can play with this demo over at ConvNetJS: http://cs.stanford.
edu/people/karpathy/convnetjs/demo/classify2d.html)

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Transfer learning

« If you have sparse data in your domain of
Interest (target), but have rich data in a
disjoint yet related domain (source),

* You can train the early layers on the source
domain, and only the last few layers on the

target domain:

Set these to the already learned Learn these on your own task
weights from another network

Transfer learning

Source: e.g. classification of animals Target: e.g. classification of cars
1. Train on 2. Small dataset: 3. Medium dataset:
im®e_ source (large image] [imege | finetuning
conv-64 d at as et) conv-64 \ conv-64 \
come-64 — com-64 more data = retrain more of
maxpool maxpool maxpool .
conv-128 conv-128 conv-128 the network (Or a” Of It)
conv-128 conv-128 conv-128
maxpool maxpool maxpool
conv-256 conv-256 conv-256 Freeze these
conv-256 conv-256 conv-256
maxpool maxpool Freeze these maxpool
conv-512 conv-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpool j
conv-512 conv-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpool
FC-4096 FC-4096 j FC-4096 <+—— Train this
FC-4096 FC-4096 FC-4096
FC-1000 FC-1000 . . FC-1000
softmax softmax D Tra|n thIS softmax

Another option: use network as feature extractor,
train SVM/LR on extracted features for target task

Adapted from Andrej Karpathy

Transfer learning

image

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

Andrej Karpathy

T~

more generic

more specific

very similar very different
dataset dataset

very little data | Use linear You're in
classifier ontop |trouble... Try

layer

linear classifier
from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers

Another solution: Data augmentation

Create virtual training samples; if images:

» Horizontal flip
 Random crop
« Color casting
« Geometric distortion

Jia-bin Huang, Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug

Packages

TensorFlow
Torch / PyTorch

Keras
Caffe and Caffe Model Zoo

https://www.tensorflow.org/
http://torch.ch/
https://pytorch.org/
https://keras.io/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo

Learning Resources

nttp://deeplearning.net/
nttp://cs231n.stanford.edu (CNNSs, vision)
nttp://cs224d.stanford.edu/ (RNNs, language)

http://deeplearning.net/
http://cs231n.stanford.edu/
http://cs224d.stanford.edu/

Summary

« Feed-forward network architecture

« Training deep neural nets

« We need an objective function that measures and guides us
towards good performance

« We need a way to minimize the loss function: (stochastic,
mini-batch) gradient descent

 We need backpropagation to propagate error towards all
layers and change weights at those layers

* Practices for preventing overfitting, training
with little data

Convolutional Neural Networks

“Shallow” vs. “deep” vision architectures

Traditional recognition: “Shallow” architecture

Image/ Obiect
Video —)
Pixels Class
Deep learning: “Deep” architecture
Image/

Pixels Class

Lana Lazebnik

Example: CNN features for detection

R-CNN: Regions with CNN features

] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
1mage proposals (~2k) CNN features regions

Object detection system overview. Our system (1) takes an input image, (2) extracts
around 2000 bottom-up region proposals, (3) computes features for each proposal
using a large convolutional neural network (CNN), and then (4) classifies each region
using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP)
of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1%
MAP using the same region proposals, but with a spatial pyramid and bag-of-visual-
words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate
Object Detection and Semantic Segmentation, CVPR 2014.

Lana Lazebnik

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Convolutional Neural Networks (CNN)

Neural network with specialized
connectivity structure

Stack multiple stages of feature
extractors

Higher stages compute more global,
more invariant, more abstract features

Classification layer at the end

ﬂ“;i
ol

z BoE

[|
=
o
: |

| X |

¥ |

o |
I3

'y |

e d
-1
> |

C3:f. maps 16@10x10

INPUT g,é) ggg;uare maps S4:f. maps 16@5x5
32x32 S2: f. maps C5: layer ’ OUTPUT
6@14x14 120 P layer "0

I | FuIIconrl-ection | Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

Adapted from Rob Fergus

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolutional Neural Networks (CNN)

 Feed-forward feature extraction: [Output (class probs)]
1. Convolve input with learned filters ﬁ
2. Apply non-linearity
3. Spatial pooling (downsample)

Spatial pooling

{}

Non-linearity

[|
[|
{} .

[Convolution J
[|

« Supervised training of convolutional
filters by back-propagating
classification error

(Learned)

{}

Input Image

Adapted from Lana Lazebnik

1. Convolution

Apply learned filter weights
One feature map per filter

Stride can be greater than
1 (faster, less memory)

Feature Map

2. Non-Linearity

* Per-element (independent)

« Options:
 Tanh i

* Rectified linear unit (ReLU)
— Avoids saturation issues

Adapted from Rob Fergus

3. Spatial Pooling

* Sum or max over non-overlapping /
overlapping regions
* Role of pooling:

* Invariance to small transformations
« Larger receptive fields (neurons see more of input)

Sum

Adapted from Rob Fergus

3. Spatial Pooling

* Sum or max over non-overlapping /

overlapping regions
* Role of pooling:

 |nvariance to small transformations

« Larger receptive fields (neurons see more of input)

112x112x64

|

224x224x64
pool
> o 112
224 downsampling

224

Rob Fergus, figure from Andrej Karpathy

112

Single depth slice

1112 | 4
max pool with 2x2 filters
aNeeNl 7 | 8 and stride 2
3 | 2 [EREG]
1 | 2 |

Convolutions: More detall

32x32x3 image

32 height

3 depth

Andrej Karpathy

Convolutions: More detall

32x32x3 image

5x5x3 filter
32 £/
Il Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Andrej Karpathy

Convolutions: More detall

Convolution Layer
__— 32x32x3 Image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

~~ 1number:

Andrej Karpathy

Convolutions: More detall

Convolution Layer

activation map

32x32x3 image

— .
V 5x5x3 filter /
@> 28

convolve (slide) over all

spatial locations
32 28

3 1

Andrej Karpathy

Convolutions: More detall

Convolution Layer consider a second, green filter

— 32x32x3 image activation maps

K E 5x5x3 filter %/ 28
=0

convolve (slide) over all

spatial locations /

Andrej Karpathy

Convolutions: More detall

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

27'

ANNN

32

28

Convolution Layer

7

We stack these up to get a “new image” of size 28x28x6!

NN NN
SN N NN

32) 28

3 6

. . N

Andrej Karpathy

Convolutions: More detall

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6

5x5x3
32 filters 28

Andrej Karpathy

Convolutions: More detall

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24

Andrej Karpathy

Convolutions: More detall

[From recent Yann

Preview LeCun slides]

Low-Level| |Mid-Level| |[High-Level|] | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Andrej Karpathy

Convolutions: More detall

, RECINSEESEMNZIIANANENESEORSETISEERRERG
one filter => _
one activation map example 5x5 filters
’ - (32 total)

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

k k
Gli,j1= > Y. Hlu,v]F[i+ u,j+ v]

u=—kv=-—Fk

Element-wise multiplication and sum
of a filter and the signal (image)

Adapted from Andrej Karpathy, Kristen Grauman

The First Popular Architecture: AlexNet

-
0O
(@)
M
O
~J

-
H
0o

2
o

0009---00 0|
4
000®--- 000
4

2
=
g

96

Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm

Recurrent Neural Networks

Examples of Recurrent Networks

one to one one to many many to one many to many many to many
f Pt f Pt Pt
f f bt Pt bt

\ vanilla neural networks

Andrej Karpathy

Examples of Recurrent Networks

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. image captioning
image -> sequence of words

Andrej Karpathy

Examples of Recurrent Networks

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. sentiment classification
sequence of words -> sentiment

Andrej Karpathy

Examples of Recurrent Networks

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

[\ e.g. machine translation
seq of words -> seq of words

Andrej Karpathy

Examples of Recurrent Networks

one to one one to many many to one many to many many to many
f Pt f Pt o
f f bt Pt bt

y

e.g. video classification on frame level

Andrej Karpathy

Recurrent Neural Network

-

Andrej Karpathy

Recurrent Neural Network

usually want to
output a prediction
at some time steps

Adapted from Andrej Karpathy

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy|= fW(ht—h xt)

new state / old state input vector at
some time step

some function
with parameters W

Andrej Karpathy

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fw (ht—h xt)

Notice: the same function and the same set «
of parameters are used at every time step.

Andrej Karpathy

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la wt)

|
¢> h, = tanh(Wpph, 1 + Wopxy)

X Yt — Whyht

Andrej Karpathy

Example

Character-level y
language model

example

Vocabulary:

[h,e,l,0] X

Example training
sequence:
“hello”

Andrej Karpathy

Example

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence: input layer
“hello”

S [eloioi=

input chars: ¢

Andrej Karpathy

o |loo-ao
= |5 ee

“~|lo~0co0o

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Andrej Karpathy

Example

hi = tanh(Wprhi—1 + Wapat)

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
“h"

A4

\

0.1

-0.5
-0.3

W_hh| -

= |loa0co0O

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Andrej Karpathy

Example

target chars:

output layer

hidden layer

input layer

input chars:

“n
e

1.0
2.2

-3.0

4.1

|

0.3

-0.1

0.9

Y

BNl <) (=) (o) | p—

\

W_hh| -

Extensions

* Vanishing gradient problem makes it hard to
model long sequences

— Multiplying together many values between 0 and 1
(range of gradient of sigmoid, tanh)

e One solution: Use RELU

* Another solution: Use RNNs with gates

— Adaptively decide how much of memory to keep

— Gated Recurrent Units (GRUs), Long Short Term
Memories (LSTMs)

Andrej Karpathy

Generating poetry with RNNs

Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.

Generating poetry with RNNs

)) tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at first: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1ng

j’ train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

More info: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Andrej Karpathy

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generating poetry with RNNs

PANDARUS: VIOLA:
Alas, I think he shall be come approached and the day Why, Salisbury must find his flesh and thought
When little srain would be attain'd into being never fed, That which I am not aps, not a man and in fire,
And who is but a chain and subjects of his death, To show the reining of the raven and the wars
I should not sleep. To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
Second Senator: When I was heaven of presence and our fleets,
They are away this miseries, produced upon my soul, We spare with hours, but cut thy council I am great,
Breaking and strongly should be buried, when I perish Murdered and by thy master's ready there
The earth and thoughts of many states. My power to give thee but so much as hell:
Some service in the noble bondman here,
DUKE VINCENTIO: Would show him to her wine.
Well, your wit is in the care of side and that.
KING LEAR:
Second Lord: 0, if you were a feeble sight, the courtesy of your law,
They would be ruled after this chamber, and Your sight and several breath, will wear the gods

my fair nues begun out of the fact, to be conveyed, With his heads, and my hands are wonder'd at the deeds,

Whose noble souls I'll have the heart of the wars. So drop upon your lordship's head, and your opinion

Shall be against your honour.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Andrej Karpathy

Generating textbooks with RNNs

open source textbook on algebraic geometry

2 The Stacks Project
home about tagsexplained taglookup browse search bibliograph recent comments blog add slogans
Browse chapters g
. - 1. Preliminaries
Part Chapter online TeXsource view pdf 2. Schemes
Preliminaries 3. Topics in Scheme Theory
1. Introduction online tex() pdf > 4. Algebraic Spaces
5 ; o 5. Topics in Geometry
2. Conventions onlfne tex() pdf > Fic D bty Tt
3. SetTheory online tex() pdf > 7. Algebraic Stacks
4. Categories online tex() pdf > 8. Miscellany
5. Topology onI!ne tex() pdf > e
6. Sheaves on Spaces online tex() pdf >
7. Sites and Sheaves online tex() pdf > The Stacks project now consists of
8. Stacks online tex() pdf > o 455910 lines of code
9. Fields online tex() pdf > o 14221 tags (56 inactive tags)
10. Commutative Algebra online tex() pdf > o 2366 sections

Latex source

Andrej Karpathy

Generating textbooks with RNNs

For @, -, . where £,,, = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=S8pec(R)=Uxx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypps and U — U is the fibre category of S in U in Section, 7?7 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R') — S is smooth or an

U=|JU:xs, U;
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2’, s” € S’ such that Ox .+ — O, ., is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(z'/S")
and we win.

To prove study we see that F|y is a covering of X, and T; is an object of Fx g for
i >0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M*® =TI° ®gpec() Os.s — ix' F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) 7% . (Sch/S) fpps

and

V =TI(S.0) — (U, Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. O

The result for prove any open covering follows from the less of Example ??7. It may
replace S by X paces.étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose X = lim|X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex
Set(A) =T(X,0x,0y)-

When in this case of to show that Q — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T' is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [[,_, _, Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx;g. Set T =
Ji1 CTI},. Since I™ C I™ are nonzero over iy < p is a subset of Jn0© Ay works.

Lemma 0.3. In Situation 7?. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox+) = Ox(D)

where K is an F-algebra where d,,,; is a scheme over S. (]

Andrej Karpathy

Generating textbooks with RNNs

Proof. Omitted. 0O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

0oy = O0x(£L)

Proof. This is an algebraic space with the composition of sheaves F on Xgqp. we
have

Ox (F) = {morphy xox (G.F)}
where G defines an isomorphism F — F of O-modules. O
Lemma 0.2. This is an integer Z is injective.
Proof. See Spaces, Lemma ?7?. a

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X Y'Y 3¥Y Y xxe ¥ o X.

be a morphism of algebraic spaces over S and Y .

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. O

This since F € F and z € G the diagram

S— >

|

§

Ox-

AN

gor,

Spec(Ky) Morsets d(Oxy,,. G)

is a limit. Then G is a finite type and assume S is a flat and F and @G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

(=]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. o

Proof. This is clear that G is a finite presentation, see Lemmas ?7.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Oxz— Fz -UOxpu) — Ox:0x,(0%,)
is an isomorphism of covering of Oy, . If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme O x-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. =]

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.

Andrej Karpathy

Generating code with RNNs

static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80); Generated

if (state)
cmd = (int)(int_state " (in_8(&ch->ch flags) & Cmd) ? 2 : 1);
else C COde
seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in use & UMXTHREAD UNCCA) +
((count & Ox00000000fffff£ff8) & Ox000000f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec handle, 0x20000000);
pipe set bytes(i, 0);
}
/* Free our user pages pointer to place camera if all
subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);

* Now we want to deliberately put it to device
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq puts(s, "policy ");

Andrej Karpathy

Image Captioning

“straw” “hat” END

START “straw” “hat”

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy

Image Captioning

Recurrent Neural Network

Convolutional Neural Network

Andrej Karpathy

Image Captioning

testimage

Andrej Karpathy

image <

conv-64
conv-64

~ maxpool
conv-128

~ conv-128

‘ maxpool '

testimage

-~ conv-256
 conv-256
f maxpool

~ conv-512
conv-512

~ maxpool

Andrej Karpathy

image <

conv-64
conv-64

~ maxpool
conv-128

~ conv-128

‘ maxpool '

testimage

-~ conv-256
 conv-256
f maxpool

~ conv-512
conv-512

~ maxpool

Andrej Karpathy

Image Captioning

testimage

conv-128

~ conv-128
maxpool

__conv-256
. conv-256
‘ maxpool

 conv-512

~ conv-512

 conv-512

| conv-512

. maxpool

. FC-4096 X0

S —————— <START>

<START>

Andrej Karpathy

Image Captioning

test image

~_maxpool

' conv-128

~ conv-128
 maxpool

__ conv-256 yO

‘_ conv-256

__maxpool T before:
h =tanh(W,, * x + W,, * h)

_ conv-512
. conv-512

~maxpool hO

Wih

. conv-512

_ conv-512

~ maxpool

T now:
h=tanh(W,, * X+ W,,, *h + W,, *1m)

 FC-4096 @
T I U 967 <START>

Im

<START>

Andrej Karpathy

' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

yO

hO

x0

<START>

<START>

straw

sample!

testimage

Image Captioning

testimage

' conv-128

~ conv-128
maxpool

| conv-256 yO yl

. conv-256

= 1

 conv-512

~ conv-512

hO | hl

. conv-512
| conv-512 T T
~_maxpool

_ FC-4096 o

‘ FC m— 67 <START> straw

<START>

Andrej Karpathy

' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

Y yl
hO hl
x0
<START> straw hat

<START>

testimage

sample!

Image Captioning

testimage

' conv-128

~conv-128
maxpool

| conv-256 yO y1 y2
. conv-256

— 1]

 conv-512

~ conv-512

hO —| hl —=| h2

. conv-512
| conv-512 T T T
~_maxpool

_ FC-4096 "

‘ = == 67 <START> straw hat

<START>

Andrej Karpathy

Image Captioning

| image | <

conv-64 _
__conv-64

maxpool

~ conv-128
__conv-128
__conv-256
. conv-256
‘maxpool
__conv-512
~conv-512
maxpool
[conv-512
. conv-512
" maxgool

~ FC-4096
~ FC-4096

Adapted from Andrej Karpathy

testimage

Caption generated:
“straw hat”

\ sample

<END> token
=> finish.

Y yl y2
hO —=| hl h2
x0
<START> straw hat

<START>

"a young boy is holding a 7
baseball bat.’

Andrej Karpathy

Image Captioning

P »'::-] ',\-.j:;‘

“construction worker in orange
safety vest is working on road.’

"a cat is sitting on a couch with a
remote control.”

“two young girls are playing with
lego toy."

"a woman holding a teddy bear in
front of a mirror.”

"'boy is doing backflip on
wakeboard.”

"a horse is standing in the middle
of a road.”

