
CS 1675: Intro to Machine Learning

Neural Networks

Prof. Adriana Kovashka
University of Pittsburgh

November 1, 2018

Plan for this lecture

• Neural network basics
– Definition and architecture
– Biological inspiration

• Training
– Loss functions
– Backpropagation
– Dealing with sparse data and overfitting

• Specialized variants (briefly)
– Convolutional networks (CNNs) – e.g. for images
– Recurrent networks (RNNs) – for sequences, language

Neural network definition

• Activations:

• Nonlinear activation function h (e.g. sigmoid,

tanh, RELU):
Figure from Christopher Bishop

• Layer 2

• Layer 3 (final)

• Outputs

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU

max(0.1x, x)

Maxout

ELU

Activation functions

Andrej Karpathy

A multi-layer neural network

• Nonlinear classifier

• Can approximate any continuous function to arbitrary

accuracy given sufficiently many hidden units

Lana Lazebnik

Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs

• transmit information to other neurons

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy

Biological analog

A biological neuron An artificial neuron

Jia-bin Huang

Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Biological analog

Multilayer networks

• Cascade neurons together

• Output from one layer is the input to the next

• Each layer has its own sets of weights

HKUST

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

W
e

ig
h

ts
 t

o
 l
e

a
rn

!

W
e

ig
h

ts
 t

o
 l
e

a
rn

!

How do we train them?

• No closed-form solution for the weights

• We will iteratively find such a set of weights

that allow the outputs to match the desired

outputs

• We want to minimize a loss function (a

function of the weights in the network)

• For now let’s simplify and assume there’s a

single layer of weights in the network

Classification goal

Example dataset: CIFAR-10

10 labels

50,000 training images

each image is 32x32x3

10,000 test images.

Andrej Karpathy

Classification scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)

f(x,W)

image parameters

10 numbers,

indicating class

scores

Andrej Karpathy

Linear classifier

[32x32x3]

array of numbers 0...1

10 numbers,

indicating class

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy

Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

Linear classifier

Going forward: Loss function/Optimization

1. Define a loss function

that quantifies our

unhappiness with the

scores across the training

data.

2. Come up with a way of

efficiently finding the

parameters that minimize

the loss function.

(optimization)

TODO:

Adapted from Andrej Karpathy

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Linear classifier

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1)

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

and the full training loss is the mean

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Adapted from Andrej Karpathy

Linear classifier: Hinge loss

Weight Regularization
λ = regularization strength

(hyperparameter)

In common use:

L2 regularization

L1 regularization

Dropout (will see later)

Adapted from Andrej Karpathy

Want to maximize the log likelihood, or (for a loss function)

to minimize the negative log likelihood of the correct class:cat

car

frog

3.2

5.1

-1.7

scores = unnormalized log probabilities of the classes.

where

Another loss: Softmax (cross-entropy)

Andrej Karpathy

cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

Other losses

• Triplet loss (Schroff, FaceNet, CVPR 2015)

• Anything you want! (almost)

a denotes anchor

p denotes positive

n denotes negative

To minimize loss, use gradient descent

Andrej Karpathy

Gradient descent in multi-layer nets

• How to update the weights at all layers?

• Answer: backpropagation of error from

higher layers to lower layers

Figure from Andrej Karpathy

Computing gradient for each weight

• We need to move weights in direction

opposite to gradient of loss wrt that weight:

wji = wji – η dE/dwji

wkj = wkj – η dE/dwkj

• Loss depends on weights in an indirect way,

so we’ll use the chain rule and compute:

dE/dwji = dE/dzj dzj/daj daj/dwji

(and similarly for dE/dwkj)

• The error (dE/dzj) is hard to compute

(indirect, need chain rule again)

• We’ll simplify the computation by doing it

step by step via backpropagation of error

Backpropagation: Graphic example

First calculate error of output units and use this

to change the top layer of weights.

output

hidden

input

Update weights into j

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)

Backpropagation: Graphic example

Next calculate error for hidden units based on

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

Backpropagation: Graphic example

Finally update bottom layer of weights based on

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Fei-Fei Li & Andrej
Karpathy & Justin
Johnson

13 Jan 2016

Lecture 4 - 22

Andrej Karpathy

Generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

“local gradient”

f

gradients

Generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 27

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Lecture 4 - 10

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 11

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 12

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 13

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 14

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 15

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 16

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 17

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 18

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 19

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 20

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 21

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

Another generic example

How to compute gradient in neural net?

• In a neural network:

• Gradient is (using chain rule):

• Denote the “errors” as:

• Also:

How to compute gradient in neural net?

• For output units (identity output, squared

error loss):

• For hidden units (using chain rule again):

• Backprop formula:

Example

• Two layer network w/ tanh at hidden layer:

• Derivative:

• Minimize:

• Forward propagation:

Example

• Errors at output (identity function at output):

• Errors at hidden units:

• Derivatives wrt weights:

Same example with graphic and math

First calculate error of output units and use this

to change the top layer of weights.

output

hidden

input

Update weights into j

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

Same example with graphic and math

Next calculate error for hidden units based on

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

Same example with graphic and math

Finally update bottom layer of weights based on

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

Example: algorithm for sigmoid, sqerror

• Initialize all weights to small random values

• Until convergence (e.g. all training examples’ error

small, or error stops decreasing) repeat:

• For each (x, t=class(x)) in training set:

– Calculate network outputs: yk

– Compute errors (gradients wrt activations) for each unit:

» δk = yk (1-yk) (yk - tk) for output units

» δj = zj (1-zj) ∑k wkj δk for hidden units

– Update weights:

» wkj = wkj - η δk zj for output units

» wji = wji - η δj xi for hidden units

Adapted from R. Hwa, R. Mooney

Recall: wji = wji – η dE/dzj dzj/daj daj/dwji

Comments on training algorithm

• Not guaranteed to converge to zero training error, may

converge to local optima or oscillate indefinitely.

• However, in practice, does converge to low error for

many large networks on real data.

• Thousands of epochs (epoch = network sees all training

data once) may be required, hours or days to train.

• To avoid local-minima problems, run several trials

starting with different random weights (random restarts),

and take results of trial with lowest training set error.

• May be hard to set learning rate and to select number of

hidden units and layers.

• Neural networks had fallen out of fashion in 90s, early

2000s; back with a new name and significantly improved

performance (deep networks trained with dropout and

lots of data).

Ray Mooney, Carlos Guestrin, Dhruv Batra

Dealing with sparse data

• Deep neural networks require lots of data,

and can overfit easily

• The more weights you need to learn, the

more data you need

• That’s why with a deeper network, you need

more data for training than for a shallower

network

• Ways to prevent overfitting include:
• Using a validation set to stop training or pick parameters

• Regularization

• Transfer learning

• Data augmentation

Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney

Determining best number of hidden units

• Too few hidden units prevents the network from

adequately fitting the data.

• Too many hidden units can result in over-fitting.

• Use internal cross-validation to empirically

determine an optimal number of hidden units.

e
rr

o
r

on training data

on test data

0 # hidden units

Ray Mooney

more neurons = more capacity

Effect of number of neurons

Andrej Karpathy

Regularization

• L1, L2 regularization (weight decay)

• Dropout
• Randomly turn off some neurons

• Allows individual neurons to independently be responsible

for performance

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

(you can play with this demo over at ConvNetJS: http://cs.stanford.

edu/people/karpathy/convnetjs/demo/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger

regularization instead:

Effect of regularization

Andrej Karpathy

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Transfer learning

• If you have sparse data in your domain of

interest (target), but have rich data in a

disjoint yet related domain (source),

• You can train the early layers on the source

domain, and only the last few layers on the

target domain:

Set these to the already learned

weights from another network

Learn these on your own task

1. Train on

source (large

dataset)

2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer learning

Adapted from Andrej Karpathy

Another option: use network as feature extractor,

train SVM/LR on extracted features for target task

Source: e.g. classification of animals Target: e.g. classification of cars

more generic

more specific

Lecture 11 - 34

very similar

dataset

very different

dataset

very little data Use linear

classifier on top

layer

You’re in

trouble… Try

linear classifier

from different

stages

quite a lot of

data

Finetune a few

layers

Finetune a

larger number of

layers

Transfer learning

Andrej Karpathy

Another solution: Data augmentation

Create virtual training samples; if images:
• Horizontal flip

• Random crop

• Color casting

• Geometric distortion

Jia-bin Huang, Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug

Packages

TensorFlow

Torch / PyTorch

Keras

Caffe and Caffe Model Zoo

https://www.tensorflow.org/
http://torch.ch/
https://pytorch.org/
https://keras.io/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo

Learning Resources

http://deeplearning.net/

http://cs231n.stanford.edu (CNNs, vision)

http://cs224d.stanford.edu/ (RNNs, language)

http://deeplearning.net/
http://cs231n.stanford.edu/
http://cs224d.stanford.edu/

Summary

• Feed-forward network architecture

• Training deep neural nets
• We need an objective function that measures and guides us

towards good performance

• We need a way to minimize the loss function: (stochastic,

mini-batch) gradient descent

• We need backpropagation to propagate error towards all

layers and change weights at those layers

• Practices for preventing overfitting, training

with little data

Convolutional Neural Networks

“Shallow” vs. “deep” vision architectures

Hand-designed

feature extraction

Trainable

classifier

Image/

Video

Pixels

Object

Class

Layer 1 Layer N
Simple

classifier
Object

Class

Image/

Video

Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Lana Lazebnik

Example: CNN features for detection

Object detection system overview. Our system (1) takes an input image, (2) extracts

around 2000 bottom-up region proposals, (3) computes features for each proposal

using a large convolutional neural network (CNN), and then (4) classifies each region

using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP)

of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1%

mAP using the same region proposals, but with a spatial pyramid and bag-of-visual-

words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation, CVPR 2014.

Lana Lazebnik

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

Convolutional Neural Networks (CNN)

• Neural network with specialized

connectivity structure

• Stack multiple stages of feature

extractors

• Higher stages compute more global,

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

• Feed-forward feature extraction:

1. Convolve input with learned filters

2. Apply non-linearity

3. Spatial pooling (downsample)

• Supervised training of convolutional

filters by back-propagating

classification error

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…

1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus

2. Non-Linearity

• Per-element (independent)

• Options:
• Tanh

• Sigmoid

• Rectified linear unit (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Rob Fergus, figure from Andrej Karpathy

32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

3

28

28

6

CONV,

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

32

3

CONV,

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,

ReLU

e.g. 10

5x5x6

filters

CONV,

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy

Preview
[From recent Yann

LeCun slides]

Convolutions: More detail

Andrej Karpathy

example 5x5 filters
(32 total)

We call the layer convolutional

because it is related to convolution

of two signals:

Element-wise multiplication and sum

of a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman

Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm

The First Popular Architecture: AlexNet

Recurrent Neural Networks

Examples of Recurrent Networks

vanilla neural networks

Andrej Karpathy

Examples of Recurrent Networks

e.g. image captioning

image -> sequence of words

Andrej Karpathy

Examples of Recurrent Networks

e.g. sentiment classification

sequence of words -> sentiment

Andrej Karpathy

Examples of Recurrent Networks

e.g. machine translation

seq of words -> seq of words

Andrej Karpathy

Examples of Recurrent Networks

e.g. video classification on frame level

Andrej Karpathy

Recurrent Neural Network

x

RNN

Andrej Karpathy

RNN

Recurrent Neural Network

x

RNN

y
usually want to

output a prediction

at some time steps

Adapted from Andrej Karpathy

Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

new state old state input vector at

some time step
some function

with parameters W

Andrej Karpathy

Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

Notice: the same function and the same set

of parameters are used at every time step.

Andrej Karpathy

x

RNN

y

(Vanilla) Recurrent Neural Network
The state consists of a single “hidden” vector h:

Andrej Karpathy

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

RNN

x

y

Andrej Karpathy

Example

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Andrej Karpathy

Example

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Andrej Karpathy

Example

Character-level

language model

example

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Andrej Karpathy

Example

Extensions

• Vanishing gradient problem makes it hard to
model long sequences

– Multiplying together many values between 0 and 1
(range of gradient of sigmoid, tanh)

• One solution: Use RELU

• Another solution: Use RNNs with gates

– Adaptively decide how much of memory to keep

– Gated Recurrent Units (GRUs), Long Short Term
Memories (LSTMs)

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

35

Andrej Karpathy

Generating poetry with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016

train more

train more

train more

Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

36

at first:

Andrej Karpathy

Generating poetry with RNNs

More info: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

37

Andrej Karpathy

Generating poetry with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016

open source textbook on algebraic geometry

Latex source

Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

38

Andrej Karpathy

Generating textbooks with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

39

Andrej Karpathy

Generating textbooks with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

40

Andrej Karpathy

Generating textbooks with RNNs

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016

Generated

C code

Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

42

Andrej Karpathy

Generating code with RNNs

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy

Image Captioning

Convolutional Neural Network

Recurrent Neural Network

Andrej Karpathy

Image Captioning

test image

Andrej Karpathy

Image Captioning

test image

Andrej Karpathy

test image

X
Andrej Karpathy

test image

x0
<START>

<START>

Andrej Karpathy

Image Captioning

h0

y0

<START>

test image

before:

h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * im)

im

Wih

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

sample!

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

sample!

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

h2

y2

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>

h0

y0

test image

h1

y1

h2

y2

sample

<END> token

=> finish.

straw hat

<START>

Adapted from Andrej Karpathy

Image Captioning

Caption generated:
“straw hat”

x0
<START>

Andrej Karpathy

Image Captioning

