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Plan for this lecture

• Linear Support Vector Machines

• Non-linear SVMs and the “kernel trick”

• Extensions and further details (briefly) 

– Soft-margin SVMs

– Multi-class SVMs

– Comparison: SVM vs logistic regression 

• Why SVM solution is what it is (briefly)



Linear classifiers
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• Find linear function to separate positive and 

negative examples

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines 

• Discriminative 

classifier based on 

optimal separating 

line (for 2d case)

• Maximize the 

margin between the 

positive and 

negative training 

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines

• Want line that maximizes the margin.
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MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

For support, vectors, 1=+ bi wx

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Distance between point 

and line:

Support vector machines

• Want line that maximizes the margin.
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Support vectors

For support, vectors, 1=+ bi wx
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For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

Margin

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines

• Want line that maximizes the margin.
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MarginSupport vectors

For support, vectors, 1=+ bi wx

Distance between point 

and line: ||||

||

w

wx bi +

Therefore, the margin is  2 / ||w||

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to  yi(w·xi+b) ≥ 1

wwT
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One constraint for each 

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

• Solution: = i iii y xw 

Support 

vector

Learned

weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

= i iii y xw 

If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

MORE DETAILS NEXT TIME

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Inner product

Adapted from Milos Hauskrecht
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Example
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Example adapted from Dan Ventura



Solving for the alphas

• We know that for the support vectors, f(x) = 1 or -1 

exactly

• Add a 1 in the feature representation for the bias

• The support vectors have coordinates and labels:
• x1 = [0 1 1], y1 = -1

• x2 = [-1 3 1], y2 = +1

• x3 = [1 3 1], y3 = +1

• Thus we can form the following system of linear 

equations:



Solving for the alphas

• System of linear equations:

α1 y1 dot(x1, x1) + α2 y2 dot(x1, x2) + α3 y3 dot(x1, x3) = y1

α1 y1 dot(x2, x1) + α2 y2 dot(x2, x2) + α3 y3 dot(x2, x3) = y2

α1 y1 dot(x3, x1) + α2 y2 dot(x3, x2) + α3 y3 dot(x3, x3) = y3

-2 * α1 + 4 * α2 + 4 * α3 = -1

-4 * α1 + 11 * α2 + 9 * α3 = +1

-4 * α1 + 9 * α2 + 11 * α3 = +1

• Solution: α1 = 3.5, α2 = 0.75, α3 = 0.75



We know w = α1 y1 x1 + … + αN yN xN where N = # SVs

Thus w = -3.5 * [0 1 1] + 0.75 [-1 3 1] + 0.75 [1 3 1] =   

[0 1 -2] 

Separating out weights and bias, we have: w = [0 1] and 

b = -2

For SVMs, we used this eq for a line: ax + cy + b = 0 

where w = [a c]

Thus ax + b = -cy ➔ y = (-a/c) x + (-b/c)

Thus y-intercept is -(-2)/1 = 2  

The decision boundary is perpendicular to w and it has 

slope -0/1 = 0

Solving for w, b; plotting boundary
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Plan for this lecture

• Linear Support Vector Machines

• Non-linear SVMs and the “kernel trick”

• Extensions and further details (briefly) 

– Soft-margin SVMs

– Multi-class SVMs

– Comparison: SVM vs logistic regression 

• Why SVM solution is what it is (briefly)



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs



Φ:  x→ φ(x)

• General idea: the original input space can 

always be mapped to some higher-dimensional 

feature space where the training set is 

separable:

Andrew Moore

Nonlinear SVMs



Nonlinear kernel: Example
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Svetlana Lazebnik



• The linear classifier relies on dot product 

between vectors K(xi,xj) = xi · xj

• If every data point is mapped into high-

dimensional space via some transformation       

Φ:  xi → φ(xi ), the dot product becomes:      

K(xi,xj) = φ(xi ) · φ(xj)

• A kernel function is similarity function that 

corresponds to an inner product in some 

expanded feature space

• The kernel trick: instead of explicitly computing 

the lifting transformation φ(x), define a kernel 

function K such that: K(xi,xj) = φ(xi ) · φ(xj)

Andrew Moore

The “kernel trick”



Examples of kernel functions

◼ Linear:

◼ Polynomials of degree up to d:

◼ Gaussian RBF:

◼ Histogram intersection:
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The benefit of the “kernel trick”

• Example: Polynomial kernel for 2-dim features

• … lives in 6 dimensions 

• With the kernel trick, we directly compute an 

inner product in 2-dim space, obtaining a 

scalar that we add 1 to and exponentiate 



Is this function a kernel?

Blaschko / Lampert



Constructing kernels

Blaschko / Lampert



1. Select a kernel function.

2. Compute pairwise kernel values between labeled 

examples.

3. Use this “kernel matrix” to solve for SVM support vectors 

& alpha weights.

4. To classify a new example: compute kernel values 

between new input and support vectors, apply alpha 

weights, check sign of output.

Adapted from Kristen Grauman

Using SVMs



Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002

Moghaddam and Yang, Face & Gesture 2000

Kristen Grauman

Example: Learning gender w/ SVMs



Kristen Grauman

Support faces

Example: Learning gender w/ SVMs



• SVMs performed 
better than 
humans, at either 
resolution

Kristen Grauman

Example: Learning gender w/ SVMs



Plan for this lecture

• Linear Support Vector Machines

• Non-linear SVMs and the “kernel trick”

• Extensions and further details (briefly) 

– Soft-margin SVMs

– Multi-class SVMs

– Comparison: SVM vs logistic regression 

• Why SVM solution is what it is (briefly)



Hard-margin SVMs

Maximize margin

The w that minimizes…



Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification 

cost

# data samples

Soft-margin SVMs (allow misclassification)



Slack variables in soft-margin SVMs

Figure from Bishop



Effect of margin size vs miscl. cost (c)

Training set

Image: Kent Munthe Caspersen

Misclassification ok, want large margin Misclassification not ok



Effect of margin size vs miscl. cost (c)

Including test set A

Image: Kent Munthe Caspersen

Misclassification ok, want large margin Misclassification not ok



Effect of margin size

Including test set B

Image: Kent Munthe Caspersen

Misclassification ok, want large margin Misclassification not ok



Multi-class problems

Instead of just two classes, we now have C 

classes
• E.g. predict which movie genre a viewer likes best

• Possible answers: action, drama, indie, thriller, etc.

Two approaches:
• One-vs-all

• One-vs-one



Multi-class problems

One-vs-all (a.k.a. one-vs-others)
• Train C classifiers

• In each, pos = data from class i, neg = data from classes 

other than i

• The class with the most confident prediction wins

• Example: 

– You have 4 classes, train 4 classifiers

– 1 vs others: score 3.5

– 2 vs others: score 6.2

– 3 vs others: score 1.4

– 4 vs other: score 5.5

– Final prediction: class 2

• Issues? 



Multi-class problems

One-vs-one (a.k.a. all-vs-all)
• Train C(C-1)/2 binary classifiers (all pairs of classes)

• They all vote for the label

• Example:

– You have 4 classes, then train 6 classifiers

– 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4

– Votes: 1, 1, 4, 2, 4, 4 

– Final prediction is class 4



Hinge loss (unconstrained objective)

Let 

We have the objective to minimize     where:

Then we can define a loss:  

and unconstrained SVM objective:



σ

σ

SVMs vs logistic regression

Adapted from Tommi Jaakola



Adapted from Tommi Jaakola

SVMs vs logistic regression



SVMs: Pros and cons

• Pros

• Kernel-based framework is very powerful, flexible

• Often a sparse set of support vectors – compact at test time

• Work very well in practice, even with very small training 

sample sizes

• Solution can be formulated as a quadratic program (next time)

• Many publicly available SVM packages: e.g. LIBSVM, 

LIBLINEAR, SVMLight

• Cons

• Can be tricky to select best kernel function for a problem

• Computation, memory 

– At training time, must compute kernel values for all 

example pairs 

– Learning can take a very long time for large-scale 

problems

Adapted from Lana Lazebnik


