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Plan for this lecture

Linear Support Vector Machines
Non-linear SVMs and the “kernel trick”

Extensions and further details (briefly)
— Soft-margin SVMs

— Multi-class SVMs

— Comparison: SVM vs logistic regression

Why SVM solution is what it is (briefly)



Linear classifiers

* Find linear function to separate positive and
negative examples

O
® X; positive:  X,-w+b>0
® o X; hegative: X.-w+b<0
O
O
® o e o
O ® N\
O
O
o O
Which line
¢ is best?
O

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

* Discriminative
classifier based on
optimal separating
line (for 2d case)

« Maximize the
margin between the
positive and
negative training
examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

« Want line that maximizes the margin.

6. © "\ ® X. positive (y, =1): X.-W+b>1
X. negative(y, =-1): x,-w+b<-1

e Forsupport, vectors, X,-W+b==1

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Aside: Lines in R?
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Aside: Lines in R?
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Support vector machines

« Want line that maximizes the margin.

6. © "\ ® X. positive (y, =1): X.-W+b>1
X. negative(y, =-1): x,-w+b<-1

e Forsupport, vectors, X,-W+b==1

®
° Distance between point | X; -W+D]
and line: | w |
For support vectors:
WTX-I—b:il M 1 -1 2
Support vectors ® Margin [wi |wi i

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

« Want line that maximizes the margin.

6. © "\ ® X. positive (y, =1): X.-W+b>1
X. negative(y, =-1): x,-w+b<-1

e Forsupport, vectors, X,-W+b==1

Distance between point | X; -W+D]
and line: | w |

Therefore, the marginis 2/ ||w||

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximu

m margin line

1. Maximize margin 2/
2. Correctly classify al
X; positive (y;, =1):

X. negative(y, =-1):

wil

training data points:
X.-W+b>1
X, -W+b<-1

Quadratic optimization problem:

1
2

Minimize —w'w

Subject to yi(W'Xi"'b) > 1w One constraint for each

~._ training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

« Solution: W:Zi a; Yi X,

"/

Learned Support
weight vector

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

e Solution: W = Zi ; ini MORE DETAILS NEXT TIME
b=y.—w-x; (forany support vector)
* Classification function:

f (x)=sign (w-X+Db)

If f(x) < O, classify as negative, otherwise classify as positive.

* Notice that it relies on an inner product between the test
point X and the support vectors x;

* (Solving the optimization problem also involves
computing the inner products x; - x; between all pairs of
training points)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Inner product

* The decision boundary for the SVM and its optimization
depend on the inner product of two data points (vectors):

f (x) =sign (W-Xx+b)
—sign (> e, y% - X+b)

* The inner product is equal

T
(X,"X) = ‘x!.”*”xi. cos &
. . . T _ e
If the angle in between them 1s 0 then: (X, xX) = HKJ ‘Kr”
If the angle between them 1s 90 then: (ET.TK] =0

The inner product measures how similar the two vectors are

Adapted from Milos Hauskrecht



Example

® @
2

v

Q = support vectors 1@

Example adapted from Dan Ventura



Solving for the alphas

« We know that for the support vectors, f(x) =1 or -1
exactly

 Add a1 in the feature representation for the bias

« The support vectors have coordinates and labels:
e x1=[011],yl=-1
e x2=[-131],y2=+1
« x3=[131],y3=+1

« Thus we can form the following system of linear
equations:



Solving for the alphas

« System of linear equations:

a1 y1 dot(x1, x1) + a2 y2 dot(x1, x2) + a3 y3 dot(x1, x3) = y1
a1 y1 dot(x2, x1) + a2 y2 dot(x2, x2) + a3 y3 dot(x2, x3) = y2
a1 y1 dot(x3, x1) + a2 y2 dot(x3, x2) + a3 y3 dot(x3, x3) = y3

2 *oa1+4*02+4*a3=-1
4*a1+11* 02+ 9*a3 =+1
4*a1+9%02+11 a3 =+1

o Solution: a1 =3.5,02=0.75,a3=0.75



Solving for w, b; plotting boundary

We know w =a; y; X; + ... + Oy Yy Xy Where N = # SVs

Thusw=-35*[011]+0.75[-131]+0.75[13 1] =
[01-2]

Separating out weights and bias, we have: w = [0 1] and
b=-2

For SVMs, we used thiseq foraline:ax+cy+b =0
where w = [a C]

Thus ax + b =-cy = y = (-a/c) x + (-b/c)

Thus y-intercept is -(-2)/1 =2

The decision boundary is perpendicular to w and it has
slope -0/1 =0



Example
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Nonlinear SVMs

« Datasets that are linearly separable work out great:

o—& .-@—l— 5 +. :X

« But what if the dataset is just too hard?

@ @ *—0— *-0—@ *—o o—>

0 X

 We can map it to a higher-dimensional space:

Andrew Moore



Nonlinear SVMs

« General idea: the original input space can
always be mapped to some higher-dimensional
feature space where the training set is
separable:
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Nonlinear kernel: Example

« Consider the mapping @(x) = (x,x?)

o(X)-@(y) = (X, X*)- (Y, ¥*) = xy + Xy’
K(X,y)=Xy+x°y*

Svetlana Lazebnik



The “kernel trick”

Andrew Moore

The linear classifier relies on dot product
between vectors K(Xj,Xj) = X' X;

If every data point is mapped into high-
dimensional space via some transformation
@ xi— o(X), the dot product becomes:
K(Xi, X)) = o(Xi) - 9(Xj)

A kernel function is similarity function that
corresponds to an inner product in some
expanded feature space

The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that: K(x;,X;) = ¢(Xi) - ¢(X;)



Examples of kernel functions

Linear:  K(X;,X;)= XiTXj
Polynomials of degree up to d:
K(Xi, X]) — (XiTXj + 1)d
Gaussian RBF: 5
- x|

2 )

K (X, ’Xj) = exp(-
Histogram intersection:

K(X;, Xj) = Zmin(xi (k), X; (k)

20

Andrew Moore / Carlos Guestrin



The benefit of the “kernel trick”

 Example: Polynomial kernel for 2-dim features

SN .
k(x,z) = (1 | XTZ) = (1 + 2121 + Tozo)?
29

= 14222 4 22925 + J'f’:% + 2wy 2020 + 2525
= (1, V21, V20,27 V2m129, 23) (1, V221, V225, 27, V22125, 23) T
= ¢(x)"¢(2). (7.42)

e ...livesin 6 dimensions

« With the kernel trick, we directly compute an
Inner product in 2-dim space, obtaining a
scalar that we add 1 to and exponentiate



Is this function a kernel?

Problem:

@ Checking if a given k: X x X — R fulfills the conditions for a
kernel is difficult:

@ We need to prove or disprove
ij=1

for any set x,...,1, € X and any t € R" for any n € N.
Workaround:

@ It is easy to construct functions k that are positive definite
kernels.

Blaschko / Lampert



Constructing kernels

1) We can construct kernels from scratch:
@ Forany ¢ : X —» R™, k(z,2') = (p(x), p(z'))rm is a kernel.

o Ifd: X x X — R is a distance function, i.e.
e d(z,2') >0 forall z,2' € X,
e d(z,z') =0 only for z = 1’
e d(z,2') =d(z',z) forall z,2" € X,
o d(z,2') < d(z,a")+ d(z",2") forall z,2' 2" € X,

then k(z,z') := exp(—d(z,2")) is a kernel.
2) We can construct kernels from other kernels:

o if £is a kernel and o > 0, then ak and k + « are kernels.

o if k. ky are kernels, then k; + k» and £; - ky are kernels.

Blaschko / Lampert



Using SVMs

1. Select a kernel function.

2. Compute pairwise kernel values between labeled
examples.

3. Use this “kernel matrix” to solve for SVM support vectors
& alpha weights.

4. To classify a new example: compute kernel values
between new input and support vectors, apply alpha
weights, check sign of output.

Adapted from Kristen Grauman



Example: Learning gender w/ SVMs

-~ F [ M
E i = Gender F M
Classifier e =

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002

Moghaddam and Yang, Face & Gesture 2000

Kristen Grauman



Example: Learning gender w/ SVMs

Support faces

FEMALE

Kristen Grauman



Example: Learning gender w/ SVMs

% Error Rates

e SVMs performed
O "EEN Low-Res better than
5| [ ] Hi-Res ]
humans, at either
20} resolution
157
10t
5|
i

SVM Human

Figure 6. SVM vs. Human performance

Kristen Grauman
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Hard-margin SVMs

W

The w that minimizes..

MaX|m|ze margln

subjectto y,w’ x; > 1



Soft-margin SVMSs (allow misclassification)

data samples
Misclassification

9 cost Slack variable

The w that minimizes..

MaX|m|ze margin Minimize misclassification

subjectto y,w’ x; >1— &,
& >0, Vi=1,...,N



Slack variables in soft-margin SVMs

Figure from Bishop



Effect of margin size vs miscl. cost (c)

Training set
X2

o % » X

o o X

o X

O X »

X
X1
lowc large c

Misclassification ok, want large margin Misclassification not ok

Image: Kent Munthe Caspersen



Effect of margin size vs miscl. cost (c)

Including test set A

Misclassification ok, want large margin Misclassification not ok

Image: Kent Munthe Caspersen



Effect of margin size

Including test set B

X5 o X o

°o%°xxx 0 O © o

X

° o © x X ° o © x X

O o % X O o % X

o O1x ¢ o © %

lowc large c

Misclassification ok, want large margin Misclassification not ok

Image: Kent Munthe Caspersen



Multi-class problems

Instead of just two classes, we now have C

classes

« E.g. predict which movie genre a viewer likes best
 Possible answers: action, drama, indie, thriller, etc.

Two approaches:
* One-vs-all
 One-vs-one



Multi-class problems

One-vs-all (a.k.a. one-vs-others)

 Train C classifiers

* In each, pos = data from class i, neg = data from classes
other than i

« The class with the most confident prediction wins
« Example:

— You have 4 classes, train 4 classifiers

— 1 vs others: score 3.5

— 2 vs others: score 6.2

— 3 vs others: score 1.4

— 4 vs other: score 5.5

— Final prediction: class 2

* |ssues?



Multi-class problems

One-vs-one (a.k.a. all-vs-all)

« Train C(C-1)/2 binary classifiers (all pairs of classes)
« They all vote for the label
« Example:
— You have 4 classes, then train 6 classifiers
—1vs2,1vs3,1vs4,2vs3,2vs4,3vs4
— Votes: 1,1,4,2,4,4
— Final prediction is class 4



Hinge loss (unconstrained objective)

Let h(z) =max(0,1— 2)

We have the objective to minimize & where:
yiw' x; > 1-¢ &> 1—yw'x,
& >0

& > max(0,1 — y-;'WTX-i)

Then we can define a loss:

T T

h(y,w* x;) = max(0,1 — y;w" X;)

and unconstrained SVM objective:

N
1
-mi-nw§ |wl* +C Z h(y;w!x;)



SVMs vs logistic regression

e When viewed from the point of view of regularized empirical
loss minimization, SVM and logistic regression appear quite

similar:
n +
svM: 3 (- gsfwo +xTwi]) + w22
=1
- — log PJ(\yﬂx,w)
Logistic: Y —log 0y [wo + xTwa]) + [wi||?/2
=1

whereg(z) = (1 + exp(—2z))~! is the logistic function.

(Note that we have transformed the problem maximizing the

penalized log-likelihood into minimizing negative penalized
log-likelihood.)

Adapted from Tommi Jaakola



SVMs vs logistic regression

e The difference comes from how we penalize “errors”:

z

Both: zn:Loss(;i [wg —:X?WJ) + ||we|?/2
i=1
e SVM: L O T O O =,
Loss(z) = (1 — 2)™ : |
e Regularized logistic reg: _22
Loss(z) = log(1 + exp(—=z)) 0;

O 1 L 1 1 L
-4 -3 -2 -1 0 1 2 3
Z

Adapted from Tommi Jaakola



SVMs: Pros and cons

* Pros

Kernel-based framework is very powerful, flexible
Often a sparse set of support vectors — compact at test time

Work very well in practice, even with very small training
sample sizes

Solution can be formulated as a quadratic program (next time)

Many publicly available SVM packages: e.g. LIBSVM,
LIBLINEAR, SVMLight

e Cons

Can be tricky to select best kernel function for a problem
Computation, memory

— At training time, must compute kernel values for all
example pairs

— Learning can take a very long time for large-scale
problems

Adapted from Lana Lazebnik



