
CS 1675: Intro to Machine Learning

Support Vector Machines

Prof. Adriana Kovashka
University of Pittsburgh

October 23, 2018

Plan for this lecture

• Linear Support Vector Machines

• Non-linear SVMs and the “kernel trick”

• Extensions and further details (briefly)

– Soft-margin SVMs

– Multi-class SVMs

– Comparison: SVM vs logistic regression

• Why SVM solution is what it is (briefly)

Linear classifiers

0:negative

0:positive

+

+

b

b

ii

ii

wxx

wxx

• Find linear function to separate positive and

negative examples

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Discriminative

classifier based on

optimal separating

line (for 2d case)

• Maximize the

margin between the

positive and

negative training

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

For support, vectors, 1=+ bi wx

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

0=++ bcyax









=

c

a
w 








=

y

x
xLet

Kristen Grauman

Aside: Lines in R2

0=+ bxw









=

c

a
w 








=

y

x
x

0=++ bcyax

Let

w

Kristen Grauman

Aside: Lines in R2

0=+ bxw









=

c

a
w 








=

y

x
x

0=++ bcyax

Let

w

Kristen Grauman

Aside: Lines in R2

()00 , yx

0=+ bxw









=

c

a
w 








=

y

x
x

0=++ bcyax

Let

w

Kristen Grauman

Aside: Lines in R2

()00 , yx()00 , yx

D

distance from

point to linew

xw ||

22

00 b

ca

bcyax
D

+
=

+

++
=



Distance between point

and line:

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

Support vectors

For support, vectors, 1=+ bi wx

||||

||

w

wx bi +

www

211
=

−
−=M

ww

xw 1
=

+ bΤ

For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

Margin

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

MarginSupport vectors

For support, vectors, 1=+ bi wx

Distance between point

and line: ||||

||

w

wx bi +

Therefore, the margin is 2 / ||w||

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to yi(w·xi+b) ≥ 1

wwT

2

1

1:1)(negative

1:1)(positive

−+−=

+=

by

by

iii

iii

wxx

wxx

One constraint for each

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

• Solution: = i iii y xw 

Support

vector

Learned

weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

()by

xf

ii +=

+=

 xx

xw

i isign

b)(sign)(



Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

= i iii y xw 

If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

MORE DETAILS NEXT TIME

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Inner product

Adapted from Milos Hauskrecht

()by

xf

ii +=

+=

 xx

xw

i isign

b)(sign)(



Example

-1 0 1

4

3

2

1

-1
= support vectors

NEG

POS

Example adapted from Dan Ventura

Solving for the alphas

• We know that for the support vectors, f(x) = 1 or -1

exactly

• Add a 1 in the feature representation for the bias

• The support vectors have coordinates and labels:
• x1 = [0 1 1], y1 = -1

• x2 = [-1 3 1], y2 = +1

• x3 = [1 3 1], y3 = +1

• Thus we can form the following system of linear

equations:

Solving for the alphas

• System of linear equations:

α1 y1 dot(x1, x1) + α2 y2 dot(x1, x2) + α3 y3 dot(x1, x3) = y1

α1 y1 dot(x2, x1) + α2 y2 dot(x2, x2) + α3 y3 dot(x2, x3) = y2

α1 y1 dot(x3, x1) + α2 y2 dot(x3, x2) + α3 y3 dot(x3, x3) = y3

-2 * α1 + 4 * α2 + 4 * α3 = -1

-4 * α1 + 11 * α2 + 9 * α3 = +1

-4 * α1 + 9 * α2 + 11 * α3 = +1

• Solution: α1 = 3.5, α2 = 0.75, α3 = 0.75

We know w = α1 y1 x1 + … + αN yN xN where N = # SVs

Thus w = -3.5 * [0 1 1] + 0.75 [-1 3 1] + 0.75 [1 3 1] =

[0 1 -2]

Separating out weights and bias, we have: w = [0 1] and

b = -2

For SVMs, we used this eq for a line: ax + cy + b = 0

where w = [a c]

Thus ax + b = -cy ➔ y = (-a/c) x + (-b/c)

Thus y-intercept is -(-2)/1 = 2

The decision boundary is perpendicular to w and it has

slope -0/1 = 0

Solving for w, b; plotting boundary

Example

-1 0 1

4

3

2

1

-1
= support vectors

NEG

POS

DECISION BOUNDARY

Plan for this lecture

• Linear Support Vector Machines

• Non-linear SVMs and the “kernel trick”

• Extensions and further details (briefly)

– Soft-margin SVMs

– Multi-class SVMs

– Comparison: SVM vs logistic regression

• Why SVM solution is what it is (briefly)

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs

Φ: x→ φ(x)

• General idea: the original input space can

always be mapped to some higher-dimensional

feature space where the training set is

separable:

Andrew Moore

Nonlinear SVMs

Nonlinear kernel: Example

• Consider the mapping),()(2xxx =

22

2222

),(

),(),()()(

yxxyyxK

yxxyyyxxyx

+=

+==

x2

Svetlana Lazebnik

• The linear classifier relies on dot product

between vectors K(xi,xj) = xi · xj

• If every data point is mapped into high-

dimensional space via some transformation

Φ: xi → φ(xi), the dot product becomes:

K(xi,xj) = φ(xi) · φ(xj)

• A kernel function is similarity function that

corresponds to an inner product in some

expanded feature space

• The kernel trick: instead of explicitly computing

the lifting transformation φ(x), define a kernel

function K such that: K(xi,xj) = φ(xi) · φ(xj)

Andrew Moore

The “kernel trick”

Examples of kernel functions

◼ Linear:

◼ Polynomials of degree up to d:

◼ Gaussian RBF:

◼ Histogram intersection:

)
2

exp()(
2

2



ji

ji

xx
,xxK

−
−=

=
k

jiji kxkxxxK))(),(min(),(

j

T

iji xxxxK =),(

Andrew Moore / Carlos Guestrin

𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑

The benefit of the “kernel trick”

• Example: Polynomial kernel for 2-dim features

• … lives in 6 dimensions

• With the kernel trick, we directly compute an

inner product in 2-dim space, obtaining a

scalar that we add 1 to and exponentiate

Is this function a kernel?

Blaschko / Lampert

Constructing kernels

Blaschko / Lampert

1. Select a kernel function.

2. Compute pairwise kernel values between labeled

examples.

3. Use this “kernel matrix” to solve for SVM support vectors

& alpha weights.

4. To classify a new example: compute kernel values

between new input and support vectors, apply alpha

weights, check sign of output.

Adapted from Kristen Grauman

Using SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002

Moghaddam and Yang, Face & Gesture 2000

Kristen Grauman

Example: Learning gender w/ SVMs

Kristen Grauman

Support faces

Example: Learning gender w/ SVMs

• SVMs performed
better than
humans, at either
resolution

Kristen Grauman

Example: Learning gender w/ SVMs

Plan for this lecture

• Linear Support Vector Machines

• Non-linear SVMs and the “kernel trick”

• Extensions and further details (briefly)

– Soft-margin SVMs

– Multi-class SVMs

– Comparison: SVM vs logistic regression

• Why SVM solution is what it is (briefly)

Hard-margin SVMs

Maximize margin

The w that minimizes…

Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification

cost

data samples

Soft-margin SVMs (allow misclassification)

Slack variables in soft-margin SVMs

Figure from Bishop

Effect of margin size vs miscl. cost (c)

Training set

Image: Kent Munthe Caspersen

Misclassification ok, want large margin Misclassification not ok

Effect of margin size vs miscl. cost (c)

Including test set A

Image: Kent Munthe Caspersen

Misclassification ok, want large margin Misclassification not ok

Effect of margin size

Including test set B

Image: Kent Munthe Caspersen

Misclassification ok, want large margin Misclassification not ok

Multi-class problems

Instead of just two classes, we now have C

classes
• E.g. predict which movie genre a viewer likes best

• Possible answers: action, drama, indie, thriller, etc.

Two approaches:
• One-vs-all

• One-vs-one

Multi-class problems

One-vs-all (a.k.a. one-vs-others)
• Train C classifiers

• In each, pos = data from class i, neg = data from classes

other than i

• The class with the most confident prediction wins

• Example:

– You have 4 classes, train 4 classifiers

– 1 vs others: score 3.5

– 2 vs others: score 6.2

– 3 vs others: score 1.4

– 4 vs other: score 5.5

– Final prediction: class 2

• Issues?

Multi-class problems

One-vs-one (a.k.a. all-vs-all)
• Train C(C-1)/2 binary classifiers (all pairs of classes)

• They all vote for the label

• Example:

– You have 4 classes, then train 6 classifiers

– 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4

– Votes: 1, 1, 4, 2, 4, 4

– Final prediction is class 4

Hinge loss (unconstrained objective)

Let

We have the objective to minimize where:

Then we can define a loss:

and unconstrained SVM objective:

σ

σ

SVMs vs logistic regression

Adapted from Tommi Jaakola

Adapted from Tommi Jaakola

SVMs vs logistic regression

SVMs: Pros and cons

• Pros

• Kernel-based framework is very powerful, flexible

• Often a sparse set of support vectors – compact at test time

• Work very well in practice, even with very small training

sample sizes

• Solution can be formulated as a quadratic program (next time)

• Many publicly available SVM packages: e.g. LIBSVM,

LIBLINEAR, SVMLight

• Cons

• Can be tricky to select best kernel function for a problem

• Computation, memory

– At training time, must compute kernel values for all

example pairs

– Learning can take a very long time for large-scale

problems

Adapted from Lana Lazebnik

