CS 1675: Intro to Machine Learning Support Vector Machines

Prof. Adriana Kovashka University of Pittsburgh October 23, 2018

Plan for this lecture

- Linear Support Vector Machines
- Non-linear SVMs and the "kernel trick"
- Extensions and further details (briefly)
 - Soft-margin SVMs
 - Multi-class SVMs
 - Comparison: SVM vs logistic regression
- Why SVM solution is what it is (briefly)

Linear classifiers

• Find linear function to separate positive and negative examples

Support vector machines

- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples

Support vector machines

• Want line that maximizes the margin.

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

ax + cy + b = 0

Aside: Lines in R²

Let
$$\mathbf{W} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}$$

ax + cy + b = 0 \downarrow $\mathbf{w} \cdot \mathbf{x} + b = 0$

Aside: Lines in R²

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

ax + cy + b = 0 \downarrow $\mathbf{w} \cdot \mathbf{x} + b = 0$

Aside: Lines in R²

$$et \quad \mathbf{W} = \begin{vmatrix} a \\ c \end{vmatrix} \quad \mathbf{X} = \begin{vmatrix} x \\ y \end{vmatrix}$$

$$ax + cy + b = 0$$

$$\downarrow$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

Kristen Grauman

Support vector machines

Want line that maximizes the margin.

 $|\mathbf{x}_i \cdot \mathbf{w} + b|$

 $||\mathbf{w}||$

Support vector machines

• Want line that maximizes the margin.

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ Distance between point
and line: $|\mathbf{x}_i \cdot \mathbf{w} + b|$
 $||\mathbf{w}||$ Therefore, the margin is $2 / ||\mathbf{w}||$

Finding the maximum margin line

- 1. Maximize margin $2/||\mathbf{w}||$
- 2. Correctly classify all training data points:

 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

Quadratic optimization problem:

Minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

Subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ for $\sum_{\text{train}}^{\text{One}} y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$

One constraint for each training point.

Note sign trick.

Finding the maximum margin line

Finding the maximum margin line

- Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ MORE DETAILS NEXT TIME $b = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$ (for any support vector)
- Classification function:

$$f(x) = \operatorname{sign} (\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$
$$= \operatorname{sign} \left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b \right)$$

If f(x) < 0, classify as negative, otherwise classify as positive.

- Notice that it relies on an *inner product* between the test point *x* and the support vectors *x_i*
- (Solving the optimization problem also involves computing the inner products *x_i* · *x_j* between all pairs of training points)

Inner product

• The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):

 $\mathbf{x}_{i}^{T}\mathbf{x}_{j}$

 $f(x) = \operatorname{sign} (\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$ $= \operatorname{sign} \left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + \mathbf{b} \right)$

The inner product is equal

$$(\mathbf{x}_i^T \mathbf{x}) = \|\mathbf{x}_i\|^* \|\mathbf{x}_i\| \cos \theta$$

If the angle in between them is 0 then: If the angle between them is 90 then: $(\mathbf{x}_i^T \mathbf{x}) = \|\mathbf{x}_i\|^* \|\mathbf{x}_i\|$ $(\mathbf{x}_i^T \mathbf{x}) = 0$

The inner product measures how similar the two vectors are

Example

Solving for the alphas

- We know that for the support vectors, f(x) = 1 or -1 exactly
- Add a 1 in the feature representation for the bias
- The support vectors have coordinates and labels:
 - x1 = [0 1 1], y1 = -1
 - x2 = [-1 3 1], y2 = +1
 - x3 = [1 3 1], y3 = +1
- Thus we can form the following system of linear equations:

Solving for the alphas

• System of linear equations:

 $\alpha 1 \ y1 \ dot(x1, x1) + \alpha 2 \ y2 \ dot(x1, x2) + \alpha 3 \ y3 \ dot(x1, x3) = y1$ $\alpha 1 \ y1 \ dot(x2, x1) + \alpha 2 \ y2 \ dot(x2, x2) + \alpha 3 \ y3 \ dot(x2, x3) = y2$ $\alpha 1 \ y1 \ dot(x3, x1) + \alpha 2 \ y2 \ dot(x3, x2) + \alpha 3 \ y3 \ dot(x3, x3) = y3$

$$-2 * \alpha 1 + 4 * \alpha 2 + 4 * \alpha 3 = -1$$

-4 * \alpha 1 + 11 * \alpha 2 + 9 * \alpha 3 = +1
-4 * \alpha 1 + 9 * \alpha 2 + 11 * \alpha 3 = +1

• Solution: $\alpha 1 = 3.5$, $\alpha 2 = 0.75$, $\alpha 3 = 0.75$

Solving for w, b; plotting boundary

We know w = $\alpha_1 y_1 x_1 + ... + \alpha_N y_N x_N$ where N = # SVs Thus w = -3.5 * [0 1 1] + 0.75 [-1 3 1] + 0.75 [1 3 1] = [0 1 -2]

Separating out weights and bias, we have: $w = [0 \ 1]$ and b = -2

For SVMs, we used this eq for a line: ax + cy + b = 0 where w = [a c]

Thus
$$ax + b = -cy \rightarrow y = (-a/c) x + (-b/c)$$

Thus y-intercept is -(-2)/1 = 2

The decision boundary is perpendicular to w and it has slope -0/1 = 0

Example

Plan for this lecture

- Linear Support Vector Machines
- Non-linear SVMs and the "kernel trick"
- Extensions and further details (briefly)
 - Soft-margin SVMs
 - Multi-class SVMs
 - Comparison: SVM vs logistic regression
- Why SVM solution is what it is (briefly)

Nonlinear SVMs

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

Andrew Moore

Nonlinear SVMs

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

Nonlinear kernel: Example

• Consider the mapping $\varphi(x) = (x, x^2)$

$$\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2$$
$$K(x, y) = xy + x^2 y^2$$

The "kernel trick"

- The linear classifier relies on dot product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$
- If every data point is mapped into highdimensional space via some transformation
 Φ: x_i → φ(x_i), the dot product becomes: K(x_i, x_j) = φ(x_i) · φ(x_j)
- A *kernel function* is similarity function that corresponds to an inner product in some expanded feature space
- The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that: $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$

Examples of kernel functions

• Linear:
$$K(x_i, x_j) = x_i^T x_j$$

Polynomials of degree up to d:

$$K(x_i, x_j) = (x_i^T x_j + 1)^d$$

Ш

112

Gaussian RBF:

$$K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|}{2\sigma^2})$$

Histogram intersection:

$$K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k))$$

The benefit of the "kernel trick"

• Example: Polynomial kernel for 2-dim features

$$k(\mathbf{x}, \mathbf{z}) = (1 + \mathbf{x}^{\mathrm{T}} \mathbf{z})^{2} = (1 + x_{1}z_{1} + x_{2}z_{2})^{2}$$

$$= 1 + 2x_{1}z_{1} + 2x_{2}z_{2} + x_{1}^{2}z_{1}^{2} + 2x_{1}z_{1}x_{2}z_{2} + x_{2}^{2}z_{2}^{2}$$

$$= (1, \sqrt{2}x_{1}, \sqrt{2}x_{2}, x_{1}^{2}, \sqrt{2}x_{1}x_{2}, x_{2}^{2})(1, \sqrt{2}z_{1}, \sqrt{2}z_{2}, z_{1}^{2}, \sqrt{2}z_{1}z_{2}, z_{2}^{2})^{\mathrm{T}}$$

$$= \phi(\mathbf{x})^{\mathrm{T}}\phi(\mathbf{z}).$$
(7.42)

- ... lives in 6 dimensions
- With the kernel trick, we directly compute an inner product in 2-dim space, obtaining a scalar that we add 1 to and exponentiate

Is this function a kernel?

Problem:

- Checking if a given k : X × X → ℝ fulfills the conditions for a kernel is *difficult*:
- We need to prove or disprove

$$\sum_{i,j=1}^n t_i k(x_i, x_j) t_j \ge 0.$$

for any set $x_1, \ldots, x_n \in \mathcal{X}$ and any $t \in \mathbb{R}^n$ for any $n \in \mathbb{N}$. Workaround:

 It is easy to *construct* functions k that are positive definite kernels. 1) We can construct kernels from scratch:

- For any $\varphi: \mathcal{X} \to \mathbb{R}^m$, $k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathbb{R}^m}$ is a kernel.
- If $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a distance function, i.e.

•
$$d(x, x') \ge 0$$
 for all $x, x' \in \mathcal{X}$,
• $d(x, x') = 0$ only for $x = x'$,
• $d(x, x') = d(x', x)$ for all $x, x' \in \mathcal{X}$,
• $d(x, x') \le d(x, x'') + d(x'', x')$ for all $x, x', x'' \in \mathcal{X}$,
then $k(x, x') := \exp(-d(x, x'))$ is a kernel.

2) We can construct kernels from other kernels:

- if k is a kernel and $\alpha > 0$, then αk and $k + \alpha$ are kernels.
- if k_1, k_2 are kernels, then $k_1 + k_2$ and $k_1 \cdot k_2$ are kernels.

- 1. Select a kernel function.
- 2. Compute pairwise kernel values between labeled examples.
- Use this "kernel matrix" to solve for SVM support vectors & alpha weights.
- 4. To classify a new example: compute kernel values between new input and support vectors, apply alpha weights, check sign of output.

Example: Learning gender w/ SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002 Moghaddam and Yang, Face & Gesture 2000

Example: Learning gender w/ SVMs

Kristen Grauman

Example: Learning gender w/ SVMs

SVMs performed better than humans, at either resolution

ullet

Figure 6. SVM vs. Human performance

Plan for this lecture

- Linear Support Vector Machines
- Non-linear SVMs and the "kernel trick"
- Extensions and further details (briefly)
 - Soft-margin SVMs
 - Multi-class SVMs
 - Comparison: SVM vs logistic regression
- Why SVM solution is what it is (briefly)

subject to
$$y_i \boldsymbol{w}^T \boldsymbol{x}_i \geq 1$$
 ,
 $\forall i = 1, \dots, N$

Soft-margin SVMs (allow misclassification)

subject to
$$y_i \boldsymbol{w}^T \boldsymbol{x}_i \ge 1 - \xi_i,$$

 $\xi_i \ge 0, \quad \forall i = 1, \dots, N$

Slack variables in soft-margin SVMs

Figure from Bishop

Effect of margin size vs miscl. cost (c)

Training set

Misclassification ok, want large margin

Misclassification not ok

Image: Kent Munthe Caspersen

Effect of margin size vs miscl. cost (c)

Including test set A

Misclassification ok, want large margin

Misclassification not ok

Image: Kent Munthe Caspersen

Effect of margin size

Including test set B

Misclassification ok, want large margin

Misclassification not ok

Image: Kent Munthe Caspersen

Multi-class problems

Instead of just two classes, we now have C classes

- E.g. predict which movie genre a viewer likes best
- Possible answers: action, drama, indie, thriller, etc.

Two approaches:

- One-vs-all
- One-vs-one

Multi-class problems

One-vs-all (a.k.a. one-vs-others)

- Train C classifiers
- In each, pos = data from class *i*, neg = data from classes other than *i*
- The class with the most confident prediction wins
- Example:
 - You have 4 classes, train 4 classifiers
 - 1 vs others: score 3.5
 - 2 vs others: score 6.2
 - 3 vs others: score 1.4
 - 4 vs other: score 5.5
 - Final prediction: class 2
- Issues?

Multi-class problems

One-vs-one (a.k.a. all-vs-all)

- Train C(C-1)/2 binary classifiers (all pairs of classes)
- They all vote for the label
- Example:
 - You have 4 classes, then train 6 classifiers
 - 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4
 - Votes: 1, 1, 4, 2, 4, 4
 - Final prediction is class 4

Let
$$h(z) = max(0, 1 - z)$$

We have the objective to minimize ξ_i where: $y_i \mathbf{w}^T \mathbf{x}_i \ge 1 - \xi_i$ $\xi_i \ge 1 - y_i \mathbf{w}^T \mathbf{x}_i$ $\xi_i \ge 0$ $\xi_i \ge max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$

Then we can define a loss:

$$h(y_i \mathbf{w}^T \mathbf{x}_i) = max(0, 1 - y_i \mathbf{w}^T \mathbf{x}_i)$$

and unconstrained SVM objective:

$$min_{\mathbf{w}}\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_i^N h(y_i\mathbf{w}^T\mathbf{x}_i)$$

SVMs vs logistic regression

 When viewed from the point of view of regularized empirical loss minimization, SVM and logistic regression appear quite similar:

SVM:
$$\sum_{i=1}^{n} \left(1 - y_i \left[w_0 + \mathbf{x}_i^T \mathbf{w}_1 \right] \right)^+ + \| \mathbf{w}_1 \|^2 / 2$$

$$\sum_{i=1}^{n} \underbrace{-\log P(y_i | \mathbf{x}, \mathbf{w})}_{-\log \sigma\left(y_i \left[w_0 + \mathbf{x}_i^T \mathbf{w}_1 \right] \right)} + \| \mathbf{w}_1 \|^2 / 2$$

where $\sigma(z) = (1 + \exp(-z))^{-1}$ is the logistic function.

(Note that we have transformed the problem maximizing the penalized log-likelihood into minimizing negative penalized log-likelihood.)

SVMs vs logistic regression

• The difference comes from how we penalize "errors":

Both:
$$\sum_{i=1}^{n} \operatorname{Loss}\left(\underbrace{y_i \left[w_0 + \mathbf{x}_i^T \mathbf{w}_1\right]}_{i=1}\right) + \|\mathbf{w}_1\|^2/2$$

SVMs: Pros and cons

- Pros
 - Kernel-based framework is very powerful, flexible
 - Often a sparse set of support vectors compact at test time
 - Work very well in practice, even with very small training sample sizes
 - Solution can be formulated as a quadratic program (next time)
 - Many publicly available SVM packages: e.g. LIBSVM, LIBLINEAR, SVMLight
- Cons
 - Can be tricky to select best kernel function for a problem
 - Computation, memory
 - At training time, must compute kernel values for all example pairs
 - Learning can take a very long time for large-scale problems