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Classification

e Given features x, predict categorical output y

* For example:

— Given attributes of a house (e.g. square footage
and age built), predict whether it will be bought
for the asking price or for less

— Given temperature, predict whether it will rain,
snow, or be sunny

* The rest of the course will cover different
supervised approaches to classification



Plan for this lecture

* The simplest classifier: K-Nearest Neighbors
— Algorithm and example use
— Generalizing: Distance metrics, weighing neighbors
— Problems: curse of dimensionality, picking K

* Logistic regression
— Probability: review
— Linear regression for classification?
— Maximum likelihood solution for logistic regression
— Related algorithm: perceptron




Nearest Neighbors: Key ldea

* Atype of supervised learning: We want to
earn to predict, for a new data point x, its
abel y (e.g. spam / not spam)

* Don’t learn an explicit function F: X 2 Y
e Keep all training data {X, Y}

* For a test example x, find the training example
X. closest to it (e.g. using Euclidean distance)

* Then copy the target label y, as the label for x



Related Methods / Synonyms

Instance-based methods
Exemplar methods

Memory-based methods
Non-parametric methods



Instance/Memory-based Learning

Four things make a memory based learner:
* A distance metric

 How many nearby neighbors to look at?
* A weighting function (optional)

* How to fit with the local points?

Slide credit: Carlos Guestrin



1-Nearest Neighbor Classifier

Four things make a memory based learner:

* Adistance metric
— Euclidean (and others)

 How many nearby neighbors to look at?
-1

* A weighting function (optional)
— Not used

* How to fit with the local points?
— Predict the same output as the nearest neighbor

Slide credit: Carlos Guestrin



1-Nearest Neighbor Classifier
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f(x) = label of the training example nearest to x

Adapted from Lana Lazebnik



K-Nearest Neighbor Classifier

Four things make a memory based learner:

* Adistance metric
— Euclidean (and others)

 How many nearby neighbors to look at?
— K

* A weighting function (optional)
— Not used

* How to fit with the local points?
— Predict the average output among the nearest neighbors

Slide credit: Carlos Guestrin



K-Nearest Neighbor Classifier

* For a new point, find the k closest points from
training data (e.g. k=5)
« Labels of the k points “vote™ to classify

l |
Black = negative vt e . .. ** Ifquery lands here, the 5
Red = positive . ‘ *» _“.+ * NN consist of 3 negatives
1, ' * and 2 positives, so we
r "« classify it as negative.
ol

Slide credit: David Lowe



1-nearest neighbor

X2

x1

Slide credit: Derek Hoiem



3-nearest neighbor
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Slide credit: Derek Hoiem



5-nearest neighbor

X2

x1

What are the tradeoffs of having a too large k? Too small k?

Slide credit: Derek Hoiem



Formal Definition

* Let x be our test data point, and N,(x) be the
indices of the k nearest neighbors of x

e Classification:
y = argmax #(y; = ¢)

y = argmax, Z I(y; = ¢)

. i€Ng ()
* Regression:

yZ% Z Yi

1€ENK(x)



Example: Predict where this picture was taken

Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008



Example: Predict where this picture was taken
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Example: Predict where this picture was taken

Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008



6+ million geotagged photos
by 109,788 photographers

Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008



Scene Matches

Madrid

=

Paris

Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008



Hays and Efros, IM2GPS: Esti



Scene Matches

england France

Croatia

europe Barcelona Austria

Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008
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Hays and Efros, IM2GPS: Estir



Scene Matches

Thailand

Thailand

Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008



Houston Thailand Houston

Mendoza

Thailand

Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008



The Importance of Data
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Hays and Efros, IM2GPS: Estimating Geographic Information from a Single Image, CVPR 2008



k-Nearest Neighbor

Four things make a memory based learner:

* Adistance metric
— Euclidean (and others)

 How many nearby neighbors to look at?
— k

* A weighting function (optional)
— Not used

* How to fit with the local points?
— Just predict the average output among the nearest neighbors

Slide credit: Carlos Guestrin



Distances

Suppose | want to charge my overall distance
more for differences in x, direction as
opposed to x, direction

Setup A: equal weighing on all directions
Setup B: more weight on x, direction

Will my neighborhoods be longer in the x, or
X, direction?



Voronoi partitioning

* Nearest neighbor regions

e All pointsin a region are
closer to the seed in that
region than to any other
seed (black dots = seeds)

Figure from Wikipedia



Multivariate distance metrics

Suppose the input vectors x,, X,, ...X, are two dimensional:

X, = (X1, %2 ), %= (X1, x,2), oo, Xy = (X1, X2 )

Dist(xi,xj) = (x1 - le)z + (X — xj2)2 Dist(xi,xj) =(xt — Xj1)2+(3xi2 _ 3xj2)2

The relative scalings in the distance metric affect region shapes

Adapted from Carlos Guestrin



Distance metrics

* Euclidean: d(x,z) = [» (z;— 2)?]?

1=1

D
* Minkowski: d(x,z) =Y |z —z|"]7
1=1

. D 5
* . Z Li — %4
Mahalanobis: d(x, z) ( - )

\31 ¢

dx,z) = (x —z) A(x — z)

(where A is a positive semidefinite matrix,
i.e. symmetric matrix with all non-negative eigenvalues)



Distance metrics cuiea

Voronoi diagrams of 20 points under two different metrics

Manhattan

Euclidean distance Manhattan distance

Figures from Wikipedia



Another generalization: Weighted K-NNs

* Neighbors weighted differently:
— Use all samples, i.e. K= N .
— Weight on i-th sample: w; = e  o* Z

— 0 = the bandwidth parameter, expresses how
quickly our weight function “drops off” as points
get further and further from the query x

2
i

N
e Classification: vy = argmax, Z wI(y; = ¢)
1=1

S wiy;

* Regression: Yy = "=




Another generalization: Weighted K-NNs

e Extremes

— Bandwidth = infinity: prediction is dataset average
— Bandwidth = zero: prediction becomes 1-NN



Kernel Regression/Classification

Four things make a memory based learner:

* A distance metric
— Euclidean (and others)

 How many nearby neighbors to look at?
— All of them

* A weighting function (optional)
— w;, = exp(-d(x, query)? / 0?)
— Nearby points to the query are weighted strongly, far points weakly.
The o parameter is the kernel width / bandwidth.

* How to fit with the local points?
— Predict the weighted average of the outputs

Adapted from Carlos Guestrin



Problems with Instance-Based Learning

 Too many features?

— Doesn’t work well if large number of irrelevant features,
distances overwhelmed by noisy features

— Distances become meaningless in high dimensions (the
curse of dimensionality)

 What is the impact of the value of K?

* Expensive
— No learning: most real work done during testing

— For every test sample, must search through all dataset —
very slow!

— Must use tricks like approximate nearest neighbor search
— Need to store all training data

Adapted from Dhruv Batra



Curse of Dimensionality

How many neighborhoods are there?
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Curse of Dimensionality

Regions become more sparsely populated given the same amount of data
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Figures from https://www.kdnuggets.com/2017/04/must-know-curse-dimensionality.html, https://medium.freecodecamp.org/the-curse-of-dimensionality-how-we-can-save-big-data-from-itself-d9fa0f872335



KNN Decision Boundary

simplifies /

- Increasing k °mplicates qacision boundary




KNN Decision Boundary

+ Increasing k “simplifies” decision boundary
— Majority voting means less emphasis on individual points

K=1 K=3

Slide credit: Alexander Ihler



KNN Decision Boundary

+ Increasing k “simplifies” decision boundary
— Majority voting means less emphasis on individual points

K=5 K=7

Slide credit: Alexander Ihler



KNN Decision Boundary

 Increasing k “simplifies” decision boundary
— Majority voting means less emphasis on individual points

K=25

Slide credit: Alexander Ihler
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Slide credit: Alexander lhler



Summary

K-Nearest Neighbor is the most basic and
simplest to implement classifier

Cheap at training time, expensive at test time

Unlike other methods we’ll see later, naturally
works for any number of classes

Pick K through a validation set, use approximate
methods for finding neighbors

Success of classification depends on the amount
of data and the meaningfulness of the distance
function (also true for other algorithms)



Plan for this lecture

* The simplest classifier: K-Nearest Neighbors
— Algorithm and example use
— Generalizing: Distance metrics, weighing neighbors
— Problems: curse of dimensionality, picking K

* Logistic regression
— Probability: review
— Linear regression for classification?
— Maximum likelihood solution for logistic regression
— Related algorithm: perceptron




Probability Review

A is non-deterministic event

Can think of A as a Boolean-valued variable

Examples
A = your next patient has cancer
A = Steelers win Super Bowl! LIl

Dhruv Batra



Interpreting Probabilities

What does P(A) mean?

Frequentist View
limit N> oo #(A is true)/N
frequency of a repeating non-deterministic event

Bayesian View
P(A) is your “belief” about A

Adapted from Dhruv Batra



Axioms of Probability

O<=P(A) <=1

P(false) =0

P(true) =1

P(A v B)=P(A) + P(B)— P(A ~ B)

Event space of

all possible —_— -
worlds Worlds in which

A is true

Its areais 1—

Worlds in which A is False

Dhruv Batra, Andrew Moore

P(A) = Area of
reddish oval



Axioms of Probability

O<=P(A)<=1

P(false) =0

P(true) =1

P(A v B)=P(A) + P(B)— P(A ~ B)

Dhruv Batra, Andrew Moore

The area of A can’t/get
any smaller than O

And a zero area would
mean no world could
ever have A true



Axioms of Probability

0<= P(A) <=1

P(false) =0

P(true) =1

P(A v B) =P(A) + P(B) — P(A ~ B)

The area of A can’t/get
any bigger than 1

And an area of 1 would
mean all worlds will have
A true

Dhruv Batra, Andrew Moore



Axioms of Probability

0<= P(A) <= 1
P(false) =0
P(true) =1
P(Av B)=P(A) + P(B)— P(A " B)
A P(Aor B

Simple addition and subtraction

Dhruv Batra, Andrew Moore



Probabilities: Example Use

Apples and Oranges

Chris Bishop



Marginal, Joint, Conditional

&)
=
Marginal Probability
Y5 g }TJ _ _ G
p(X =x;) = N
L
Joint Probability Conditional Probability
p(X =2, Y =y;) = == P(Y:yﬂX:%):C—:

Chris Bishop



Joint Probability

* P(X,,...X,) gives the probability of every combination of values (an n-
dimensional array with v values if all variables are discrete with v values,

all v values must sum to 1):

positive negative

circle square circle square
red 10.20 J|l0.02 | red 10.05 ||{0.30 |
blue 0.02 0.01 blue 0.20 0.20

* The probability of all possible conjunctions (assignments of values to
some subset of variables) can be calculated by summing the appropriate
subset of values from the joint distribution.

P(red Acircle)

P(red)

* Therefore, all conditional probabilities can also be calculated.

P(positive | red Acircle)

Adapted from Ray Mooney




Marginal Probability

NN NN N

p(X,y)

Dhruv Batra, Erik Suddherth



Conditional Probability

P(Y=y | X=x): What do you believe about Y=y, if
| tell you X=x?

P(Andy Murray wins Australian Open 2019)?

What if | tell you:

He has won it five times before
He is currently ranked #307

Dhruv Batra



Conditional Probability

p(X,Y) p(Y)

p(X) p(X[Y =1)

S

Chris Bishop

56



Conditional Probability

P S

A FFFFA

i |
N e oy e w4 ]|

Dhruv Batra, Erik Suddherth



Sum and Product Rules

Sum Rule

Product Rule

Chris Bishop



Chain Rule

Generalizes the product rule:

P (ﬁ :1,:,:) — ﬁp (:1,:;
k=1 k=1

hﬂi)
Example:

P[:*_L-i! *_13!*_125 *_11) — P[:*_Li | *_13_1 *_12:'*_11) ] P[:*_L?r | *_12_1 *_11) ] P[:fli | *_11} ] P(fll)

Equations from Wikipedia



Independence

A and B are independent iff:
P(A|B)=P(A)
P(B|A)=P(B)

These two constraints are logically equivalent

Therefore, if A and B are independent:

P(ANB) oy
P(B)

P(A|B) =

P(AAB)=P(A)P(B)

Ray Mooney



Independence

Marginal: P satisfies (X L Y) if and only if

P(X=x,Y=y) = P(X=x) P(Y=y),
VxeVal(X), yeVal(Y)

Conditional: P satisfies (X LY | Z) if and only if

P(X,Y|Z) = P(X]|Z) P(Y]|Z),
VxeVal(X), yeVal(Y), zeVal(Z)

Dhruv Batra



Independence

P{x.y)

X1lY

p(z,y) = p(x)p(y)
forallr e X,ye )y

Dhruv Batra, Erik Suddherth



Bayes’ Theorem

p(X]Y)p(Y)
p(X)

p(Y|X) =

p(X) =) p(X|Y)p(Y)

posterior o likelihood % prior

Chris Bishop



Expectations

Conditional Expectation
(discrete)

Approximate Expectation
(discrete and continuous)

Chris Bishop



Entropy

Hlz] = — ) p(x)logy p(z)

Important quantity in
e coding theory
e statistical physics
* machine learning

Chris Bishop



Entropy

3.09

H =

0.5

v
3
S

sal|igeqo.d

177

H =

0.5

'}
-
jome)

sal|igeqo.d

Chris Bishop



The Kullback-Leibler Divergence

KLGlo) = ~ [poomatdx— (= [ 5601 peo dx)
o)

KL(pl||q) ~ Z{ Inq(x,|0) + Inp(x,)}

n=1

KL(pllq) = 0 KL(pl|q) # KL(q||p)

Chris Bishop



Mutual Information

I[x,y] = Xymﬁ)WD

[ ()

I[x,y] = Hx|] — H[x|y|] = H[y] — Hly|x]

Chris Bishop



Likelihood / Prior / Posterior

* A hypothesis (model, function, parameter set,
weights) is denoted as h; it is one member of the
hypothesis space H

 Aset of training examples is denoted as D, a
collection of (x, y) pairs for training

* Pr(h)—the prior probability of the hypothesis —
without observing any training data, what is the
probability that h is the target function we want?

Adapted from Rebecca Hwa



Likelihood / Prior / Posterior

 Pr(D)—the prior probability of the observed data
— chance of getting the particular set of training
examples D

 Pr(h|D)—the posterior probability of h — what is
the probability that h is the target given that we
have observed D?

 Pr(D]|h)—the probability of getting D if h were
true (a.k.a. likelihood of the data)

 Pr(h|D)=Pr(D|h)Pr(h)/Pr(D)

ecca Hwa



Rebecca

MLE and MAP Estimation

Maximum likelihood estimation (MLE):
h,, =argmax Pr(D|h)

Maximum-a-posteriori (MAP) estimation:
hyap = argmax,, Pr(h|D)
= argmax, Pr(D|h)Pr(h)/Pr(D)
= argmax,, Pr(D|h)Pr(h)

Hwa



Classification via regression

e Suppose we ignore the fact that the target output ¥ is binary
(e.g., 0/1) rather than a continuous variable

e So we will estimate a linear regression function
f(x;w) = wo+wizy + ...+ wyry
T
= Wo+ X Wi,

based on the available data as before.

® Objective we want to minimize:

Tommi Jaakkola, MIT CSAIL



Classification via regression cont’d

e We can use the resulting regression function

f(X; W) — Wy —+ XTVAV1,

to classify any new (test) example x according to

label = 1 if f(x;w) > 0.5, and label = 0 otherwise

e f(x;w) = 0.5 therefore defines a linear decision boundary
that partitions the input space into two class specific regions
(half spaces)

Tommi Jaakkola, MIT CSAIL



Classification via regression cont’d

e Given the dissociation between the objective (classification)
and the estimation criterion (regression) it is not clear that
this approach leads to sensible results

Tommi Jaakkola, MIT CSAIL



Classification via regression cont’d

Figures adapted from from Andrew Ng

N
(Yes) 1=

Malignant ?

(No) O =
umor Size



Classification via regression cont’d

N
(Yes) 1=

Malignant ?

(No) O =
umor Size

AN
(Yes) 14 X XX X

Malignant ?

(No) 0 =

Tumor Size

Figures adapted from from Andrew Ng



The effect of outliers: Another example

—4 -2 0 2 4 6 8 —4 -2 0 2 4 6 8
Magenta = least squares, green = logistic regression

Figures from Bishop



Logistic regression

* Also has “regression” in the name but it’s a method
for classification

e Also uses a linear combination of the features to
predict label, but in a slightly different way

* Fit a sigmoid function to model the probability of the
data belonging to a certain class

14 S

P(y=1]x) >

f(x) = dot(w, x) + b



Background: simple decision theory

e Suppose we know the class-conditional densities p(x|y) for
y = 0,1 as well as the overall class frequencies P(y).

How do we decide which class a new example x’ belongs to
so as to minimize the overall probability of error?

class 1 density

Tommi Jaakkola, MIT CSAIL



Background: simple decision theory

e Suppose we know the class-conditional densities p(x|y) for
y = 0,1 as well as the overall class frequencies P(y).

How do we decide which class a new example x’ belongs to
so as to minimize the overall probability of error?

The minimum probability of

o 1 crsty error decisions are given by
X|y=
-y = argmax{p(x'|y)P(y)}
. y=0,
| = argmax{ P(y[x') }
E y:O,]_

Tommi Jaakkola, MIT CSAIL



Logistic regression

e The optimal decisions are based on the posterior class
probabilities P(y|x). For binary classification problems, we
can write these decisions as

Py = 1]x)

>0
P(y = 0]x)

y=11if log

and y = 0 otherwise.

Tommi Jaakkola, MIT CSAIL



Logistic regression
e The optimal decisions are based on the posterior class
probabilities P(y|x). For binary classification problems, we
can write these decisions as
Py =1}x)
P(y = 0[x)

y=11if log > 0

and y = 0 otherwise.

e We generally don't know P(y|x) but we can parameterize
the possible decisions according to

Py = 1]x)
P(y = 0|x)

log = f(x;w) = wo +x Wy

Tommi Jaakkola, MIT CSAIL



Logistic regression cont’d
e Our log-odds model
Ply=1x) T
P(y = 0|x) = Wo + X" W1

gives rise to a specific form for the conditional probability
over the labels (the logistic model):

log

Py =1]x,w) = o (wo + x' w1)

1

where ol
0 (2) = (1 +exp(—2))~" o
s a logistic  "squashing  *
function” that turns linear
predictions into probabilities

Tommi Jaakkola, MIT CSAIL



Logistic regression: decisions

e Logistic regression models imply a linear decision boundary

class 1

Tommi Jaakkola, MIT CSAIL



Fitting logistic regression models

® \We can fit the logistic models using the maximum (conditional)
log-likelihood criterion

[(D;w) = log P(yilxi, w)
1=1

where

Ply=1|x,w) =0 (wo+x" wy)

1
* Solution: find roots of \(yz — P(y; = Hxi,w))J { | ] =0
predicti;n error

Tommi Jaakkola, MIT CSAIL



Stochastic gradient ascent
e We can try to maximize the log-likelihood in an on-line or
incremental fashion.

Given each training input x; and the binary (0/1) label y;,
we can change the parameters w slightly to increase the
corresponding log-probability

s,
W W+775,—W10gp(yifxiaw)

X

1
= w+n (yi— Py = 1|x;, w)) [ ]
predict?gn error

where 1 is the learning rate.

Tommi Jaakkola, MIT CSAIL



Whiteboard: solution



Logistic Regression / MLE Example

 Want to find the weight vector that gives us
the highest P(y _i|x_i, w),

 where P(y i=1|x_i,w)=1/(1+ exp(-w'*x))

* Consider two weight vectors and three
samples, with corresponding likelihoods:

Py 1=1|x1, |P(y2=1]|x2, [Py 3=1]x_3,
w_i) w_i) w_i)

w1 0.3 0.1 0.4

w_2 0.7

True label: 1 0 1




Logistic Regression / MLE Example

Then the value of the objective for w i is:
Ply 1=1|x1,w.i)*
(1-Ply 2=1|x 2,w i))*

Ply 3=1|x 3,w. i)
So the scoreforw 1is:0.3*0.9*0.4
And the score forw_2is: 0.7 * 0.2 * 0.2
Thus, w_1 is a better weight vector = model



Plan for this lecture

* The simplest classifier: K-Nearest Neighbors
— Algorithm and example use
— Generalizing: Distance metrics, weighing neighbors
— Problems: curse of dimensionality, picking K

* Logistic regression
— Probability: review
— Linear regression for classification?
— Maximum likelihood solution for logistic regression
— Related algorithm: perceptron




The perceptron algorithm

Rosenblatt (1962) X
Prediction rule: y(x) = f (WT(,b(X))
where
+1, a=0
fo={ 0z

Want: w'p(x,)t, > 0 (t,=+1or-1)

Loss: FEp(w) = — Z W' @,

neM

(just using the Misclassified examples)



The perceptron algorithm

¢ LOSS: EP Z WTQSQQZL’R

ncM

* Learning algorithm update rule:

w = w(™ — ) VEp(w) = w'™ +no,t,

* |Interpretation:

— If sample is misclassified and is positive, make the
weight vector more like it

— If sample is misclassified and negative... unlike it



The perceptron algorithm (red=pos)

W =W + X
(x is pos)

Figures from Bishop

1

0.5f

1

0571

0571




Summary: Tradeoffs of
classification methods thus far

 Nearest neighbors

Non-parametric method; basic formulation cannot ignore/focus on
different feature dimensions

Slow at test time (large search problem to find neighbors)
Need to store all data points (unlike SVM, coming next)
Decision boundary not necessarily linear

Naturally handles multiple classes

» Logistic regression (a classification method)

Models the probability of a label given the data
Decision boundary corresponds to w' x = 0 (a line)

* Perceptron
— Same decision boundary as logistic regression (a line)
— Simple update rule
— Won’t converge for non-linearly-separable data



