
CS 1675: Intro to Machine Learning

Regression and Overfitting

Prof. Adriana Kovashka
University of Pittsburgh

September 18, 2018

Regression

• Given some features x, predict a continuous
variable y, e.g.
– Predict the cost of a house based on square

footage, age built, neighborhood, photos

– Predict temperature tomorrow based on
temperature today

– Predict how far a car will go based on car’s speed
and environment

• These all involve fitting a function (curve)
given training pairs (xi, yi)

Polynomial Curve Fitting

Slide credit: Chris Bishop

Sum-of-Squares Error Function

Slide credit: Chris Bishop

0th Order Polynomial

Slide credit: Chris Bishop

1st Order Polynomial

Slide credit: Chris Bishop

3rd Order Polynomial

Slide credit: Chris Bishop

9th Order Polynomial

Slide credit: Chris Bishop

Plan for Today

• Linear regression

• Closed-form solution via least squares

• Solution via gradient descent

• Dealing with outliers

• Generalization: bias and variance

• Regularization

Linear Models

• Represent label y as a linear combination of the
features x (i.e. weighted average of the features)

• Sometimes want to add a bias term: can add 1 as
x0 such that x = (1, x1, …, xd)

Figure from Milos Hauskrecht

Regression

f(x, w): x→ y

• At training time: Use given {(x1,y1), …, (xN,yN)},
to estimate mapping function f

– Objective: minimize (yi – f(w, xi))
2, for all i = 1, …, N

– xi are the input features (d-dimensional)

– yi is the target continuous output label (given by
human/oracle)

• At test time: Use f to make prediction for a
new sample xtest (not in the training set)

= b + mx

1-d example

• Fit line to points

• Use parameters of line to predict the y-
coordinate of a new data point xnew

Figure from Greg Shakhnarovich

new

2-d example

• Find parameters of plane

Figure from Milos Hauskrecht

Slide credit: Greg Shakhnarovich

(Derivation on board)

test test

Challenges

• Computing the pseudoinverse might be slow for
large matrices

– Cubic in number of features D

– Linear in number of samples N

• We might want to adjust solution as new examples
come in, without recomputing the pseudoinverse for
each new sample that comes in

• Another solution: Gradient descent

– Cost: linear in both D and N

– If D > 10,000, use gradient descent

Gradient descent

Andrej Karpathy

Want to minimize a loss function

• Loss function: squared error, true/predicted y

• How to minimize?

– Model is a function of the weights w, hence loss is
a function of the weights

– Find derivative of loss with respect to weights,
set to 0 (minimum will be an extremum and if
function is convex, there will be only one)

Derivative of the loss function

In 1-dimension, the derivative of a function:

In multiple dimensions, the derivative is called a gradient, which is the

vector of partial derivatives with respect to each dimension of the input.

Adapted from Andrej Karpathy

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy

gradient dW:

[-2.5,

?,

?,

?,
?,

?,

?,
?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

Andrej Karpathy

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

Andrej Karpathy

gradient dW:

[-2.5,

0.6,

?,

?,
?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Andrej Karpathy

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Andrej Karpathy

Loss gradients

• Denoted as (diff notations):

• i.e. how loss changes as function of weights

• Change the weights in such a way that makes
the loss decrease as fast as possible

Gradient descent

• Update weights: move opposite to gradient

L

Learning rate
Time

Figure from Andrej Karpathy

original w

negative gradient direction
w1

w2

Gradient descent

• Iteratively subtract the gradient with respect
to the model parameters (w)

• I.e. we’re moving in a direction opposite to
the gradient of the loss

• I.e. we’re moving towards smaller loss

Classic vs stochastic gradient descent

• In classic gradient descent, we compute the
gradient from the loss for all training examples

• Could also only use some of the data for each
gradient update

• We cycle through all the training examples
multiple times

• Each time we’ve cycled through all of them once
is called an ‘epoch’

• Allows faster training (e.g. on GPUs),
parallelization

Solution optimality

• Global vs local minima

• Fortunately, least squares is convex

Adapted from Erik Sudderth

Solution optimality

Slide credit: Subhransu Maji

Andrej Karpathy

Learning rate selection
The effects of step size (or “learning rate”)

Summary: Closed form vs gradient descent

• Closed form:
– Deterministic and elegant

– Need to compute pseudoinverse of a large matrix
from all data samples’ features

• Gradient descent:
– Update solution based on randomly chosen

samples, iterate over all samples many times

– Update model=weights with negative increment
of the derivative of the loss function wrt weights

– More efficient if lots of samples

– Can be parallelized

Plan for Today

• Linear regression

• Closed-form solution via least squares

• Solution via gradient descent

• Dealing with outliers

• Generalization: bias and variance

• Regularization

Outliers affect least squares fit

Kristen Grauman

Outliers affect least squares fit

Kristen Grauman

Hypothesize and test

1. Try all possible parameter combinations
– Repeatedly sample enough points to solve for parameters
– Each point votes for all consistent parameters
– E.g. each point votes for all possible lines on which it might lie

2. Score the given parameters: Number of consistent points

3. Choose the optimal parameters using the scores

• Noise & clutter features?
– They will cast votes too, but typically their votes should be inconsistent

with the majority of “good” features

• Two methods: Hough transform and RANSAC

Adapted from Derek Hoiem and Kristen Grauman

Hough transform for finding lines

Connection between feature (x,y) and Hough (m,b) spaces

• A line in the feat space corresponds to a point in Hough space

x

y

m

b

m0

b0

feature space Hough (parameter) space

Steve Seitz

Hough transform for finding lines

Connection between feature (x,y) and Hough (m,b) spaces

• A line in the feat space corresponds to a point in Hough space

• What does a point (x0, y0) in the feature space map to?

x

y

m

b

feature space Hough (parameter) space

– Answer: the solutions of b = -x0m + y0

– This is a line in Hough space

x0

y0

Steve Seitz

Hough transform for finding lines

How can we use this to find the most likely parameters (m,b)

for the most prominent line in the feature space?

• Let each edge point in feature space vote for a set of

possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with

the most votes indicate line in feature space

x

y

m

b

feature space Hough (parameter) space

Steve Seitz

RANdom Sample Consensus

(RANSAC)
• RANSAC loop:

1. Randomly select a seed group of s points on which to

base model estimate

2. Fit model to these s points

3. Find inliers to this model (i.e., points whose distance

from the line is less than t)

4. If there are d or more inliers, re-compute estimate of

model on all of the inliers

5. Repeat N times

• Keep the model with the largest number of inliers

Modified from Kristen Grauman and Svetlana Lazebnik

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

Silvio Savarese

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Silvio Savarese

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Silvio Savarese



RANSAC

6=IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example

Silvio Savarese



RANSAC

14=IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Silvio Savarese

Plan for Today

• Linear regression

• Closed-form solution via least squares

• Solution via gradient descent

• Dealing with outliers

• Generalization: bias and variance

• Regularization

• How well does a learned model generalize from the
data it was trained on to a new test set?

Training set (labels known) Test set (labels unknown)

Slide credit: L. Lazebnik

Generalization

• Components of expected loss

– Noise in our observations: unavoidable

– Bias: how much avg model over all training sets differs from true model

• Error due to inaccurate assumptions/simplifications by the model

– Variance: how much models estimated from different training sets differ

from each other

• Underfitting: model too “simple” to represent all relevant class

characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model too “complex” and fits irrelevant characteristics

(noise) in the data

– Low bias and high variance

– Low training error and high test error

Adapted from L. Lazebnik

Generalization

Bias-Variance Trade-off

• Models with too few

parameters are inaccurate

because of a large bias (not

enough flexibility).

• Models with too many

parameters are inaccurate

because of a large variance

(too much sensitivity to the

sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model Blue curve = our predicted model/fit

Purple dots = possible test points

Polynomial Curve Fitting

Slide credit: Chris Bishop

Sum-of-Squares Error Function

Slide credit: Chris Bishop

0th Order Polynomial

Slide credit: Chris Bishop

1st Order Polynomial

Slide credit: Chris Bishop

3rd Order Polynomial

Slide credit: Chris Bishop

9th Order Polynomial

Slide credit: Chris Bishop

Over-fitting

Root-Mean-Square (RMS) Error:

Slide credit: Chris Bishop

Effect of Data Set Size

9th Order Polynomial

Slide credit: Chris Bishop

Effect of Data Set Size

9th Order Polynomial

Slide credit: Chris Bishop

Regularization

• Penalize large coefficient values

• (Remember: We want to minimize this expression.)

Adapted from Chris Bishop

Regularization

Slide credit: Chris Bishop

Regularization

Slide credit: Chris Bishop

Polynomial Coefficients

Slide credit: Chris Bishop

Polynomial Coefficients

Adapted from Chris Bishop

No regularization Huge regularization

Effect of Regularization

Slide credit: Chris Bishop

Training vs test error

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Effect of Training Set Size

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Effect of Training Set Size

Testing

Training

Generalization Error

Number of Training Examples

E
rr

o
r

Fixed prediction model

Adapted from D. Hoiem

Choosing the trade-off between

bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem

Overfitting take-away

• Three kinds of error

– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to perfectly estimate
parameters from limited data

• Try simple models first, and use increasingly
powerful models with more training data

• Important note: Overfitting applies to all tasks in
machine learning, not just regression!

Adapted from D. Hoiem

