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Unsupervised Learning

 We only use the features X, not the labels Y

* This is useful because we may not have any
labels but we can still detect patterns

* For example:

— We can detect that news articles revolve around
certain topics, and group them accordingly

— Discover a distinct set of objects appear in a given
environment, even if we don’t know their names,
then ask humans to label each group

— Identify health factors that correlate with a disease



Plan for this lecture

* Clustering
— Motivation and uses
— K-means clustering
— Other methods and evaluation

* Dimensionality reduction
— PCA algorithm (briefly) and demo
— Some applications of PCA



What is clustering?

* Grouping items that “belong together” (i.e.
have similar features)



Feature representation (x)

A vector representing measurable characteristics
of a data sample we have

E.g. a glass of juice can be represented via its
color = {yellow=1, red=2, green=3, purple=4} and
taste = {sweet=1, sour=2}

For a given glass i, this can be represented as a
vector: x. = [3 2] represents sour green juice

For D features, this defines a D-dimensional space
where we can measure similarity between
samples



Feature representation (x)
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Why do we cluster?

* Counting

— Feature histograms: by grouping
similar features and counting how
many of each a data sample has

e Summarizing data

— Look at large amounts of data

— Represent a large continuous vector
with the cluster number

 Prediction

— Data points in the same cluster may
have the same labels

— Ask a human to label the clusters

Slide credit: J. Hays, D. Hoiem
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Two uses of clustering in one application

* Cluster, then ask human to label groups

* Compute a histogram to summarize the data

>

Count in this sample

Feature cluster

“giraffe”

3d feature 2d feature



Unsupervised discovery




Clustering algorithms

* In depth
— K-means (iterate between finding centers and
assigning points)
 Briefly
— Mean-shift (find modes in the data)

— Hierarchical clustering (start with all points in separate
clusters and merge)
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pixels

Image segmentation: toy example
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* These intensities define the three groups.

« We could label every pixel in the image according to
which of these primary intensities it is.

* I.e., segment the image based on the intensity feature.
« What if the image isn’t quite so simple?

Source: K. Grauman



« Now how to determine the three main intensities that

define our groups?
 We need to cluster.

Input image

Source: K. Grauman
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« Goal: choose three “centers” as the representative
Intensities, and label every pixel according to which of
these centers it is nearest to.

« Best cluster centers are those that minimize SSD
between all points and their nearest cluster center c:

> > 1p — ¢il|?

clusters 2 points p in cluster 2

Source: K. Grauman
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Clustering

« With this objective, it is a “chicken and egg” problem:

— If we knew the cluster centers, we could allocate
points to groups by assigning each to its closest center.
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— If we knew the group memberships, we could get the
centers by computing the mean per group.
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Source: K. Grauman



K-means clustering

« Basic idea: randomly initialize the k cluster centers, and
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c,, ..., C«
2. Given cluster centers, determine points in each cluster
« For each point p, find the closest c,. Put p into cluster |
3. Given points in each cluster, solve for c,
« Set ¢, to be the mean of points in cluster |
4. If ¢, have changed, repeat Step 2

Properties °r |

global maximum

« Wil always converge to some solution - \local maximum
« Can be a “local minimum” of objective:
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1.

K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Source: A. Moore
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K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k
cluster Center
locations

Source: A. Moore
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K-means

1. Ask user how many
clusters they'd like.
(e.g. k=5)

2. Randomly guess k
cluster Center
locations

3. Each datapoint finds
out which Center it's
closest to. (Thus
each Center “owns”
a set of datapoints)

Source: A. Moore
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K-means |-

1. Ask user how many
clusters they'd like.

(e.g. k=5) 5.0

2. Randomly guess k
cluster Center
locations

3. [Each datapoint finds
out which Center it's
closest to.

4. Each Center finds
the centroid of the
points it owns

Source: A. Moore



K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points It owns...

...and jumps there

...Repeat until
terminated!

Source: A. Moore
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K-means converges to a local minimum
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K-means clustering

* Visualization
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

e Java demo
http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletKM.html

« Matlab demo
http://www.cs.pitt.edu/~kovashka/cs1699 fal5/kmeans demo.m



https://www.naftaliharris.com/blog/visualizing-k-means-clustering/
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html
http://www.cs.pitt.edu/~kovashka/cs1699_fa15/kmeans_demo.m

Time Complexity

* Let n = number of instances, d = dimensionality of
the features, k = number of clusters

« Assume computing distance between two instances
Is O(d)

* Reassigning clusters:
— O(kn) distance computations, or O(knd)

« Computing centroids:

— Each instance vector gets added once to a centroid:
O(nd)

« Assume these two steps are each done once for a
fixed number of iterations I: O(lknd)

— Linear in all relevant factors

Adapted from Ray Mooney



Another way of writing objective

e K-means: Letr,=1ifinstance n belongs to cluster k, 0 otherwise
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« K-medoids (more general distances):
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Probabilistic version:
Mixtures of Gaussians
 Old Faithful data set
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Gaussians

Chris Bishop



Review: Gaussian Distribution
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Mixtures of Gaussians

 Combine simple models into a complex model:

p(x) = 3 mN (K, S pla)y

k=1 '
Component

Mixing coefficient

K=3

* Find parameters through EM (Expectation
Maximization) algorithm

Adapted from Chris Bishop



Initialization
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Segmentation as clustering

Depending on what we choose as the feature space, we
can group pixels in different ways.

Grouping pixels based
on intensity similarity

Feature space: intensity value (1-d)

Source: K. Grauman



guantization of the feature space;
segmentation label map

Source: K. Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we

can group pixels in different ways.

Grouping pixels based
on color similarity

Feature space: color value (3-d)

~ )
R=255

G=200

B=250

Source: K. Grauman



K-means: pros and cons

Pros
« Simple, fast to compute

 Converges to local minimum of
within-cluster squared error

(A): Undesirable clusters

o g e outher
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3 deal clusters

cons/issues
« Setting k? i

— One way: silhouette coefficient
 Sensitive to Initial centers

— Use heuristics or output of another method %?é:g
- Sensitive to outliers o
« Detects spherical clusters %’%& }’f:
0550

G

(A): Two natural clusters (B): &-means clusters

Adapted from K. Grauman



Clustering algorithms

* In depth
— K-means (iterate between finding centers and
assigning points)
 Briefly
— Mean-shift (find modes in the data)

— Hierarchical clustering (start with all points in separate
clusters and merge)



Mean shift algorithm

 The mean shift algorithm seeks modes or local
maxima of density in the feature space

Feature space
(L*u*v* color values)
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Source: K. Grauman



Density estimation

/ Kernel / window with weights that we slide over
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Adapted from D. Hoiem



Mean shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean shift
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Mean shift
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Mean shift

]

® Search
> ® ° ® window
¢ ® ¢ ¢ ® Center of
® ® ° mass
®
® »
®
PY ®
° ’ ® o
F ° F ¢
® ®
o ° ®
® ®
®
o ® o o
®
® ® ®
® ®

Slide by Y. Ukrainitz & B. Sarel



Points in same cluster converge

Source: D. Hoiem



Mean shift clustering

« Cluster: all data points in the attraction basin
of a mode

 Attraction basin: the region for which all
trajectories lead to the same mode

Slide by Y. Ukrainitz & B. Sarel



Mean shift clustering/segmentation

« Compute features for each point (intensity, word counts, etc)
« Initialize windows at individual feature points

« Perform mean shift for each window until convergence
 Merge windows that end up near the same “peak” or mode
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Mean shift segmentation results

A =

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html



Mean shift: Pros and cons

e Pros:

— Does not assume shape on clusters
— Robust to outliers

e Cons:

— Need to choose window size
— Quadratic in the number of samples



Hierarchical Agglomerative Clustering (HAC)

* Assumes a similarity function for determining
the similarity of two instances.

e Starts with all instances in separate clusters
and then repeatedly joins the two clusters that
are most similar until there is only one cluster.

* The history of merging forms a binary tree or
hierarchy.

Slide credit: Ray Mooney



HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster:
Among the current clusters, determine the two
clusters, c;and Ci that are most similar.
Replace c;and ¢; with a single cluster c; U ¢;

Slide credit: Ray Mooney



Agglomerative clustering

1. Say "Every pointis its

“® o . own cluster”
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Agglomerative clustering

1. Say "Every point is its
own cluster”

* T ®* . 2. Find “most similar” pair
° of clusters
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* % ®e
® - ®
L -..
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Copyright @ 2001, 2004, Andrew W. Moore



Agglomerative clustering

. 1. Say "Every pointis its
* o own cluster”
: o o® '@)
° * . 2. Find “most similar” pair
* of clusters

® . e . . * L
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. o cluster

~

Copyright @ 2001, 2004, Andrew W. Moore



Agglomerative clustering

1. Say "Every point is its

«® o %, own cluster”
* T ®* . 2. Find “most similar” pair
* of clusters
® . . SO . ® o .
o "o ce 3. Merge it into a parent
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’ e 4. Repeat
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Copyright @ 2001, 2004, Andrew W. Moare



Agglomerative clustering

1. Say "Every pointis its
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Agglomerative clustering

How many clusters?

- Clustering creates a dendrogram (a tree)
- To get final clusters, pick a threshold

- max humber of clusters or

- max distance within clusters (y axis)

distance
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Cluster Similarity

* How to compute similarity of two clusters each
possibly containing multiple instances?

— Single Link: Similarity of two most similar members.
sim(C;,C;) = max sim(x, y)

XeEC;, YEC;

— Complete Link: Similarity of two least similar members.
sim(c;,c;) = min sim(Xx,Y)

X€C;,YEC;

— Group Average: Average similarity between members.

Adapted from Ray Mooney



Agglomerative clustering: pros & cons

* Pros
— Deterministic
— Flexible (can use any cutoff to declare clusters)
— Interpretable?

e Cons
— Some variants sensitive to noise
— Quadratic in the number of samples



How to evaluate clustering?

* Might depend on application
. 1
* Purity purity(,€) = £ ) max |wy Mgl
¥ !
where () = {wq,ws,...,wx} Isthe setof clusters

and C = {¢y,c3,...,c7} Iisthe setof classes

cluster 1 cluster 2 cluster 3

B Figure 16.1 Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5 (cluster
1); o, 4 (cluster 2); and <, 3 (cluster 3). Purity is (1,/17) x (5+4 +3) = 0.71.

http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html



http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

Summary of Clustering Strategies

e K-means

— Iteratively re-assign points to the nearest cluster
center

* Mean-shift clustering

— Estimate modes

* Agglomerative clustering

— Start with each point as its own cluster and
iteratively merge the closest clusters



Dimensionality reduction

Motivation

Principal Component Analysis (PCA)
Applications

Other methods for dimensionality reduction



Why reduce dimensionality?

Data may intrinsically live in a lower-dim space
Too many features and too few data

Lower computational expense (memory,
train/test time)

Want to visualize the data in a lower-dim space
Want to use data of different dimensionality



Goal

* |[nput: Data in a high-dim feature space

e QOutput: Projection of same data into a lower-
dim space
* Function: high-dim X =2 low-dim X



3D Data

Best 2D Prolectlon
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Slide credit: Erik Sudderth



Some criteria for success

* Find a projection where the data has:
— Low reconstruction error
— High variance of the data



Principal Components Analysis

+ The eigenvectors give you the projection directions — to compute the
embeddings you have to multiply the data by the projections

+ For completeness here is the Matlab code:

function [E, U, lambda] = PCA(X, K)

mu = mean(X); % Data mean

N = size(X,1):; % Number of data

X =X - ones(N,1l)*mu; % Center the data

cov = X"*X: ¥ Data covaraince
[U,lambda] = eigs(covX, K); % Compute top K eigenvalues
E = X*U; % Compute embeddings

Slide credit: Subhransu Maji



Demo

e http://www.cs.pitt.edu/~kovashka/cs1675 fal
8/PCA demo.m

o http://www.cs.pitt.edu/~kovashka/cs1675 fal
8/PCA.m



http://www.cs.pitt.edu/~kovashka/cs1675_fa18/PCA_demo.m
http://www.cs.pitt.edu/~kovashka/cs1675_fa18/PCA.m

Application: Face Recognition

Who's in These Photos?

The photos you uploaded were grouped automatically so you can quickly label and notify friends in these pictures,
(Friends can always untag themselves.)

Who is this? Who is this? Wha is this?

Who is this? Who is this? Who is this?

Image from cnet.com



The space of all face images

e When viewed as vectors of pixel values, face images are
extremely high-dimensional
— 24x24 image = 576 dimensions
— Slow and lots of storage

e But few 576-dimensional vectors are valid face images
e We want to effectively model the subspace of face images

Adapted from Derek Hoiem M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991



Representation and reconstruction

e Face x in “face space” coordinates:

= L+ WU WU, WU WU, T .

Slide credit: Derek Hoiem



| Singular Value Decomposition

- Alternative method to calculate (still subtract mean 1st)
Decompose X=US VT

U*S matrix provides coefficients
Example x; = U, ; S;; V4 + U, Sy, vy + ...

- Gives the least-squares approximation to X of this form
- S i
~ Kx K KxD

NxD U
Nx K

Slide credit: Alexander lhler



From Y. Koren
of BellKor team

| Collaborative Filtering (Netflix)

users

112 |3 |4 |5 |6 |7 |8 |9 |10|11 |12
11| |3 H5 5| |4
5 2 5|4 4 2113
5 3(2]4] [112] [3] [4]3]5
4| |2]14| |5 4 2
5 4342 2|5
611/ 13| |3 2 4

Slide credit: Alexander lhler



From Y. Koren

of BellKor team
Latent Space Models
I
Model ratings matrix as users
“user” and “movie” 1| |3[ | |s] | |5 |4
positions = o= - 2l
T |24 2| (3| |4|3]5 ~
h 5 4 2
Infer values from known S4B e
ratings TBERE 2 4
Extrapolate to unranked ISES
b | -4 | .2 111-2 (3 |5 (-2 |-5 |8 |-4 |3 [(14(24]-9
% .6 i » -8 .7 |.5 1.4 1.3 | -1 14129 (-7 |12 -1 ]13
~ 3 -2 |.3 5 21|-4 |6 (17249 |-3 |4 |8 (.7 [-6|.1
11121 | .3
-7 121 |-2
-1 4 3

Slide credit: Alexander lhler



From Y. Koren

of BellKor team
| Latent Space Models
| o Braveheart
The Color T
Purple
Amadeus
Sense and @ Lethal Weapon
“Chick Sensibility Docar’ &1
flicks”? g
The Lion King Dumb and
_ Dumber
Th%.P”.”CGSS Independence
laries Day

Slide credit: Alexander lhler

escapist



Other dimensionality reduction methods

* Non-linear:

— Kernel PCA (Scholkopf et al., Neural Computation
1998)

— Independent component analysis — Comon, Signal
Processing 1994

— LLE (locally linear embedding) — Roweis and Saul,
Science 2000

— ISOMAP (isometric feature mapping) — Tenenbaum et
al., Science 2000

— t-SNE (t-distributed stochastic neighbor embedding) —
van der Maaten and Hinton, JMLR 2008



t-SNE example

| |

Fig. 8 2D visualization of the SUN Attribute dataset. Each image
in the dataset is represented by the projection of its 102-dimensional
attribute feature vector onto two dimensions using t-Distributed Sto-
chastic Neighbor Embedding (Van der Maaten and Hinton 2008). There
are groups of nearest neighbors, each designated by a color. Interest-
ingly. while the nearest-neighbor scenes in attribute space are seman-

Figure from Genevieve Patterson, 1JCV 2014

tically very similar, for most of these examples (underwater_ocean,
abbey, coast, ice skating rink, field_wild, bistro, office) none of the
nearest neighbors actually fall in the same SUN database category. The
colored border lines delineate the approximate separation of images
with and without the attribute associated with the border. Figure best
viewed in color (Color figure online)



t-SNE example
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