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Motivation

So far we assumed access to plentiful labeled data
What if we have limited or no labeled data?

Learn from unlabeled data (unsupervised learning)

— Use structure in data as “labels” (self-supervised learning)
— Use structure in data to generate similar data (generation)
— Mine for interesting patterns (discovery)

Another approach (not discussed): carefully choose
which data to label (active learning, human-in-the-loop)



Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)
X is data, y is label

Goal: Learn a function to map X ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Serena Young

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc.



Plan for this last lecture

e Self-supervised learning
— For images
— For video

* Visual discovery

— Discovering style-specific elements

* Generation not recognition
— Theory/technique
— Applications



Unsupervised Visual Representation
Learning by Context Prediction

Carl Doersch, Alexei Efros and Abhinav Gupta
ICCV 2015



ImageNet + Deep Learning

» Beagle

- Image Retrieval

- Detection (RCNN)

- Segmentation (FCN)
- Depth Estimation

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



ImageNet + Deep Learning
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Geometry? Boundaries?

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013]

store-bought gimmicks and appliances, the toasters and
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Semantics from a non-semantic task
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Relative Position Task

{aad bk [] & 8 possible locations
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Sample Second Patch

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Patch Embedding

CNN Note: connects across instances!
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Architecture
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Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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What is learned?

ImageNet AlexNet

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015
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Pre-Training for R-CNN

Y A
1. Input 2. Extract region
Image proposals (~2k)

=] warped region

P aeroplane? no.
, .

person? yes.

tvmonitor? no.

3. Compute
CNN features

!

Pre-train on relative-position task, w/o labels

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015

4. Classify
regions

(Girshick et al. 2014]



VOC 2007 Performance

(pretraining for R-CNN)

54.2
46.3

40.7

% Average Precision

ImageNet Labels Relative position No Pretraining

Doersch et al., “Unsupervised Visual Representation Learning by Context Prediction”, ICCV 2015



Shuffle and Learn: Unsupervised Learning
using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert
ECCV 2016



(a)

Positive Tuples (b) Negative Tuples
Temporally Correct order ' :

Original video

Temporally Incorrect order

Fig.1: (a) A video imposes a natural temporal structure for visual data. In many
cases, one can easily verify whether frames are in the correct temporal order (shuffied
or not). Such a simple sequential verification task captures important spatiotemporal
signals in videos. We use this task for unsupervised pre-training of a Convolutional
Neural Network (CNN). (b) Some examples of the automatically extracted positive
and negative tuples used to formulate a classification task for a CNN.
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Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



(a) Data Sampling (b) Triplet Siamese network for sequence

verification
Input Tuple Pt AlexNet architecture
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Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form
positive and negative tuples based on whether the three input frames are in the correct
temporal order. (b) Our triplet Siamese network architecture has three parallel network
stacks with shared weights upto the £c7 layer. Each stack takes a frame as input, and
produces a representation at the f£c7 layer. The concatenated fc7 representations are
used to predict whether the input tuple is in the correct temporal order.
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Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



Benefit of unsupervised but in-domain training

Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51
datasets. We compare different initializations and finetune them for action recognition.

Dataset Initialization Mean Accuracy
UCF101 Random 38.6
(Ours) Tuple verification 50.2
HMDB51 Random 13.3
UCF Supervised 15.2
(Ours) Tuple verification 18.1

20
Misra et al., “Shuffle and Learn: Unsupervised Learning using Temporal Order Verification”, ECCV 2016



A Simple Framework for Contrastive
Learning of Visual Representations

Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton
ICML 2020



https://github.com/google-research/simclr
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https://github.com/google-research/simclr

Plan for this last lecture

e Self-supervised learning
— For images
— For video

* Visual discovery

— Discovering style-specific elements

* Generation not recognition
— Theory/technique
— Applications



What Makes Paris Look like Paris?

Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic,
Alexei Efros

SIGGRAPH 2012



One of these is from Paris
Raise your hand if...

...this is Paris

Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012



We showed 20 subjects:
- 100 Random Street

Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012



Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012

We showed 20 subjects:

- 100 Random Street
View Images

- 50 from Paris

- They classified Paris
non-Paris

- Accuracy: 79%

How do they know?



Our Goal:

Given a large geo-tagged image dataset,
we automatically discover visual elements
that characterize a geographic location

Why might this be a useful task?

Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012



Our Hypothesis

* The visual elements that capture Paris:

—Frequent: Occur often in Paris
—Discriminative: Are not found outside Paris

Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012
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Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012
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Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012
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Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012



Step 1: Nearest Neighbors for Every Patch
Using normalized correlation of HOG features as a distance metric

patch nearest nelghbors
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Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012
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Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012



Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012



Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012



Doersch et al., “What Makes Paris Look Like Paris?”, SIGGRAPH 2012
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Plan for this last lecture

e Self-supervised learning
— For images
— For video

* Visual discovery

— Discovering style-specific elements

* Generation not recognition
— Theory/technique
— Applications



Generative Models

4 e

Training data ~ p,.,(X) Generated samples ~ p,o(X)

Want to learn p,,4¢(X) similar to pg.(X)

Serena Young



Generative Models

A4

Training data ~ p,.,(X) Generated samples ~ P, 4(X)

Want to learn p,,4¢(X) similar to pg.(X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p_4.,(X)
- Implicit density estimation: learn model that can sample from p_..,(X) w/o explicitly defining it

Serena Young



Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?

Serena Young



Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to Output: Sample from
represent this complex training distribution
transformation?
A: A neural network! Generator
Network
Input: Random noise z

Serena Young



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Serena Young



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

T

Discriminator Network

Fake Images Real Images
(from generator) , 5 ‘ : (from training set)
A

Generator Network

f

Random noise Z

Serena Young



Adversarial Networks Framework

Discriminator
Real vs. Fake

Generator
x~G(z)

| [Goodfellow et al. 2014]

Jun-Yan Zhu



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

min max

1in ma [Empdm log Do, (%) + Esp(z) log(1 — Dy, (G, (2)))

Serena Young



Training GANs: Two-player game
lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014
Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max

Eompaaca 108 Doy (%) + Eenp(e) log(1 — Do, (G, (2)))
0, Oa Y \ ,

Discriminator output
for real data x

Discriminator output for
generated fake data G(z)

Serena Young



Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

I%ill IIT&EIX [Emwpdam log Dﬁ’d ($) + ]RZNP(Z
g d

log(1 — Do, (Go, (z))?]

Discriminator output Discriminator output for
for real data x generated fake data G(z)

—

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(2)) is close to O (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Serena Young



Training GANs: Two-player game

Adversarial Nets”, NIPS 2014
Minimax objective function:

min max [Emm log Do, () + Ep(x log(1 — Dg,(Go, (z)))]

0, 604

Alternate between:
1. Gradient ascent on discriminator

Héa‘x [EmNPdata log Dy, (37) + Ezwp(z) log(l — Dg, (Gé}g (z)))]

2. Gradient descent on generator

minE, <y log(1 — Day(Go, 2)

Serena Young



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

T

Discriminator Network

/
Fake Images Real Images
(from generator) , 5 ‘ : (from training set)
A

Generator Network o
A After training, use generator network to

generate new images

Random noise Z

Serena Young



Generative Adversarial Nets

Samples
from the
model look
amazing!

Radford et al,
ICLR 2016

53
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Interpretable Vector Math

. Radford et al, ICLR 2016
Smiling woman Neutral woman Neutral man

Smiling Man

Samples
from the <
model

Average
features, do
arithmetic

Adapted from Serena Young



Interpretable Vector Math

Glasses man  No glasses man No glasses woman Radford etal,

Woman with glasses

Serena Young



Celebrities Who Never Existed

Karras et al., “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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StarGAN

Input Blond hair Gender

57
Choi et al., “StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation”, CVPR 2018



https://arxiv.org/abs/1711.09020

Ren et al.,

GANs for Privacy (Action Detection)

Identity: Jessica Identity: 2??
Action: Applying Make-up on Lips Action: Applying Make-up on Lips

“Learning to Anonymize Faces for Privacy Preserving Action Detection”, arxiv 2018
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lan Goodfellow

Artificial Fashion: vue.ai
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Edges - Images

Edges from [Xie & Tu, 2015]

Pix2pix / CycleGAN 0



Sketches - Images

Trained on Edges - Images

Data from [Eitz, Hays, Alexa, 2012]

Pix2pix / CycleGAN 1



#edges2cats  [Christopher Hesse]

edges2cats

INPUT OUTPUT TOOL INPUT OUTPUT
Ilnoi
eraserO

piX2pix X pix2pix
e HE=r-
. random save
@gods tail £ E3 =3

INPUT OUTPUT

@matthematician

- piX2pix
00T Ham)

Vitaly Vidmirov @vvid

vy Tasi @ivymyt

https://affinelayer.com/pixsrv/

Pix2pix / CycleGAN 2



Changing artistic style

Cezanne
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Pix2pix / CycleGAN



Changing seasons

64

Pix2pix / CycleGAN



