CS 1674: Intro to Computer Vision Unsupervised Learning

Prof. Adriana Kovashka University of Pittsburgh April 21, 2022

Motivation

- So far we assumed access to plentiful labeled data
- What if we have limited or no labeled data?
- Learn from unlabeled data (unsupervised learning)
 - Use structure in data as "labels" (self-supervised learning)
 - Use structure in data to generate similar data (generation)
 - Mine for interesting patterns (discovery)
- Another approach (not discussed): carefully choose which data to label (active learning, human-in-the-loop)

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc. **Unsupervised Learning**

Data: x Just data, **no labels!**

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

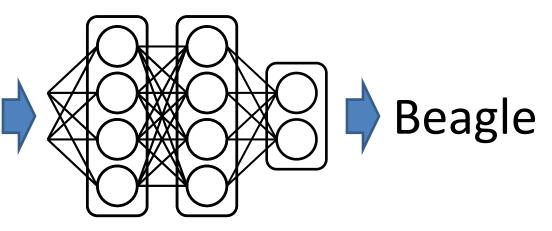
Plan for this last lecture

- Self-supervised learning
 - For images
 - For video
- Visual discovery
 - Discovering style-specific elements
- Generation not recognition
 - Theory/technique
 - Applications

Unsupervised Visual Representation Learning by Context Prediction

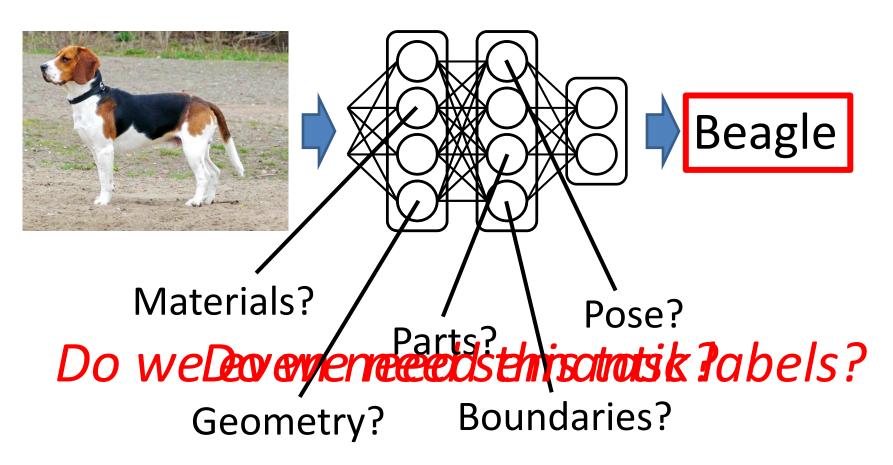
Carl Doersch, Alexei Efros and Abhinav Gupta ICCV 2015

ImageNet + Deep Learning



- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation

ImageNet + Deep Learning



Doersch et al., "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015

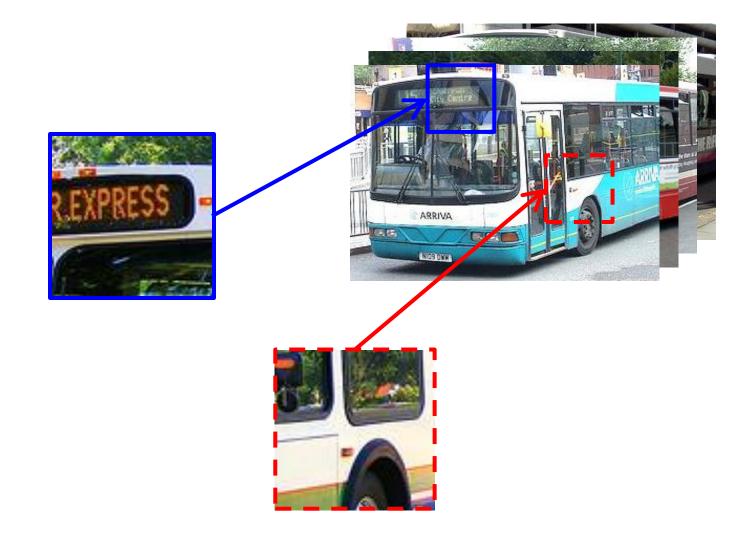
Context as Supervision

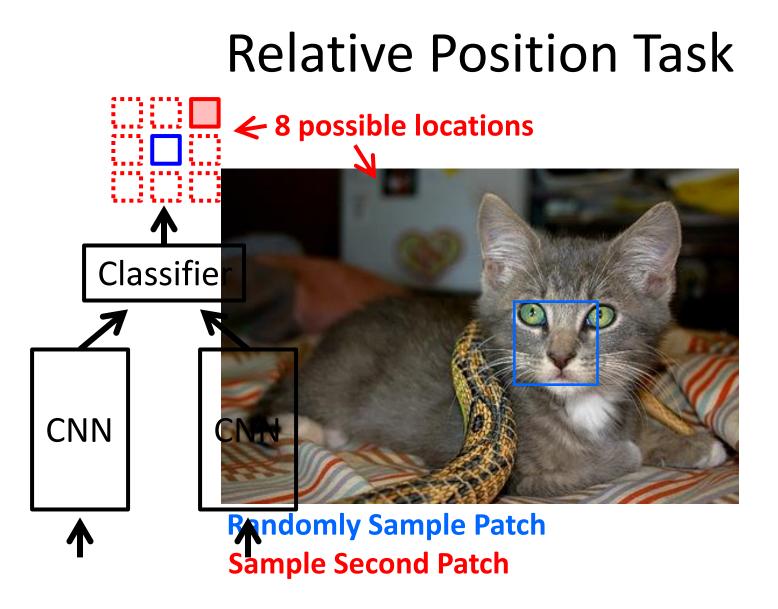
[Collobert & Weston 2008; Mikolov et al. 2013]

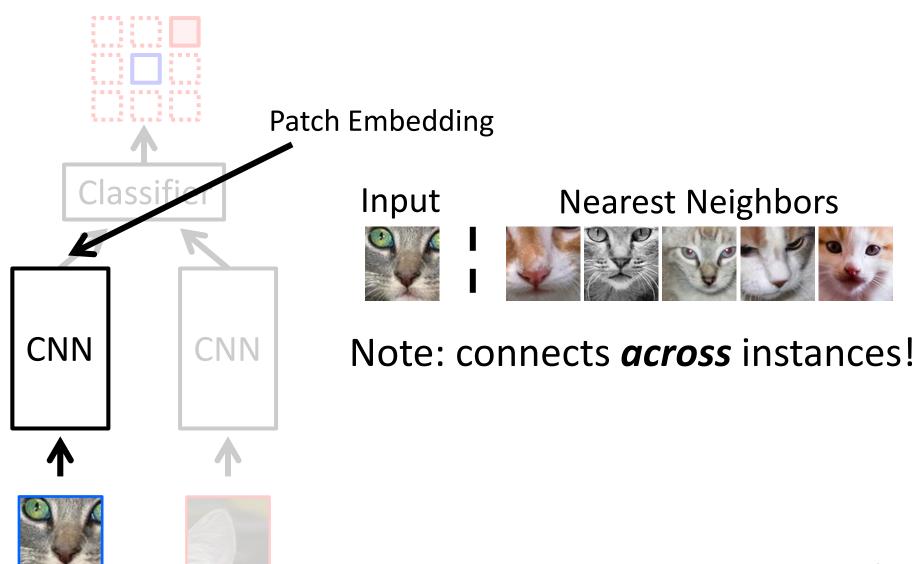
house, where the professor lived without his wife and child; or so he said jokingly sometimes: "Here's where I live. My house." His daughter often added, without resontment, for the visitor's information, "It started out to be for me, but it's really his." And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked "Kitty" and half full of eternal raile but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter's preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would



Semantics from a non-semantic task

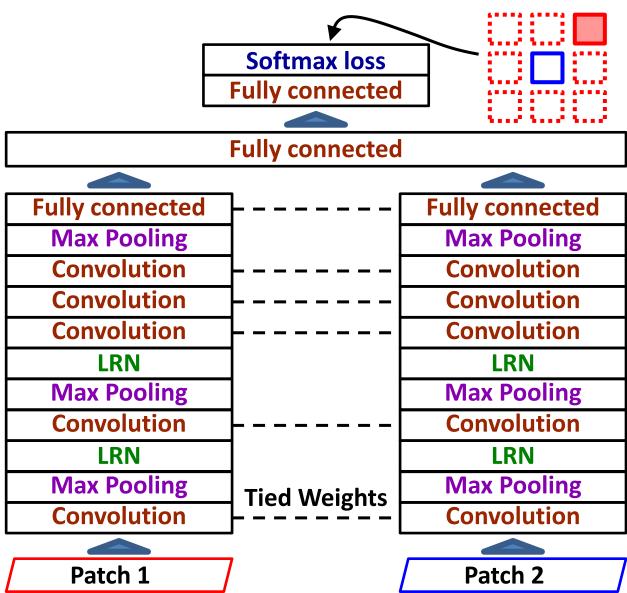






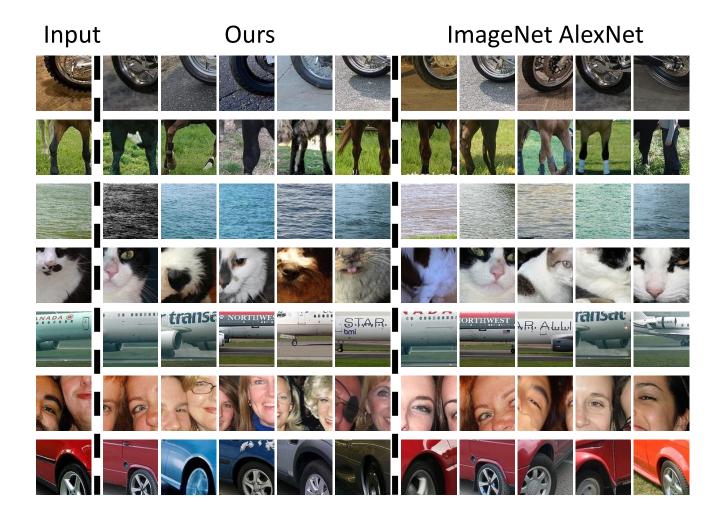
Doersch et al., "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015

Architecture

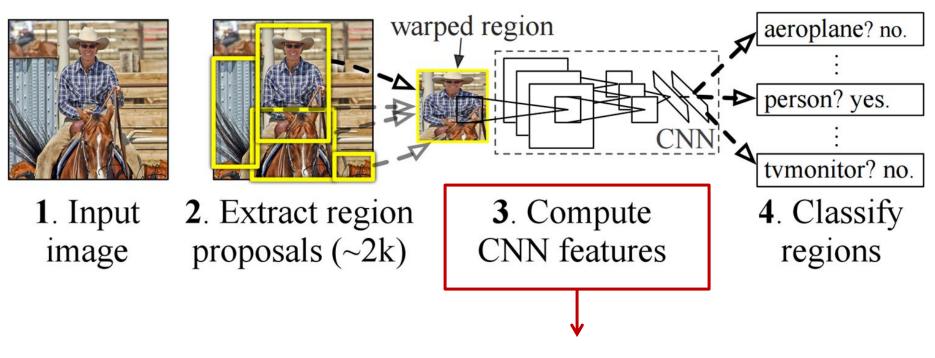


Doersch et al., "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015

What is learned?



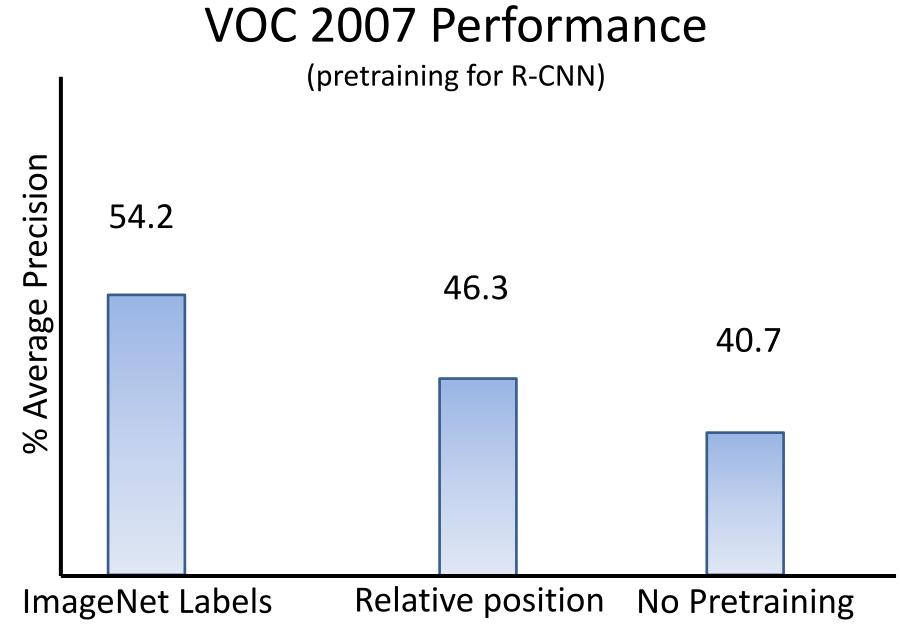
Pre-Training for R-CNN



Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]

Doersch et al., "Unsupervised Visual Representation Learning by Context Prediction", ICCV 2015



Shuffle and Learn: Unsupervised Learning using Temporal Order Verification

Ishan Misra, C. Lawrence Zitnick, and Martial Hebert ECCV 2016

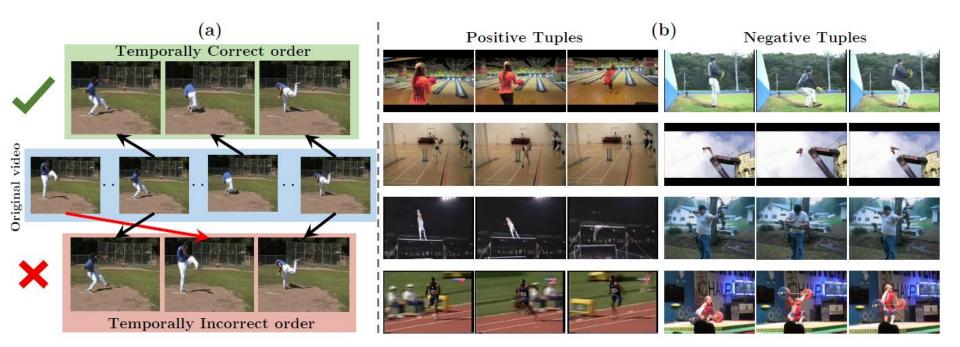


Fig. 1: (a) A video imposes a natural temporal structure for visual data. In many cases, one can easily verify whether frames are in the correct temporal order (shuffled or not). Such a simple sequential verification task captures important spatiotemporal signals in videos. We use this task for unsupervised pre-training of a Convolutional Neural Network (CNN). (b) Some examples of the automatically extracted positive and negative tuples used to formulate a classification task for a CNN.

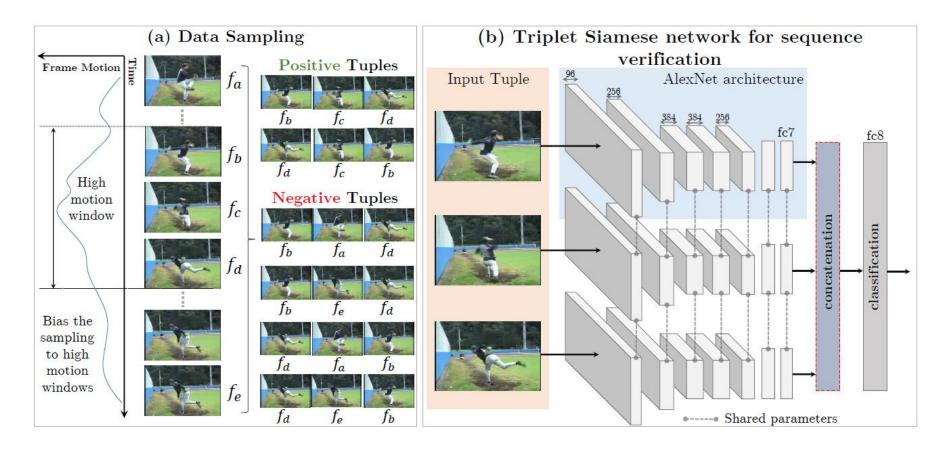


Fig. 2: (a) We sample tuples of frames from high motion windows in a video. We form positive and negative tuples based on whether the three input frames are in the correct temporal order. (b) Our triplet Siamese network architecture has three parallel network stacks with shared weights upto the fc7 layer. Each stack takes a frame as input, and produces a representation at the fc7 layer. The concatenated fc7 representations are used to predict whether the input tuple is in the correct temporal order.

Benefit of unsupervised but in-domain training

Table 2: Mean classification accuracies over the 3 splits of UCF101 and HMDB51 datasets. We compare different initializations and finetune them for action recognition.

Dataset	Initialization	Mean Accuracy
UCF101	Random	38.6
	(Ours) Tuple verification	50.2
HMDB51	Random	13.3
	UCF Supervised	15.2
	(Ours) Tuple verification	18.1

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton ICML 2020

Plan for this last lecture

- Self-supervised learning
 - For images
 - For video
- Visual discovery
 - Discovering style-specific elements
- Generation not recognition
 - Theory/technique
 - Applications

What Makes Paris Look like Paris?

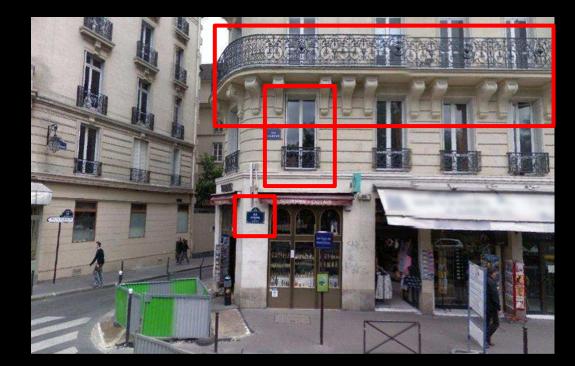
Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, Alexei Efros SIGGRAPH 2012

One of these is from Paris Raise your hand if...

...this is Paris

Raise your hand if...





We showed 20 subjects:

- 100 Random Street View Images
- 50 from Paris
- They classified Paris non-Paris
- Accuracy: 79%

How do they know?

Our Goal:

Given a large geo-tagged image dataset, we automatically discover **visual elements** that characterize a geographic location

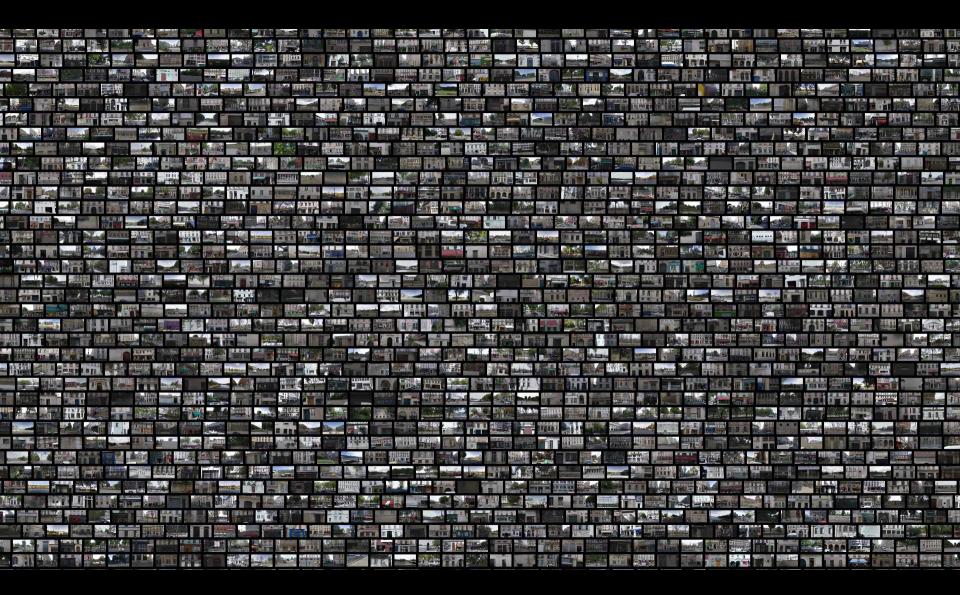
Why might this be a useful task?

Our Hypothesis

• The visual elements that capture Paris: —Frequent: Occur often in Paris

-Discriminative: Are not found outside Paris



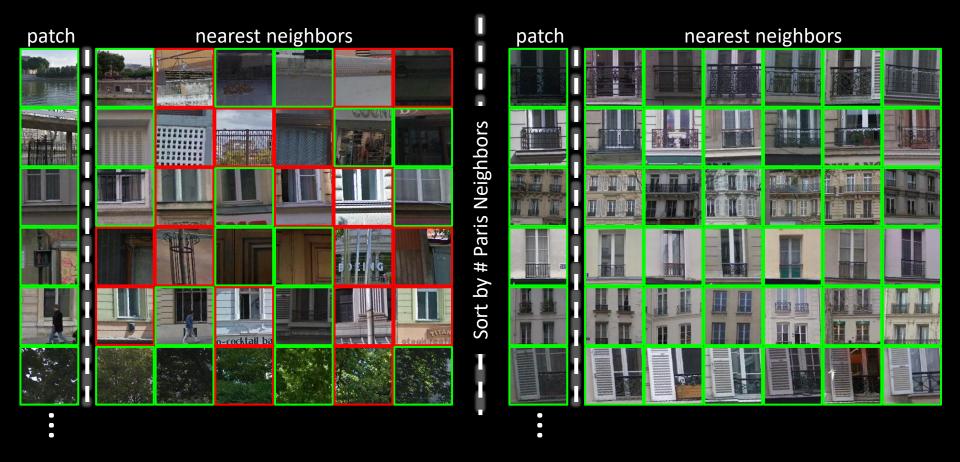


Step 1: Nearest Neighbors for Every Patch

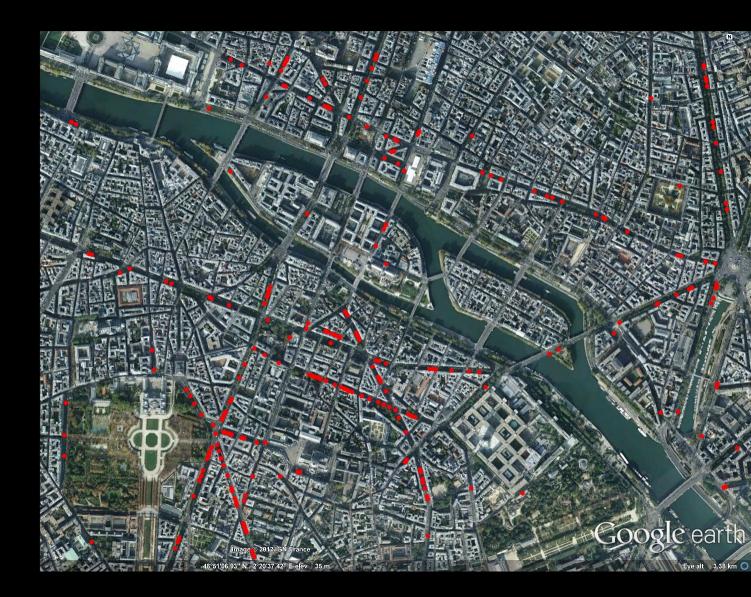
Using normalized correlation of HOG features as a distance metric

- •
- •

Step 2: Find the Parisian Clusters by Sorting



Paris: A Few Top Elements



Elements from Prague

Elements from London

Elements from Barcelona

In the U.S.

Elements from San Francisco

Elements from Boston

Doersch et al., "What Makes Paris Look Like Paris?", SIGGRAPH 2012

Plan for this last lecture

- Self-supervised learning
 - For images
 - For video
- Visual discovery
 - Discovering style-specific elements
- Generation not recognition
 - Theory/technique
 - Applications

Generative Models

Training data ~ p_{data}(x)

Generated samples ~ $p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Generative Models

Training data ~ $p_{data}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning **Several flavors:**

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

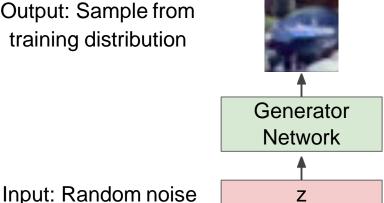
Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!

Output: Sample from training distribution

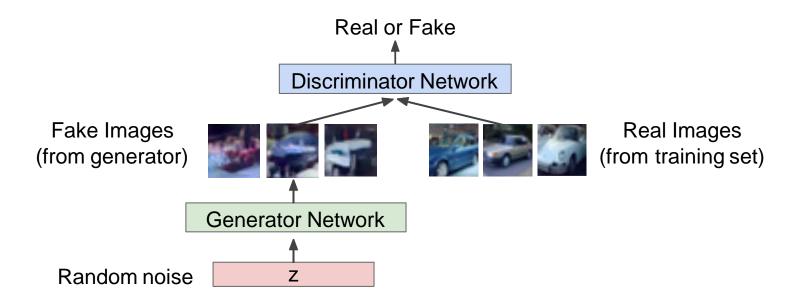


lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

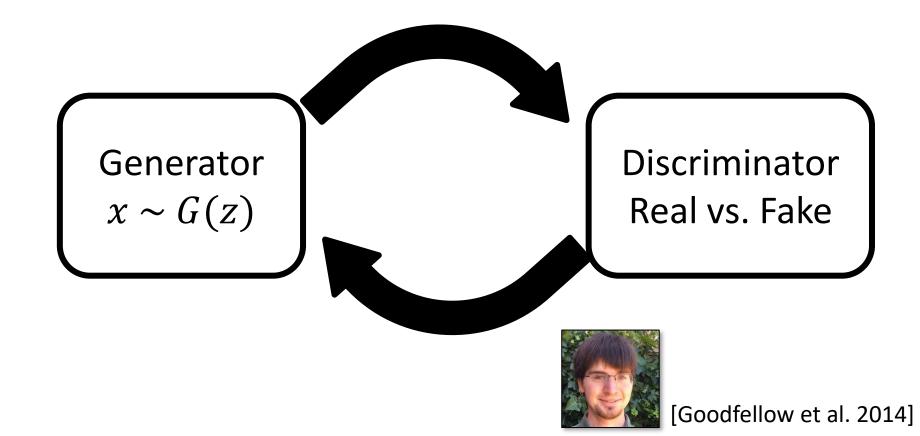
Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images



Adversarial Networks Framework



Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in **minimax game**

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$
Discriminator output

iscriminator output for real data x Discriminator output for generated fake data G(z)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \left[\log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \left[\log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right] \right] \right]$$

$$\text{Discriminator output}_{\text{for real data x}} \quad \text{Discriminator output}_{\text{generated fake data G(z)}}$$

- Discriminator (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to **minimize objective** such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

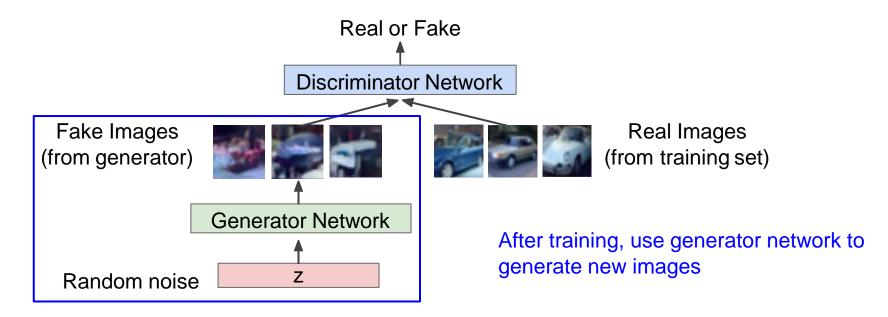
$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

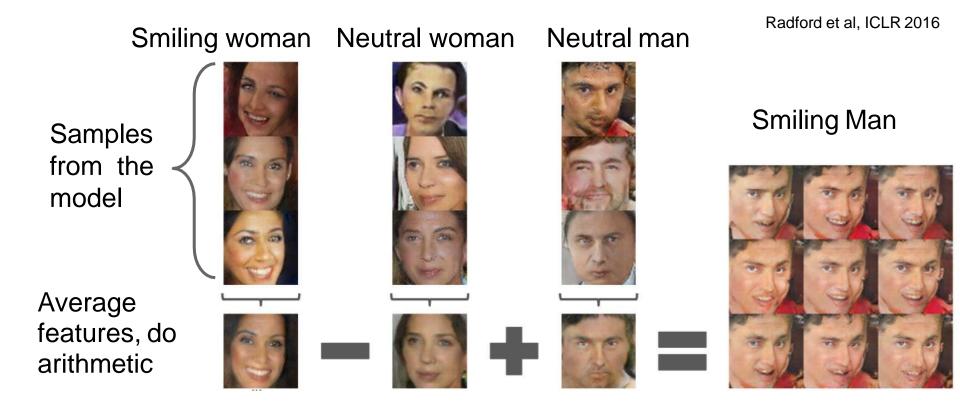


Generative Adversarial Nets

Samples from the model look amazing!

Radford et al, ICLR 2016

Interpretable Vector Math

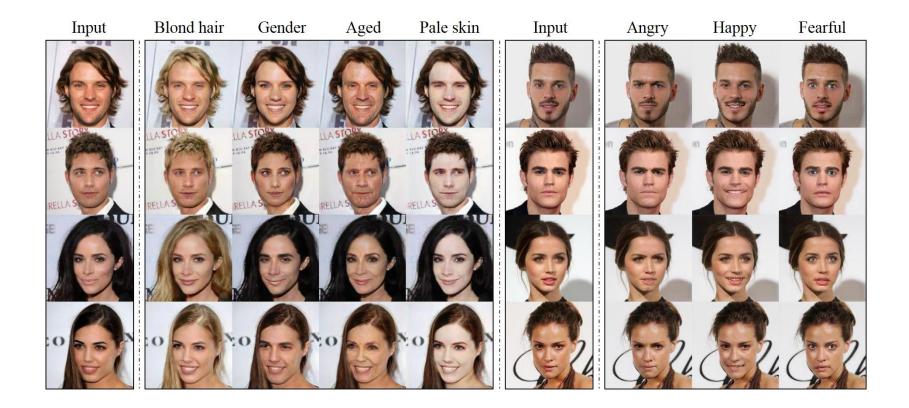


Interpretable Vector Math

Glasses man No glasses man Radford et al, No glasses woman **ICLR 2016** Woman with glasses

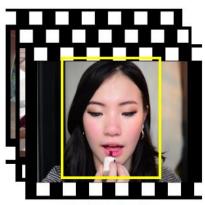
Celebrities Who Never Existed

StarGAN

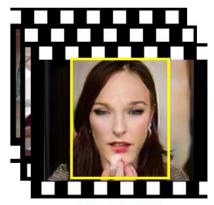


57 Choi et al., "<u>StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation</u>", CVPR 2018

GANs for Privacy (Action Detection)



Identity: Jessica Action: Applying Make-up on Lips



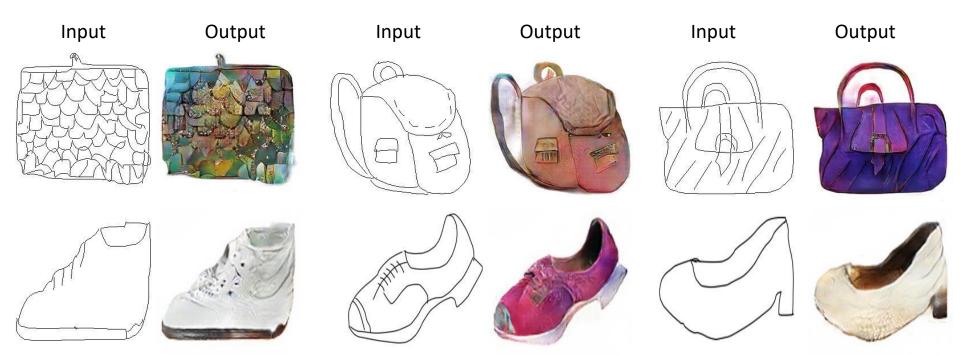
Identity: ??? Action: Applying Make-up on Lips

Artificial Fashion: vue.ai

$Edges \rightarrow Images$

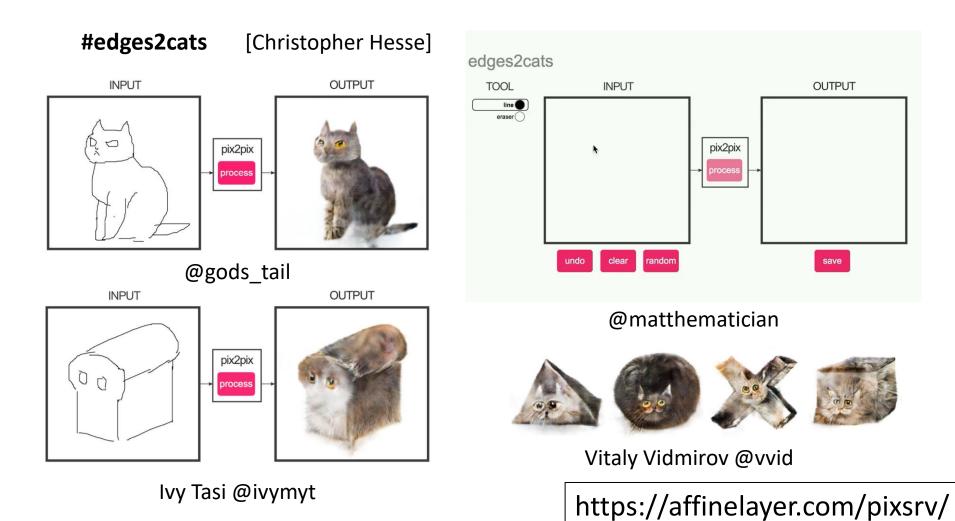
Edges from [Xie & Tu, 2015]

Sketches \rightarrow Images



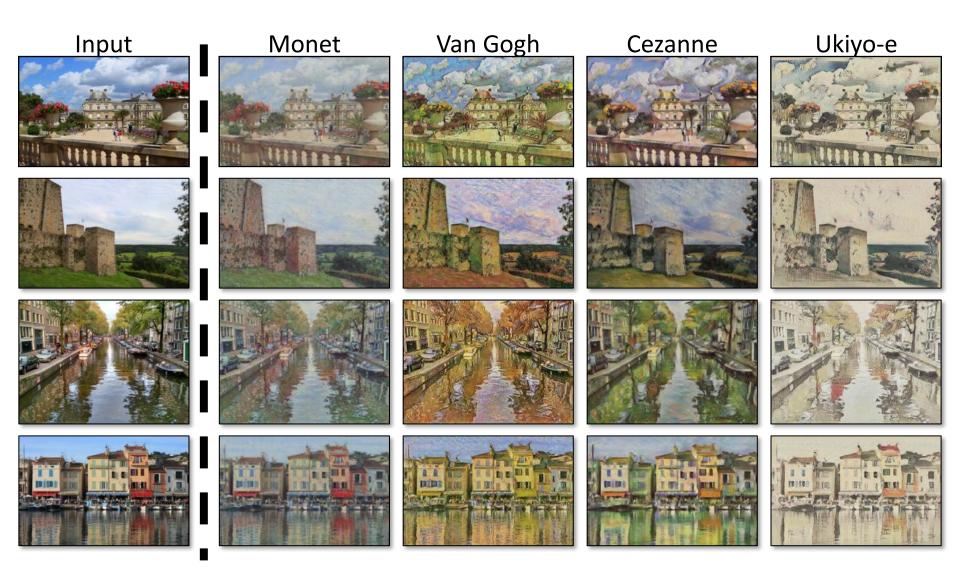
Trained on Edges \rightarrow Images

Data from [Eitz, Hays, Alexa, 2012]



Pix2pix / CycleGAN

Changing artistic style



Changing seasons

