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Different Flavors of Object Recognition

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

GRASS, CAT, CAT DOG, DOG,CAT  DOG, DOG, CAT
N TREE’;’KY ) SR Y
No objects, just pixels Single Object Multiple Object

Adapted from Justin Johnson



Plan for the next three lectures

e Detection approaches
— Pre-CNNs

 Detection with whole windows: Pedestrian detection
* Part-based detection: Deformable Part Models

— Post-CNNs
* Detection with region proposals: R-CNN, Fast R-CNN, Faster-R-CNN
e Detection without region proposals: YOLO, SSD

 Segmentation approaches
— Semantic segmentation: FCN
— Instance segmentation: Mask R-CNN



Object Detection

GFRAESES’SKY’ CAT DOG, DOG, CAT DOG. DOG, CAT
\ o AN -\ YN Y,
No objects, just pixels Single Object Multiple Object
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Slide by: Justin Johnson



Object detection: basic framework

 Build/train object model
* Generate candidate regions in new image

 Score the candidates

Adapted from Kristen Grauman



Window-template-based models
Building an object model

Given the representation, train a binary classifier
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Car/non-car
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Window-template-based models
Generating and scoring candidates
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Classifier
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Window-template-based object detection: recap

Training:

1. Obtain training data
2. Define features
3. Define classifier

Given new image:

1. Slide window Training examples

2. Score by classifier llll
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Evaluating detection methods

1

4TP(c)
classes| CG;&?S #TP(c) +#FP(c)

mAP =

True Positive - TP(c): a predicted bounding box (pred_bb) was made for class c, there
is a ground truth bounding box (gt_bb) of class ¢, and loU(pred_bb, gt_bb) >=0.5.

False Positive - FP(c): a pred_bb was made for class ¢, and there is no gt_bb of class c.
Or there is a gt_bb of class c, but loU(pred_bb, gt _bb) < 0.5.

~Rredicted person

‘bounding box

——

Area of overlap

Score =

Area of union




Dalal-Triggs pedestrlan detector

. Extract fixed-sized (64x128 pixel) window at
multiple positions and scales

. Compute HOG (histogram of gradient)
features within each window

. Score the window with a linear SVM classifier

. Perform non-maxima suppression to remove
overlapping detections with lower scores

10
Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO05



Histograms of oriented gradients (HOG)

Divide image into 8x8 regions

Orientation: 9 bins Histograms in
(for unsigned angles) gyg pixel cells
90
135 45
180 0
225 315
270

Votes weighted by magnitude

Adapted from Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Train SVM for pedestrian detection using HoG
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Adapted from Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPRO05



Remove overlapping detections @

Non-max suppression

Score =0.8

Score =0.1

erlap
| ‘

Score =0.8
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Adapted from Derek Hoiem



Are window templates enough?

* Many objects are articulated, or have parts that
can vary in configuration

Images from Caltech-256, D. Ramanan
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* Many object categories look very different from
different viewpoints, or from instance to instance

14
Adapted from N. Snavely, D. Tran




Parts-based Models

Define object by collection of parts modeled by
1. Appearance
2. Spatial configuration

2

yHl‘HU)}‘M |

Slide credit: Rob Fergus



How to model spatial relations?

* One extreme: fixed template

16
Derek Hoiem



Fixed part-based template

 Object model = sum of scores of features at
fixed positions

?
+3 +2 -1 -25 =-05 >7.5

Non-object

?
+4 +1 +3 +0.5 =10.5 >7.5

Object
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How to model spatial relations?

* Another extreme: bag of words

18
Derek Hoiem



How to model spatial relations?

e Star-shaped model

o0 |*

Derek Hoiem



Parts-based Models

* Articulated parts model
— Object is configuration of parts
— Each part is detectable and can move around

20
Adapted from Derek Hoiem, images from Felzenszwalb



Deformable Part Models

Root Part  Deformation
filter filters weights

y 4
/
|

N P e T

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection
with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Lana Lazebnik



http://people.cs.uchicago.edu/~pff/papers/lsvm-pami.pdf

Scoring an object hypothesis

* The score of a hypothesis Is
the sum of appearance scores

minus the sum of deformation costs
= (PO,---, p;:)

po: location of root

score(Po, - .., Pn) =

T

> IE

i—0 T

f

I,---, Pn - location of parts

Appearance weights Part features

Felzenszwalb et al.

oo g

part loc anchor loc (where we
(where we see part) expect to see part)

(dzi, dy;) = (i, y:) — (2(zo, y0) + vi)

Displacements
I.e. how much the part p, moved from its

expected anchor location in the x, y directions

d? ’ @d(dxi: dya)

+0

Deformation weights
i.e. how much we’'ll penalize the part p; 22
for moving from its expected location



Detection

feature map feature map at twice the resolution

3
\
'
4
~

response of part filters

response of root filter

color encoding of filter
response values

combined score of

root locations
Felzenszwalb et al.
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Car model

Component 1

24

Lana Lazebnik



Car detections

high scoring true positives high scoring false positives
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Person model
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Person detections

high scoring false positives
(not enough overlap)

high scoring true positives

Lana Lazebnik



Cat model

28

Lana Lazebnik



Cat detections

high scoring false positives
(not enough overlap)

high scoring true positives




o
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Plan for the next three lectures

e Detection approaches
— Pre-CNNs

 Detection with whole windows: Pedestrian detection
* Part-based detection: Deformable Part Models

— Post-CNNs
* Detection with region proposals: R-CNN, Fast R-CNN, Faster-R-CNN
e Detection without region proposals: YOLO, SSD

 Segmentation approaches
— Semantic segmentation: FCN
— Instance segmentation: Mask R-CNN



Complexity and the plateau

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]
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Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



Impact of Deep Learning

80% PASCAL VOC
70%

60% Before deep convnets
1 A
50%

{ ‘\ \ J

40% A !
A Using deep convnets

30%

20%

mean Average Precision (mAP)

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year

Slide by: Justin Johnson



Before: Image Classification with CNNs

Class Scores
Cat: 0.9
* Dog: 0.05
Fully-Connected: 451 001
4096 to 1000
Vector:
4096

Slide by: Justin Johnson



Classification + Localization

GFRAESES’SKY’ CAT DOG, DOG, CAT DOG. DOG, CAT
\ o AN -\ U Y,
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Classification + Localization

Class Scores
Fully Cat: 0.9

Connected: Dog: 0.05
4096 to 1000 Car: 0.01
Vector: FN
Connected:

4096 to 4 Box
Coordinates

(X, y, w, h)

Treat localization as a
regression problem!

Slide by: Justin Johnson



Classification + Localization

Correct label:

Cat
Class Scores l
Fully Cat: 0.9 Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

Vector: FN
Connected:

4096 4006104 Box
Coordinates —» L2 Loss
. (X, ¥, w, h)
Treat localization as a T
regression problem! Correct box:
(X', y,w,h)

Slide by: Justin Johnson



Classification + Localization

Correct label:
Cat

Class Scores l
Fully Cat: 0.9 Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

|

Multitask LOSS 4+ —»Loss

Vector: FN
Connected:

4096 4006104  BOX
Coordinates —» L2 Loss
(X, y, w, h) T

Treat localization as a

regression problem! Correct box:
(x',y,w,h)

Slide by: Justin Johnson



Classification + Localization

Correct label:

Cat
Class Scores l
Fully Cat: 0.9 Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

|

+ —Loss

. Vector: FN
Often pretrained on ImageNet Connected:

_ 4096 BoX
Transfer learnin 4096 to 4 .
( 9) Coordinates —» L2 Loss

(X1 Yy, W, h) T

Treat localization as a

regression problem! Correct box:

(X, y, w', h)

Slide by: Justin Johnson



Object Detection as Regression?

CAT: (x, Yy, w, h)

DOG: (X, Y, w, h)
DOG: (X, Y, w, h)
CAT: (X, ¥, w, h)

DUCK: (X, y, w, h)
DUCK: (X, y, w, h)

Slide by: Justin Johnson



Object Detection as Regression?

CAT: (X, y, w, h) 4 numbers

DOG: (X, Y, w, h)

DOG: (X, ¥, W, h) 16 numbers
CAT: (x,y, w, h)

DUCK: (x, ¥, W, h) Many
DUCK: (X, ¥, W, h) numbers!

Each image needs a ditterent
number of outputs!

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO

Background? NO

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO

Background? NO

Slide by: Justin Johnson



Object Detection as Classification:
Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Slide by: Justin Johnson



Object Detection as Classification:

Slide by: Justin Johnson

Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object

or background

Problem: Need to apply CNN to huge
number of locations and scales, very
computationally expensive!

Dog? NO
Cat? YES
Background? NO



Region Proposals

e Find “blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 1000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

Slide by: Justin Johnson



Speeding up detection: Restrict set of windows we
pass through SVM to those w/ high “objectness”

KA yiE S '8 - T - ke X PN T on & e = — 3 ~
IR Rl Fies 4 ?;r #a I T A ~ ‘ L
**\ TRt gl AU e S R T -

(a) - (b) (c)
Fig. 1: Desired behavior of an objectness measure. 7he desired
objectness measure should score the blue windows, partially cov-
ering the objects, lower than the ground truth windows (green),
and score even lower the red windows containing only stuff or
small parts of objects.

48
Alexe et al., CVPR 2010



Objectness cue #1: Where people look

Fig. 2: MS success and failure.

Alexe et al., CVPR 2010

49



Objectness cue #2: color contrast at boundary

Fig. 3: CC success and failure. Success: the windows containing
the objects (cyan) have high color contrast with their surrounding
ring (vellow) in images (a) and (b). Failure: the color contrast for
windows in cyan in image (c) is much lower.

50
Alexe et al., CVPR 2010



no segments “straddling” the object box

Alexe et al., CVPR 2010

Objectness cue #3:

(c)
Fig. 5: TGPE) SS cue. Given the segmentation (b) of image (a), for
a window w we compute SS(w, 0ss) (eq. 4). In (c), most of the
surface of wi is covered by superpixels contained almost entirely
inside it. Instead, all superpixels passing by wo continue largely
outside it. Therefore, w1 has a higher SS score than ws. The
window ws has an even higher score as it fits the object tightly.

51



R-CNN

Input image

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

L/ Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Conv Forward each
Conv Net region through
ConvNet
Conv Net
et ﬁ Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

SVMs Classify regions with

SVMs SVMs
s Conv Forward each
Conv Net region through
ConvNet
Conv Net
et E Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Linear Regression for bounding box offsets

Bbox reg || SVMs Classify regions with

Bbox reg || SVMs SVMs
Bbox reg SVMs ‘
Conv For.\;r\/ardh(::achh
Conv Net region throug
Net ConvNet
Conv € !
Net Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN: Regions with CNN features

ﬂl aeroplane? no.

&> person? yes.

CNN[M -
4| tvmonitor? no.

Input Extract region Compute CNN Classify regions
image  proposals (~2k/ image) features (linear SVM)

58
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 1
f SEE ﬂ|aeroplafne?no.

=&>| person? yes.

CNNM :
Q| tvmonitor? no.

Input Extract region
image  proposals (~2k/ image)

Proposal-method agnostic, many choices
- Selective Search [van de Sande, Uijlings etal.] (Used in this work)
- Objectness [Alexe etal.]

- Category independent object proposals [Endres & Hoiem]
- CPMC [Carreira & Sminchisescul]

59
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.

CNNPM -
4| tvmonitor? no.

Input Extract region Compute CNN
. . —>
image  proposals (~2k/ image) features

60
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2
. 3 ~ ﬂ|aeroplefne? no.

=&>| person? yes.

N . CNNM -
19 G |/t 4|tvmonitor? no.
Input Extract region Compute CNN

image  proposals (~2k/ image) features

Dilate proposal

61
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.

CNNPM -
4| tvmonitor? no.

Input Extract region Compute CNN
. . —>
image  proposals (~2k/ image) features

62
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.

CNNPM -
4| tvmonitor? no.

Input Extract region Compute CNN
. . —>
image  proposals (~2k/ image) features

63
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R CNN at test time: Step 2

ﬂl aeroplane? no.

=&>| person? yes.

CNNPM -
4| tvmonitor? no.

Extract region Compute CNN
. . —>
image  proposals (~2k/ image) features

TN

L | : | c. Forward propagate
Crop b. Scale (anisotropic) Output: “ch”fepatSres N

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014




R-CNN at test time: Step 3
‘. 3= ﬂ|aeroplafne? no.

=&>| person? yes.

CNNM :
4| tvmonitor? no.

Input Extract region Compute CNN Classify
. . —
image  proposals (~2k/ image) features regions
— person? 1.6
B 3 % horse? -0.3
si . . , o
oposal 4096-dimensional linear classifiers
PTOp fcz feature vector SSVM or softmax) 65
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVYPR 2014



Step 4: Object proposal refinement

Linear regression

on CNN features

Original Predicted
proposal object bounding box

Bounding-box regression

66
Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN on ImageNet detection

ILSVRC2013 detection test set mAP

*R-CNN BB 31.4%
*OverFeat (2) 24.3%
UvA-Euvision 22.6%

*NEC-MU 20.9%

*OverFeat (1) 519.4%

Toronto A 11.5%

SYSU_Vision 10.5%

GPU_UCLA 9.8%

I post competition result
I competition result

Delta

UIUC-IFP §1.0%

0 20 40 60 80 100
mean average precision (mAP) in %
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Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN

Linear Regression for bounding box offsets

Bbox reg || SVMs Classify regions with

Bbox reg || SVMs SVMs
Bbox reg SVMs ‘
Conv For.\;r\/ardh(::achh
Conv Net region throug
Net ConvNet
Conv € !
Net Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Post hoc component

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



What’s wrong with slow R-CNN?

* Ad-hoc training objectives
* Train post-hoc linear SVMs (hingeloss)
* Train post-hoc bounding-box regressions (L2 loss)

* Training is slow (84h), takes a lot of disk space

* Need to store all region crops

* Inference (detection) is slow
* 47s / image with VGG16 [Simonyan & Zisserman, ICLR15]

Forward each region

CCCCCCC

CCCCCCC

Regions of Interest

oooooooooooooo

. =1
s 3 = & L/’iff
H -y | Sy —
. 2
A WA= ¢ - A
. LS

Input image

Adapted from Girshick, “Fast R-CNN”, ICCV 2015 ~2000 ConvNet forward passes per image



Fast R-CNN

* One network, applied one time, not 2000 times
* Trained end-to-end (in one stage)

* Fast test time

* Higher mean average precision

Adapted from Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

/ /”conv5” feature map of image

Forward whole image through ConvNet

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

Regions of ﬁ@:i/ conv5” feature map of image

Interest (Rols)
from a proposal Forward whole image through ConvNet

method

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

“Rol Pooling” layer

Regions of ﬁ@& / conv5” feature map of image

Interest (Rols)
from a proposal | Forward whole image through ConvNet

method

Girshick, “Fast R-CNN”, ICCV 2015



Softmax
classifier

Fast R-CNN

Linear +
softmax
FCs Fully-connected layers

L 7 /7 “RolPooling” layer

Regions of ﬁ@&y/"comﬁ” feature map of image

Interest (Rols)
from a proposal
method

Forward whole image through ConvNet

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

Soft Linear + .
ortmax softmax Linear | Bounding-box
classifier regressors

| FCs Fully-connected layers

L ,—7 /7 “RolPooling” layer

Regions of ﬁ@&ﬁ/ “conv5” feature map of image

Interest (Rols)
from a proposal
method

Forward whole image through ConvNet

ConvNet

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN (Training)

Log loss + Smooth L1 loss Multi-task loss
Linear +
softmax Linear

FCs

LT [T [T

V= V.74

ConvNet

——

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN (Training)

Log loss + Smooth L1 loss Multi-task loss
Linear + /
softmax Linear

Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN vs R-CNN

Fast R-CNN R-CNN
Train time (h) 9.5 84
Speedup 8.8x 1x
Test time / image | 0.32s 47.0s
Test speedup 146x 1x
mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for all methods.
All methods use VGG16 from Simonyan and Zisserman.

Girshick, “Fast R-CNN”, ICCV 2015



Faster R-CNN

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict
proposals from features

Jointly train with 4 losses:

1.
2.
3.

RPN classify object / not object
RPN regress box coordinates
Final classification score (object

classes)
Final box coordinates

’ proposals/ : /

= Rol pooling

Region Proposal Network .

CNN .
4 /

Vo2 T AR )

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



Accurate object detection is slow!

Pascal 2007 mAP |Speed
DPM v5 33.7 .07 FPS | 14 s/img
R-CNN 66.0 .05 FPS | 20 s/img

81

/B 5 Mile, 1760 feet

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Accurate object detection is slow!

Pascal 2007 mAP

DPM v5 33.7
R-CNN 66.0
Fast R-CNN 70.0

Faster R-CNN 73.2
YOLO 69.0

2 feet

Speed

.07 FPS
.05 FPS
5 FPS
7 FPS
45 FPS

14 s/img

20 s/img

2 s/img

140 ms/img
22 ms/img

82

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Detection without Proposals: YOLO

m-qw ”—-‘:EMHA\‘-_

—=

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
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Each cell predicts boxes and confidences:
P(Object)

? N

" e % " - mj‘ ‘f‘;:"l =

B - o

84
Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Each cell also predicts a probability
P(Class | Object)

Bicycle

Dog

‘ .. Dining
SN 1T [ vable

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
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Combine the box and class predictions

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016

86



Finally do NMS and threshold detections

87
Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Detection without Proposals: YOLO

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Inputimage Divide image into grid Output:
3XHXW 7x7 7X7x(5*B+C)

Image a set of base boxes
centered at each grid cell
Here B =3

Redmon et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector’, ECCV 2016

Slide by: Justin Johnson



This parameterization fixes the output

Each cell predicts:

- For each bounding box:

4 coordinates (x,y, w, h)
1 confidence value

- Some number of class
probabilities

For Pascal VOC:;

- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

size

Ot kb & A+ F kA A A P
% £ (%-/05 %.
/Soy /éoy /@()y
1st - 5th éth - 10th 11th - 30th
Box #1 Box #2 Class Probabilities

7Xx7x(2x5+20)=7x7x30tensor =1470 outputs

89

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



YOLO works across many natural images
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Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



It also generalizes well to new domains

diningtable &
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Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017



Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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Plan for the next two lectures

e Detection approaches
— Pre-CNNs

 Detection with whole windows: Pedestrian detection
* Part-based detection: Deformable Part Models

— Post-CNNs
* Detection with region proposals: R-CNN, Fast R-CNN, Faster-R-CNN
e Detection without region proposals: YOLO, SSD

 Segmentation approaches
— Semantic segmentation: FCN
— Instance segmentation: Mask R-CNN



Semantic Segmentation

GRASS, CAT, CAT DOG, DOG,CAT  DOG, DOG, CAT
N TREE’;’KY ) SR Y
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Semantic Segmentation

Label each pixel in the
Image with a category
label

Don’t differentiate
Instances, only care about
pixels

Slide by: Justin Johnson



Semantic Segmentation ldea:
Sliding Window

h Classify center
Extract patc pixel with CNN

Fullimag

AR ax
By
73

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide by: Justin Johnson



Semantic Segmentation ldea:
Sliding Window

h Classify center
Extract patc pixel with CNN

Fullimage

Problem: Very inefficient! Not
reusing shared features between

overlapping patches Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv

Conv argmax

Y / Scores: Predictions:

CxHxW HxW

Convolutions:
DxHxW

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv

Conv argmax

Input: I\ J -
3 X fl X W Y Scores: Predictions:
CxHxW HxW

Convolutions:

Problem: convolutions at Dx HxW

original image resolution will
be very expensive ...

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 xW/4 D, x H/4 xW/4

[

Low-res:
D, X H/4 xW/4

Input: High-res: High-res:

Predictions:
3XHxXW D, x H/2 xW/2 D, x H/2 xXW/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide by: Justin Johnson



Semantic Segmentation ldea:
Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 277
convolution Med-res: Med-res:

D, x H/4 xW/4

[

Low-res:
D, X H/4 xW/4

Input: High-res: High-res:

D, x H/4 xW/4

Predictions:
3XHxXW D, x H/2 xW/2 D, x H/2 xXW/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide by: Justin Johnson



In-Network upsampling: “Unpooling”

Nearest Neighbor

1| 2
3 4
Input: 2 x 2

Slide by: Justin Johnson

1) 2

1) 2

31 4

3] 4
Output: 4 x4

“Bed of Nails”

Input: 2 x 2

0|2

O 0

0| 4

0OJ0|0
Output: 4 x4



In-Network upsampling: “Max Unpooling”

Max Pooling

) Max Unpoolin
Remember which element was max! P 9

Use positions from

11216 3 pooling layer o o 2 0
3 52 1 —— |5 6 —- . 112, ., 0o/1 0|0
1212 1 718 3 4 0O o|lo0|oO
Rest of the network
7 3 4 8 3 0 0O 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x4

Corresponding pairs of
downsampling and
upsampling layers

Slide by: Justin Johnson



Learnable Upsampling:
Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x4

Slide by: Justin Johnson



Learnable Upsampling:
Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x4

Slide by: Justin Johnson



Learnable Upsampling:
Transpose Convolution

. - Sum where
3 x 3 transpose convolution, stride 2 pad 1 output overlaps
> Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter _ _ _
Stride gives ratio between
movement in output and
input

Input: 2 x 2 Output: 4 x4

Slide by: Justin Johnson



Transpose Convolution: 1D Example

Input Filte

|

a/
bx

Adapted from Justin Johnson

X

N

—

_—
—~—

Output
ax|
ay
azf+[bx
by
bz

Output contains
copies of the filter
weighted by the
input, summing at
where at overlapsin
the output



Instance Segmentation

GFRAESES’SKY’ CAT DOG, DOG, CAT DOG. DOG, CAT
\ o AN -\ U Y,
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

Parallel Heads

« Easy, fast to implement and use
T ) cls (
—
cls
Feat. Feat. Feat.
» hbox . bbo}{
N v reg . A reg M
(slow) R-CNN Fast/er R-CNN Mask R-CNN

Slide by: Kaiming He



Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

Classification Scores: C
Box coordinates (per class): 4 *C

7
/// // //
1 | % 4
1 % 1
//// // y // ’
—_— vd ¥ / // —_— // —_—
/// > 1 // 1 //
1
CNN M . |/ Conv | |1/ Conv
// </ RolAlign / /
/
Predict a mask for

each of C classes

Adapted from Justin Johnson



