
CS 1674: Intro to Computer Vision

Convolutional Neural Networks

Prof. Adriana Kovashka
University of Pittsburgh

March 22, 2022

1

Plan for the next few lectures

Why (convolutional) neural networks?

Neural network basics
• Architecture and biological inspiration

• Loss functions

• Optimization / gradient descent

• Training with backpropagation

Convolutional neural networks (CNNs)
• Special operations

• Common architectures

Practical matters
• Tips and tricks for training

• Transfer learning

• Software packages

Understanding CNNs
• Visualization

• Synthesis / style transfer

• Breaking CNNs

2

Neural network basics

3

Why (convolutional) neural networks?

State of the art performance on many problems

Most papers in recent vision conferences use

deep neural networks

Razavian et al., CVPR 2014 Workshops (4000+ citations)

4

http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf

ImageNet Challenge 2012

Validation classification

Validation classification

Validation classification

[Deng et al. CVPR 2009]

• ~14 million labeled images,

20k classes

• Images gathered from Internet

• Human labels via Amazon

Mechanical Turk

• Challenge: 1.2 million training

images, 1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012
Lana Lazebnik

5

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012

• AlexNet: Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

• More data (106 vs. 103 images)

• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012
Adapted from Lana Lazebnik

6

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)

Next best (non-convnet) – 26.2% error

0

5

10

15

20

25

30

35

SuperVision ISI Oxford INRIA Amsterdam

T
o

p
-5

 e
rr

o
r

ra
te

 %

Lana Lazebnik

7

Easy win, always? Example: detection

Object detection system overview. Our system (1) takes an input image, (2) extracts

around 2000 bottom-up region proposals, (3) computes features for each proposal

using a large convolutional neural network (CNN), and then (4) classifies each region

using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP)

of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1%

mAP using the same region proposals, but with a spatial pyramid and bag-of-visual-

words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate

Object Detection and Semantic Segmentation, CVPR 2014.

Adapted from Lana Lazebnik

8

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

What are CNNs?

• Convolutional neural networks (CNNs) are a

type of neural network with layers that perform

special operations

• Used in vision but also in NLP, biomedical etc.

• Often deep, but usually not fully connected

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

9

Image/ Video

Pixels

Traditional Recognition Approach

Hand-designed

feature extraction

(SIFT+BOW, HOG)

Trainable

classifier

• Features are key to recent progress in recognition, but

research shows they’re flawed… Where next?

Object

Class

Adapted from Lana Lazebnik, figures from Vondrick: http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf

10

http://www.cs.columbia.edu/~vondrick/ihog/ijcv.pdf

What about learning the features?

• Learn a feature hierarchy all the way from pixels to

classifier

• Each layer extracts features from the output of

previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3 Object

Class

Image/

Video

Pixels

Lana Lazebnik

11

“Shallow” vs. “deep” architectures

Hand-designed

feature extraction

Trainable

classifier

Image/

Video

Pixels

Object

Class

Layer 1 Layer N
Simple

classifier
Object

Class

Image/

Video

Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Lana Lazebnik

12

Neural network definition

• Activations:

• Nonlinear activation function h (e.g. sigmoid,

RELU):
Figure from Christopher Bishop

Recall SVM:

wTx + b

13

• Layer 2

• Layer 3 (final)

• Outputs (e.g. sigmoid/softmax)

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)

14

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Maxout

ELU

Activation functions

Andrej Karpathy

Leaky ReLU

max(0.1x, x)

15

A multi-layer neural network

• Nonlinear classifier

• Can approximate any continuous function to arbitrary

accuracy given sufficiently many hidden units

Lana Lazebnik

16

Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs,

• transmit information to other neurons.

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy

17

Biological analog

A biological neuron An artificial neuron

Jia-bin Huang

18

Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Biological analog

19

Multilayer networks

• Cascade neurons together

• Output from one layer is the input to the next

• Each layer has its own sets of weights

HKUST

20

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

21

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

22

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

23

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

24

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

25

Feed-forward networks

• Predictions are fed forward through the

network to classify

HKUST

26

Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

• “With great power comes great responsibility”

Figure from http://neuralnetworksanddeeplearning.com/chap5.html

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

W
e

ig
h

ts
 t

o
 l
e
a
rn

!

W
e

ig
h

ts
 t

o
 l
e

a
rn

!

W
e

ig
h

ts
 t

o
 l
e

a
rn

!

27

How do we train deep neural networks?

• The goal is to find such a set of weights that

allow the activations/outputs to match the

desired output: f(W, xi) ~ yi

• Unfortunately, no closed-form solution for

weights W, but we can express our objective

• We want to minimize a loss function (a

function of the weights in the network), we’ll

do so iteratively

• For now let’s simplify and assume there’s a

single layer of weights in the network

28

Classification goal

Example dataset: CIFAR-10

10 labels

50,000 training images

each image is 32x32x3

10,000 test images

Andrej Karpathy

29

Classification scores

[32x32x3]

array of numbers 0...1

(3072 numbers total)

f(x,W)

image parameters

10 numbers,

indicating class

scores

Andrej Karpathy

30

Linear classifier

[32x32x3]

array of numbers 0...1

10 numbers,

indicating class

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy

31

Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

32

Linear classifier

Going forward: Loss function/Optimization

1. Define a loss function

that quantifies our

unhappiness with the

scores across the training

data.

2. Come up with a way of

efficiently finding the

parameters that minimize

the loss function

(optimization)

TODO:

Andrej Karpathy

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

33

Linear classifier

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy

34

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
>= sj + 1, for j != yi

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation

35

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy

36

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy

37

Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1)

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy

38

Linear classifier: Hinge loss

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.

With some W the scores are:
Hinge loss:

Given an example

where

where

is the image and

is the (integer) label,

and using the shorthand for the

scores vector:

the loss has the form:

and the full training loss is the mean

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy

39

Linear classifier: Hinge loss

Adapted from Andrej Karpathy

40

Linear classifier: Hinge loss

Weight Regularization
λ = regularization strength

(hyperparameter)

In common use:

L2 regularization

L1 regularization

Dropout (will see later)

Adapted from Andrej Karpathy

41

scores = unnormalized log probabilities of the classes

where

Want to maximize the log likelihood, or (for a loss function)

to minimize the negative log likelihood of the correct class:

cat

car

frog

3.2

5.1

-1.7

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

maximize

minimize
42

cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

43

Other losses

• Triplet loss (Schroff, FaceNet)

• Anything you want!

a denotes anchor

p denotes positive

n denotes negative

44

How to minimize the loss function?

Andrej Karpathy

45

How to minimize the loss function?

In 1-dimension, the derivative of a function is:

In multiple dimensions, the gradient is the vector of (partial derivatives):

Adapted from Andrej Karpathy, definition/equation from https://en.wikipedia.org/wiki/Gradient

46

https://en.wikipedia.org/wiki/Gradient

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy

Computing the gradient numerically

47

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy

Computing the gradient numerically

48

gradient dW:

[-2.5,

?,

?,

?,
?,

?,

?,
?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

Andrej Karpathy

Computing the gradient numerically

49

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

Andrej Karpathy

Computing the gradient numerically

50

gradient dW:

[-2.5,

0.6,

?,

?,
?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Andrej Karpathy

Computing the gradient numerically

51

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Andrej Karpathy

Computing the gradient numerically

52

The loss is just a function of W:

want

Andrej Karpathy

Computing the gradient analytically

53

The loss is just a function of W:

want

Calculus

= ...

Andrej Karpathy

Computing the gradient analytically

54

gradient dW:

[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

dW = ...

(some function of

data and W)

Andrej Karpathy

Computing the gradient analytically

55

Example of gradient calculation

• f(x, w) = dot(w, x) = w1*x1 + w2*x2 + … + wD*xD

• d f(x, w) / d w1 = ?

• d f(x, w) / d w1 = x1

• d f(x, w) / d w2 = x2

• …

• Gradient of f(x, w) wrt w is [x1 x2 … xD] i.e. x

56

Loss gradients

• Different notations:

• i.e. how does the loss change as a function

of the weights

• We want to change weights in a way that

makes the loss decrease as fast as possible

57

Gradient descent

• We’ll update weights

• Move in direction opposite to gradient:

L

Learning rate
Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2

58

Gradient descent

• Iteratively subtract the gradient with respect

to the model parameters (w)

• I.e. we’re moving in a direction opposite to

the gradient of the loss

• I.e. we’re moving towards smaller loss

59

How to compute the loss/gradient?

• In classic gradient descent, we compute the

gradient from the loss for all training

examples

• Mini-batch gradient descent: Only use some

of the data for each gradient update, cycle

through training examples multiple times
• Each time we’ve cycled through all of them once is called

an ‘epoch’

• Allows faster training (e.g. on GPUs), parallelization

• Some benefits for learning due to randomness

60

Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)

61

https://www.deeplearning.ai/ai-notes/optimization/

https://www.deeplearning.ai/ai-notes/optimization/

Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of error from

higher layers to lower layers

62

Backpropagation: Graphic example

First calculate error of output units and use this

to change the top layer of weights.

output

hidden

input

Calculate how to

update weights into j

(update at end of iter)

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)

63

Backpropagation: Graphic example

Next calculate error for hidden units based on

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

64

Backpropagation: Graphic example

Finally update bottom layer of weights based on

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

65

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Lecture 4 - 10

Andrej Karpathy

66

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 11

Andrej Karpathy

67

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 12

Andrej Karpathy

68

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 13

Andrej Karpathy

69

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 14

Andrej Karpathy

70

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 15

Andrej Karpathy

71

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 16

Andrej Karpathy

72

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 17

Andrej Karpathy

73

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 18

Andrej Karpathy

74

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 19

Andrej Karpathy

75

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 20

Andrej Karpathy

76

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 21

Andrej Karpathy

77

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Lecture 4 - 22

Andrej Karpathy

78

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

Andrej Karpathy

“local gradient”

f

gradients

79

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

Andrej Karpathy

80

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

Andrej Karpathy

81

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

Andrej Karpathy

See hidden slides for more details.82

Convolutional neural networks

92

Convolutional Neural Networks (CNN)

• Neural network with specialized

connectivity structure

• Stack multiple stages of feature

extractors

• Higher stages compute more global,

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

93

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

• Feed-forward feature extraction:

1. Convolve input with learned filters

2. Apply non-linearity

3. Spatial pooling (downsample)

• Supervised training of convolutional

filters by back-propagating

classification error

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…

94

1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus

95

2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus

96

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

Rob Fergus, figure from Andrej Karpathy

97

3. Spatial Pooling

• Sum or max over non-overlapping /
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus

98

32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy

99

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

Convolutions: More detail

Andrej Karpathy

100

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy

101

32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

102

32

32

3

Convolution Layer

32x32x3 image

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy

103

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy

104

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

3

28

28

6

CONV,

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy

105

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

32

3

CONV,

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,

ReLU

e.g. 10

5x5x6

filters

CONV,

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy

106

Preview
[From recent Yann

LeCun slides]

Convolutions: More detail

Andrej Karpathy

107

example 5x5 filters
(32 total)

We call the layer convolutional

because it is related to convolution

of two signals:

Element-wise multiplication and sum

of a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman

108

A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all

spatial locations

Convolutions: More detail

Andrej Karpathy

109

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

110

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

111

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

112

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

113

=> 5x5 output

7

7x7 input (spatially)

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

114

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

115

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

116

7x7 input (spatially)

assume 3x3 filter

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

117

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

118

7x7 input (spatially)

assume 3x3 filter

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy

119

N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy

120

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy

121

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

122

In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with

stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1

123

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy

124

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy

125

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy

126

Examples time:

Input volume: 32x32x3

10 5x5x3 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy

127

Putting it all together

Andrej Karpathy

128

Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm

A Common Architecture: AlexNet

129

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

Details/Retrospectives:

-first use of ReLU

-used Norm layers (not common anymore)

-heavy data augmentation

-dropout 0.5

-batch size 128

-SGD Momentum 0.9

-Learning rate 1e-2, reduced by 10

manually when val accuracy plateaus

-L2 weight decay 5e-4

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: AlexNet

Case Study: VGGNet

Only 3x3 CONV stride 1, pad 1

and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

[Simonyan and Zisserman, 2014]

Andrej Karpathy

131

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

Andrej Karpathy

132

Slide from Kaiming He’s presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Case Study: ResNet

Andrej Karpathy

133

https://www.youtube.com/watch?v=1PGLj-uKT1w

(slide from Kaiming He’s presentation)

Case Study: ResNet

Andrej Karpathy

134

Case Study: ResNet
[He et al., 2016]

Very deep networks using residual

connections

- 152-layer model for ImageNet
- ILSVRC’15 classification winner

(3.57% top 5 error)

- Swept all classification and

detection competitions in

ILSVRC’15 and COCO’15!

..

.

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

What happens when we continue stacking deeper layers on a “plain” convolutional

neural network?

Q: What’s strange about these training and test curves?

[Hint: look at the order of the curves]

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

56-layer model performs worse on both training and test error

-> The deeper model performs worse, but it’s not caused by overfitting!

Case Study: ResNet
[He et al., 2016]

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Hypothesis: the problem is an optimization problem, deeper models are harder to

optimize

The deeper model should be able to perform at

least as well as the shallower model.

A solution by construction is copying the learned

layers from the shallower model and setting

additional layers to identity mapping.

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

relu

Case Study: ResNet
[He et al., 2016]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a

desired underlying mapping

X

identity

F(x) + x

F(x)

relu

relu

X
Residual block

X
“Plain” layers

H(x)

Use layers to

fit residual

F(x) = H(x) - x

instead of

H(x) directly

H(x) = F(x) + x

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

..

.

Case Study: ResNet
[He et al., 2016]

relu
X

identity

F(x) + x

F(x)

relu

X
Residual block

Full ResNet architecture:

- Stack residual blocks
- Every residual block

has two 3x3 conv

layers

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 1, 2018

Fei-Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Practical matters

140

Comments on training algorithm

• Not guaranteed to converge to zero training error, may

converge to local optima or oscillate indefinitely.

• However, in practice, does converge to low error for

many large networks on real data, with good choice of

hyperparameters (e.g. learning rate).

• Thousands of epochs (epoch = network sees all training

data once) may be required, hours or days to train.

• To avoid local-minima problems, run several trials

starting with different random weights (random restarts),

and take results of trial with lowest training set error, use

transfer learning, regularization, …

• May be hard to set learning rate and to select number of

hidden units and layers.

• Neural networks had fallen out of fashion in 90s, early

2000s; back with a new name and improved performance

(deep networks trained with dropout and lots of data).
Ray Mooney, Carlos Guestrin, Dhruv Batra

141

Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney

142

Training: Best practices

• Data
• Center (subtract mean from) your data

• Use data augmentation

• Use mini-batch

• Weights/activations
• To initialize weights, use “Xavier initialization”

• Use regularization

• Use RELU (most common), don’t use sigmoid

• Hyperparameters:
• Learning rate: too high? Too low?

• Use cross-validation to pick

143

Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

• Randomly turn off some neurons

• Allows individual neurons to independently be

responsible for performance

Adapted from Jia-bin Huang

144

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Data Augmentation (Jittering)

Create virtual training samples
• Horizontal flip

• Random crop

• Color casting

• Geometric distortion

Jia-bin Huang, Image: https://github.com/aleju/imgaug

145

https://github.com/aleju/imgaug

Transfer Learning

“You need a lot of a data if you want to

train/use CNNs”

Andrej Karpathy

146

Transfer Learning with CNNs

• The more weights you need to learn, the

more data you need

• That’s why with a deeper network, you need

more data to train than for a shallower net

• One possible solution:

Set these to the already learned

weights from another network

Learn these on your own task

147

1. Train on

ImageNet
2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer Learning with CNNs

Adapted from Andrej Karpathy

Another option: use network as feature extractor,

train SVM on extracted features for target task

Source: classification on ImageNet Target: some other task/data

148

more generic

more specific

Lecture 11 - 34

very similar

dataset

very different

dataset

very little data Use simple

classifier from

top layer

You’re in

trouble… Try

simple classifier

from different

stages

quite a lot of

data

Finetune a few

layers

Finetune a

larger number of

layers

Transfer Learning with CNNs

Adapted from Andrej Karpathy

149

Pre-training on ImageNet

• Have a source domain and target domain

• Train a network to classify ImageNet classes
• Coarse classes and ones with fine distinctions (dog breeds)

• Remove last layers and train layers to

replace them, that predict target classes

Oquab et al., “Learning and Transferring Mid-Level Image Representations…”, CVPR 2014

150

Transfer learning with CNNs is pervasive…

Object Detection
Ren et al., “Faster R-CNN“, NIPS 2015

Image Captioning

Karpathy and Fei-Fei, “Deep Visual-

Semantic Alignments for Generating

Image Descriptions”, CVPR 2015

CNN pretrained

on ImageNet

Adapted from Andrej Karpathy

151

Extract

patch

CNN

Run through

a CNN

COW

Classify

center pixel

Repeat for

every pixel

Lecture 13 - 28

Semantic segmentation

Andrej Karpathy

152

Photographer identification

Who took this photograph?

• Deep net features achieve 74% accuracy
• Chance is less than 3%, human performance is 47%

• Method learns what proto-objects + scenes

authors shoot

Thomas and Kovashka, CVPR 2016

153

Analysis of pre-training on ImageNet

• Source:
• distinguish 1000 ImageNet categories (incl. many dog breeds)

• Target tasks:
• object detection and action recognition on PASCAL

• scene recognition on SUN

• Pre-training with 500 images per class is about

as good as pre-training with 1000

• Pre-training with 127 classes is about as good

as pre-training with 1000

• Pre-training with (fewer classes, more images

per class) > (more classes, fewer images)

• Small drop in if classes with fine-grained

distinctions removed from pre-training set
Huh et al., “What makes ImageNet good for transfer learning?”, arxiv 2016

154

Packages

TensorFlow

Torch / PyTorch

Keras

Caffe and Caffe Model Zoo

155

https://www.tensorflow.org/
http://torch.ch/
https://pytorch.org/
https://keras.io/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo

Some Learning Resources

http://deeplearning.net/

http://cs231n.stanford.edu

156

http://deeplearning.net/
http://cs231n.stanford.edu/syllabus.html

Understanding CNNs

157

Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Recall: Biological analog

158

Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

159

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give

maximal activation of a given feature map

• Activations projected

down to pixel level

via decovolution

160

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

161

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

162

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]

163

Occlusion experiments

(as a function of the

position of the

square of zeros in

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy

164

What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy

165

What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

166

http://yosinski.com/deepvis

What image maximizes a class score?

Andrej Karpathy

167

Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]
Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf

Fooling a linear classifier

How to fool?

Add a small multiple of

the weight vector to the

training example:

x  x + αw

http://karpathy.github.io/2015/03/30/breaking-convnets/
Jia-bin Huang

169

http://karpathy.github.io/2015/03/30/breaking-convnets/

Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for

Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf

Shape vs texture

ImageNet-trained CNNs are biased towards texture; increasing shape bias improves

accuracy and robustness [Geirhos et al., ICLR 2019]

https://openreview.net/forum?id=Bygh9j09KX

Summary

• We use deep neural networks because of

their strong performance in practice

• Convolutional neural network (CNN)
• Special operations: Convolution, max pooling

• Training deep neural nets
• We need an objective function that measures and guides us

towards good performance

• We need a way to minimize the loss function: stochastic

gradient descent

• We need backpropagation to propagate error from end of

net towards all layers and change weights at those layers

• Practices for preventing overfitting
• Dropout; data augmentation; transfer learning

172

