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Plan for this lecture

* Language and vision
— Image captioning
— Tool: Recurrent neural networks
— Video captioning
— Visual question answering

* Motion and video
— Modeling and replicating motion
— Tracking how an object moves



Motivation: Descriptive Text for Images

“It was an arresting face, pointed of chin, square of jaw. Her eyes
were pale green without a touch of hazel, starred with bristly black
lashes and slightly tilted at the ends. Above them, her thick black
brows slanted upward, cutting a startling oblique line in her
magnolia-white skin—that skin so prized by Southern women and so

carefully guarded with bonnets, veils and mittens against hot
Georgia suns”

Scarlett O’Hara described in Gone with the Wind

Tamara Berg



Some pre-RNN good results

This is a picture of one

sky, one road and one Here we see one road,
sheep. The gray sky is one sky and one bicycle.
over the gray road. The The road is near the blue

sky, and near the colorful
bicycle. The colorful
bicycle is within the blue
sky.

gray sheep is by the gray
road.

. i ™
- e e

This is ure of o
dogs. The first dog is near

Kulkarni et al., CVPR 2011 the Second furry dog



Some pre-RNN bad results

Missed detections: False detections:

There are one road and one cat.
The furry road is in the furry cat.

This is a picture of one tree, one
road and one person. The rusty
tree is under the red road. The
colorful person is near the rusty
tree, and under the red road.

4N

This is a picture of one dbg.

Kulkarni et al., CVPR 2011

Incorrect attributes:

REDR . A A e Y,

i P L
This is a photograph of two sheeps and one
grass. The first black sheep is by the green
grass, and by the second black sheep. The
second black sheep is by the green grass.

T

This is a photograph of two horses and
one grass. The first feathered horse is
within the green grass, and by the second
feathered horse. The second feathered
horse is within the green grass.



Results with Recurrent Neural Networks
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“‘construction worker in orange “two young girls are playing with v"boy is doing backflip on
guitar.” safety vest is working on road.” lego toy.” wakeboard.”

Karpathy and Fei-Fei, CVPR 2015



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ vanilla neural networks

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. image captioning
image -> sequence of words

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

\ e.g. sentiment classification
sequence of words -> sentiment

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

[\ e.g. machine translation
seq of words -> seq of words

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many
f Pt f Pt o
f f Pt bt Pt

y

e.g. video classification on frame level

Andrej Karpathy



Recurrent Neural Network

-

Andrej Karpathy



Recurrent Neural Network

usually want to
output a prediction
at some time steps

Adapted from Andrej Karpathy



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy|= fW(ht—h xt)

new state / old state input vector at
some time step

some function
with parameters W

Andrej Karpathy




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = fw (ht—h xt)

Notice: the same function and the same set «
of parameters are used at every time step.

Andrej Karpathy



(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y hy = fW(ht—la wt)

|
¢> h, = tanh(Wpph, 1 + Wopxy)

X Yt — Whyht

Andrej Karpathy



Example

Character-level y
language model

example

Vocabulary:

[h,e,l,0] X

Example training
sequence:
“hello”

Andrej Karpathy



Example

Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence: input layer
“hello”

S [eloioi=

input chars: ¢

Andrej Karpathy

o |loo-ao
= |5 ee

“~|lo~0co0o



Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Andrej Karpathy

Example

hi = tanh(Wprhi—1 + Wapat)

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
“h"

A4

\

0.1

-0.5
-0.3

W_hh| -

= |loa0co0O




Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

Andrej Karpathy

Example

target chars:

output layer

hidden layer

input layer

input chars:

“n
e

1.0
2.2

-3.0

4.1

|

0.3

-0.1

0.9

Y

BNl <) (=) (o) | p—

\

W_hh| -




Extensions

* Vanishing gradient problem makes it hard to
model long sequences

— Multiplying together many values between 0 and 1
(range of gradient of sigmoid, tanh)

e One solution: Use RELU

* Another solution: Use RNNs with gates

— Adaptively decide how much of memory to keep

— Gated Recurrent Units (GRUs), Long Short Term
Memories (LSTMs)



Andrej Karpathy

Generating poetry with RNNs

Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth's unknown, although his height be taken.
Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.




Generating poetry with RNNs

) ) tyntd-iafhatawiaoihrdemot 1ytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at first: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns 1ng

j’ train more

"Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

l train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

More info: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Andrej Karpathy


http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generating poetry with RNNs

PANDARUS: VIOLA:
Alas, I think he shall be come approached and the day Why, Salisbury must find his flesh and thought
When little srain would be attain'd into being never fed, That which I am not aps, not a man and in fire,
And who is but a chain and subjects of his death, To show the reining of the raven and the wars
I should not sleep. To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
Second Senator: When I was heaven of presence and our fleets,
They are away this miseries, produced upon my soul, We spare with hours, but cut thy council I am great,
Breaking and strongly should be buried, when I perish Murdered and by thy master's ready there
The earth and thoughts of many states. My power to give thee but so much as hell:
Some service in the noble bondman here,
DUKE VINCENTIO: Would show him to her wine.
Well, your wit is in the care of side and that.
KING LEAR:
Second Lord: 0, if you were a feeble sight, the courtesy of your law,
They would be ruled after this chamber, and Your sight and several breath, will wear the gods

my fair nues begun out of the fact, to be conveyed, With his heads, and my hands are wonder'd at the deeds,

Whose noble souls I'll have the heart of the wars. So drop upon your lordship's head, and your opinion

Shall be against your honour.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

Andrej Karpathy



Image Captioning

“straw” “hat” END

START “straw” “hat”

CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy



Image Captioning

Recurrent Neural Network

Convolutional Neural Network

Andrej Karpathy



Image Captioning

testimage

Andrej Karpathy



image <

conv-64
conv-64

~ maxpool
conv-128

~ conv-128

‘ maxpool '

testimage

-~ conv-256
 conv-256
f maxpool

~ conv-512
conv-512

~ maxpool

Andrej Karpathy



image <

conv-64
conv-64

~ maxpool
conv-128

~ conv-128

‘ maxpool '

testimage

-~ conv-256
 conv-256
f maxpool

~ conv-512
conv-512

~ maxpool

Andrej Karpathy



Image Captioning

testimage

conv-128

~ conv-128
maxpool

__conv-256
. conv-256
‘ maxpool

 conv-512

~ conv-512

 conv-512

| conv-512

. maxpool

. FC-4096 X0

S —————— <START>

<START>

Andrej Karpathy



Image Captioning

test image

~_maxpool

' conv-128

~ conv-128
 maxpool

__ conv-256 yO

‘_ conv-256

__maxpool T before:
h =tanh(W,, * x + W, * h)

_ conv-512
. conv-512

~maxpool hO

Wih

. conv-512

_ conv-512

~ maxpool

T now:
h=tanh(W,, * X+ W,,, *h + W,, *1m)

 FC-4096 @
T I U 967 <START>

Im

<START>

Andrej Karpathy



' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

yO

hO

x0

<START>

<START>

straw

sample!

testimage



Image Captioning

testimage

' conv-128

~ conv-128
maxpool

| conv-256 yO yl

. conv-256

= 1

 conv-512

~ conv-512

hO | hl

. conv-512
| conv-512 T T
~_maxpool

_ FC-4096 o

‘ FC m— 67 <START> straw

<START>

Andrej Karpathy



' conv-128

conv-128

~ maxpool

__conv-256

conv-256

. maxpool

 FC-4096

 conv-512
~ conv-512.
~ maxpool

Andrej Karpathy

Image Captioning

conv-512

Y yl
hO hl
x0
<START> straw hat

<START>

testimage

sample!



Image Captioning

testimage

' conv-128

~conv-128
maxpool

| conv-256 y0 y1 y2
. conv-256

— 1]

 conv-512

~ conv-512

hO —| hl —=| h2

. conv-512
| conv-512 T T T
~_maxpool

_ FC-4096 "

‘ = == 67 <START> straw hat

<START>

Andrej Karpathy



Image Captioning

| image | <

conv-64 _
__conv-64

maxpool

~ conv-128
__conv-128
__conv-256
. conv-256
‘maxpool
__conv-512
~conv-512
maxpool
[ conv-512
. conv-512
" maxgool

~ FC-4096
~ FC-4096

Adapted from Andrej Karpathy

testimage

Caption generated:
“straw hat”

\ sample

<END> token
=> finish.

Y yl y2
hO | hl h2
x0
<START> straw hat

<START>




"a young boy is holding a 7
baseball bat.’

Andrej Karpathy

Image Captioning

P »'::- ] ',\-.j:;‘

“construction worker in orange
safety vest is working on road.’

"a cat is sitting on a couch with a
remote control.”

“two young girls are playing with
lego toy."

"a woman holding a teddy bear in
front of a mirror.”

"'boy is doing backflip on
wakeboard.”

"a horse is standing in the middle
of a road.”



Plan for this lecture

* Language and vision
— Image captioning
— Tool: Recurrent neural networks
— Video captioning
— Visual question answering

* Motion and video
— Modeling and replicating motion
— Tracking how an object moves



Video Captioning

Generate descriptions for events depicted in video clips

www.ochevidets.ru

A monkey pulls a dog'’s tail and is chased by the dog.

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



English
Sentence

_.
0D -

—_—

Video Captioning

RNN RNN French
encoder —Q0O0— decoder Sentence
Encode Q00— 4oonn, —= Sent
coae decoder entence
Encode GO0 govoder [ SeM
ncoae decoder entence
Key Insight:

[Sutskever et al. NIPS'14]

[Donahue et al. CVPR’15]
[Vinyals et al. CVPR’15]

[Venugopalan et. al.
NAACL’15] (this work)

Generate feature representation of the video and “decode” it to a sentence

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



Video Captioning

Input —— Sample frames Forward propagate | |
Video @1/10 Output: “fc7” features _ _
(activations before classification layer) fc7: 4096 dimension

“feature vector”

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



Video Captioning

Inputvldeo Convolutional Net Recurrent Net Output
MoHEIN\\ —)  —| LSTM LSTM A

l J,

MHEN\\H—— —> LSTM I]_LSTM boy

- |
. —=| LSTM = LSTM = is
EZ - ! !
- CFE\J7—=| |—=[1sTM =] 1STM |— playing
} !
EEE' — —D‘ . —D‘ ] —_—
w — L LSTM_—= | LSTM golf
' '
N — | — <EOS>
- CES—) —lsm
Mean across
all frames

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



Video Captioning

FGM: A person is dancing with the person on the stage. FGM: A person is cutting a potato in the kitchen.
YT: A group of men are riding the forest. YT: A man is slicing a tomato.

I+V: A group of people are dancing. [+V: A manis slicing a carrot.

GT: Many men and women are dancing in the street. GT: A man is slicing carrots.

FGM: A persn is walking with a person inthe forest.

FGM: A person is riding a horse on the stage.
YT: A monkey is walking. P g g

] ) YT: A group of playing are playing in the ball.
1+V: A bearis eating a tree. I+V: A basketball player is playing.

GT: Two bear cubs are digging into dirt and plant matter )
GT: Dwayne wade does a fancy layup in an allstar game.
atthe base of a tree.

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015



English
Sentence

o

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

Video Captioning

RNN
encoder

Encode

—Q00O—

Encode

—Q0O0—

RNN
encoder

RNN
decoder

—

RNN
decoder

RNN
decoder

RNN
decoder

French
Sentence

— Sentence

—> Sentence

—> Sentence

[Sutskever et al. NIPS'14]

[Donahue et al. CVPR’15]
[Vinyals et al. CVPR’15]

[Venugopalan et. al.
NAACL'15]

[Venugopalan et. al. ICCV’
15] (this work)



Video Captioning

E E r r S2VT Overview
CN
Now decode it to a sentence!

o] Cismw [ism [s] s fus]

| , :
Encoding stage A man is talking

\ J
|

Decoding stage

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015



Visual Question Answering (VQA)

Task: Given an image and a natural language open-ended question,
generate a natural language answer.

What color are her eye? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

Is this person expecting company? Does it appear t be rainy?
What is just under the tree? Does this person have 20/20 vision?

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015



http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html

Visual Question Answering (VQA)

Neural Network
Softmax
4096-dim over top K answers

\.@ > biy=0

Image Embedding

— Py=1]x)

| | | | |
onvolution Layer ooling Layer onvolution Layer ooling Layer ully-Connected
C+ Non_tLineaLritvy Pooling Lay c+ Non-tLineaLri'Zy Pooling Lay Fully-Connect @ —> Ply=2x)
Input Softmax
(Features Il}  classifier
Question Embedding
“How many horses are in this image?” 1024-dim

LSTM

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015



http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html

Visual Question Answering (VQA)

- -
] - - F = . .. - 3\
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Internal Representation
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Figure 2. Our proposed framework: given an image, a CNN is first applied to produce the attribute-based representation V., (/). The
internal textual representation is made up of image captions generated based on the image-attributes. The hidden state of the caption-
LSTM after it has generated the last word in each caption is used as its vector representation. These vectors are then aggregated as |

with average-pooling. The exiernal knowledge is mined from the KB (in this case DBpedia) and the responses encoded by Doc2Vec, which
produces a vector Vinow (I ) The 3 vectors V are combined into a single representation of scene content, which is input to the VQA LSTM
model which interprets the question and generates an answer.

Wu et al., “Ask Me Anything: Free-Form Visual Question Answering Based on Knowledge From External Sources”, CVPR 2016



http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_Ask_Me_Anything_CVPR_2016_paper.html

Visual Question Answering (VQA)

CloudCV: Large Scale Dist x \, | =9

€ 3 C cloudcv.org/vga Q6 =

CloudCV Ima ching )bject Detection De or Classification VIP Train an

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015



Reasoning for VQA

Is there a red shape
above a circle?

exists E
®

above E
®

Andreas et al., “Neural Module Networks”, CVPR 2016

A A
SRECIE £
O
true
AR
[ |

yes

o) >



http://openaccess.thecvf.com/content_cvpr_2016/html/Andreas_Neural_Module_Networks_CVPR_2016_paper.html

Reasoning for VQA

Question: Are there more cubes than yellow things? Answer: Yes

: greater Classifier
things — LSIM > LS;'M - A
yellow—>| LSTM | > LSTM H»| coune | [EXECUlION

3 ¥ Engine
filter
than—{ LSTM | > LSTM » color greater than
5 ¥ [yellow] A A
- t t
cubes—> LSTM | }» LSTM |—»| <scene> °°Z“ °°Z“
A v filter || filter
more —» LSTM | »| LSTM »| count color shape
[vellow] [cube]
* * filter * 4
there—» LSTM | > LSTM » shape
* + [cube] / CNN \
Are —» LSTM | “»{ LSTM »| <SCENE>
P G Predicted
rogram enerator Program

Johnson et al., “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017



http://openaccess.thecvf.com/content_iccv_2017/html/Johnson_Inferring_and_Executing_ICCV_2017_paper.html

Plan for this lecture

* Language and vision
— Image captioning
— Tool: Recurrent neural networks
— Video captioning
— Visual question answering

* Motion and video
— Modeling and replicating motion
— Tracking how an object moves



Motion: Why is it useful?



Motion: Why is it useful?

e Even “impoverished” motion data can evoke a
strong percept

G. Johansson, “Visual Perception of Biological Motion and a Model For Its
Analysis", Perception and Psychophysics 14, 201-211, 1973.

Derek Hoiem



Modeling Motion: Optical Flow

(a) Input Image (b) Prediction

Walker et al., “Dense Optical Flow Prediction from a Static Scene”, ICCV 2015



Transferring Motion

Input Image Source video (melting face)

1 _ — 2
LAow(Yi—1.Yii18i—1.8;) = E ——— || E(¥i—1.¥i)1 — Z(si—1,8: )15
(.-gHgI-'i-"g \ J \ J
[ | |
Optical flow in Optical flow in
generated video source video

Key idea: Generate videos with similar flow patterns as source videos (+ many details).

Thomas, Song and Kovashka



Transferring Motion

Frame 30

Input Image (Frame 1) Frame 15 Frame 30 Input Image (Frame 1) Frame 15

Blooming

Melting
Blooming

Melting
Blooming

Thomas, Song and Kovashka



Transferring Motion

Baking Blooming

Thomas, Song and Kovashka



Tracking: some applications

Body pose tracking, Censusing a bat Video-wb.ased

activity recognition population interfaces

R iy §

f’”"

ts ."-.~
j

-I(F*ry\ .,

v‘\ 4
"n’u.‘» =

Medical apps Surveillance

Kristen Grauman



Tracking examples

Traffic: https://www.youtube.com/watch?v=DiZHQ4peqjg

Soccer: http://www.youtube.com/watch?v=ZgQIItFAnxg

Face: http://www.youtube.com/watch?v=i bZNVmhJ2o

Body: https://www.youtube.com/watch?v=_Ahy0Gh69-M

Eve: http://www.youtube.com/watch?v=NCtYdUEMotg

Gaze: http://www.youtube.com/watch?v=-G6Rw5cU-1c

Amin Sadeghi


https://www.youtube.com/watch?v=DiZHQ4peqjg
http://www.youtube.com/watch?v=ZqQIItFAnxg
http://www.youtube.com/watch?v=i_bZNVmhJ2o
https://www.youtube.com/watch?v=_Ahy0Gh69-M
http://www.youtube.com/watch?v=NCtYdUEMotg
http://www.youtube.com/watch?v=-G6Rw5cU-1c

Things that make visual tracking difficult

* Erratic movements, moving very quickly
* QOcclusions, leaving and coming back
e Surrounding similar-looking objects

Adapted from Amin Sadeghi



Strategies for tracking

* Tracking by repeated detection

— Works well if object is easily detectable (e.g., face
or colored glove) and there is only one

— Need some way to link up detections
— Best you can do, if you can’t predict motion

Amin Sadeghi



Strategies for tracking

e Tracking w/ dynamics: Using model of expected
motion, predict object location in next frame

— Restrict search for the object
— Measurement noise is reduced by trajectory smoothness
— Robustness to missing or weak observations

— Assumptions: Camera is not moving instantly to new viewpoint,
objects do not disappear/reappear in different places in the scene

Amin Sadeghi



Detection vs. tracking

Kristen Grauman



Detection vs. tracking

Detection: We detect the object independently In
each frame and can record its position over time,
e.g., based on detection window coordinates

Adapted from Kristen Grauman



Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
l.e., our expectation of the object’'s motion pattern

Kristen Grauman



Tracking: prediction + correction

Belief

Measurement

Corrected prediction

Kristen Grauman



Tracking: prediction + correction
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Kristen Grauman



General model for tracking

e State X: The actual state of the
moving object that we want to
estimate but cannot observe

— E.g. position, velocity
e Observations Y: Our actual
measurement or observation of

state X, which can be very noisy o (%)
e At each timet, the state changes to
X;and we get a new observation Y, ® O © @

e Qur goalis to recover the most
likely state X, given:
— All observations so far, i.e. y,, y,, ..., ¥,

— Knowledge about dynamics of state
transitions

Adapted from Amin Sadeghi and Kristen Grauman



Steps of tracking

e Prediction: What is the next state of the
object given past measurements?

P(Xt‘YO = Yor o Vg = yt‘l)



Steps of tracking

e Prediction: What is the next state of the
object given past measurements?

P(Xt‘Yo = Yor o Vg = yt‘l)

e Correction: Compute an updated estimate of
the state from prediction and measurements

P(Xt‘Yo = Yo - ’Yt—l — ytl



Problem statement

 \We have models for

Likelihood of next state given current state

(dynamics model):
P(X,|X )

Likelihood of observation given the state
(observation or measurement model):

P(Yt‘xt)

 We want to recover, for each t: P(Xt\yo, ,yt)

Amin Sadeghi



The Kalman filter

e Linear dynamics model: state undergoes linear
transformation plus Gaussian noise

e Observation model: measurement is linearly
transformed state plus Gaussian noise

e The predicted/corrected state distributions are
Gaussian

— You only need to maintain the mean and covariance
— The calculations are easy

Amin Sadeghi



Example: Constant
velocity (1D points)

1 d position

measurements

time

1 d position

Kristen Grauman



Example: Constant
velocity (1D points)

« State vector: position p and velocity v

Py

Vi

X, =

P = Pry T (At)vt—l T &
W:W4+§

. {1 At}{ ptl} .
X, =|D,X,_, +noise = +Nnoise

« Measurement is position only

Y, = Mx, +noise [t 0] ™ |+ noise

V

t



Prediction and correction See hidden slides at end

of deck for derivation

Prediction:
P(Xt | Yor yt—l): _[ P(Xt | Xt—l)P(Xt—l | Yo oo yt—l)dxt—l

\ J N\ /
Y Y

dynamics corrected estimate
from previous step

servation predicted
model estimate

.
P(y, | X )P(X, | Yo, ) Yer)
P(y, | X )P(X, | Yor-mer Vi g JIX,

Adapted from Amin Sadeghi

Correction:

P(Xt\yo,....,yt):J_



Example w/ constant velocity

X measurement
* predicted mean estimate
+ corrected mean estimate

bars: variance estimates
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Example w/ constant velocity
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Kalman filter processing

o state

X measurement

* predicted mean estimate
+ corrected mean estimate

bars: variance estimates
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Example w/ constant velocity
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Adapted from Kristen Grauman
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Example w/ constant velocity
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Example w/ constant velocity
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Ground Truth Observation Correction

Amin Sadeghi



