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Plan for this lecture

• Language and vision

– Image captioning

– Tool: Recurrent neural networks

– Video captioning 

– Visual question answering

• Motion and video

– Modeling and replicating motion

– Tracking how an object moves



“It was an arresting face, pointed of chin, square of jaw. Her eyes 

were pale green without a touch of hazel, starred with bristly black 

lashes and slightly tilted at the ends. Above them, her thick black 

brows slanted upward, cutting a startling oblique line in her 

magnolia-white skin–that skin so prized by Southern women and so 

carefully guarded with bonnets, veils and mittens against hot 

Georgia suns”  

Scarlett O’Hara described in Gone with the Wind

Tamara Berg

Motivation: Descriptive Text for Images



This is a picture of one 

sky, one road and one 

sheep. The gray sky is 

over the gray road. The 

gray sheep is by the gray 

road. 

Here we see one road, 

one sky and one bicycle. 

The road is near the blue 

sky, and near the colorful 

bicycle. The colorful 

bicycle is within the blue 

sky. 

This is a picture of two 

dogs. The first dog is near 

the second furry dog. Kulkarni et al., CVPR 2011

Some pre-RNN good results



Here we see one potted plant. 

Missed detections:

This is a picture of one dog. 

False detections:

There are one road and one cat. 

The furry road is in the furry cat. 

This is a picture of one tree, one 

road and one person. The rusty 

tree is under the red road. The 

colorful person is near the rusty 

tree, and under the red road. 

This is a photograph of two sheeps and one 

grass. The first black sheep is by the green 

grass, and by the second black sheep. The 

second black sheep is by the green grass. 

Incorrect attributes:

This is a photograph of two horses and 

one grass. The first feathered horse is 

within the green grass, and by the second 

feathered horse. The second feathered 

horse is within the green grass. 
Kulkarni et al., CVPR 2011

Some pre-RNN bad results



Karpathy and Fei-Fei, CVPR 2015

Results with Recurrent Neural Networks



Recurrent Networks offer a lot of flexibility:

vanilla neural networks

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

e.g. image captioning

image -> sequence of words

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

e.g. sentiment classification

sequence of words -> sentiment

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

e.g. machine translation

seq of words -> seq of words

Andrej Karpathy



Recurrent Networks offer a lot of flexibility:

e.g. video classification on frame level

Andrej Karpathy



Recurrent Neural Network

x

RNN

Andrej Karpathy

RNN



Recurrent Neural Network

x

RNN

y
usually want to  

output a prediction 

at  some time steps

Adapted from Andrej Karpathy



Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by  

applying a recurrence formula at every time step:

new state old state input vector at

some time step
some function

with parameters W

Andrej Karpathy



Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by  

applying a recurrence formula at every time step:

Notice: the same function and the same set  

of parameters are used at every time step.

Andrej Karpathy



x

RNN

y

(Vanilla) Recurrent Neural Network
The state consists of a single “hidden” vector h:

Andrej Karpathy



Character-level  

language model  

example

Vocabulary:  

[h,e,l,o]

Example training  

sequence:  

“hello”

RNN

x

y

Andrej Karpathy

Example
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Character-level  

language model  

example

Vocabulary:  

[h,e,l,o]

Example training  

sequence:  

“hello”

Andrej Karpathy

Example



Extensions

• Vanishing gradient problem makes it hard to 
model long sequences

– Multiplying together many values between 0 and 1 
(range of gradient of sigmoid, tanh)

• One solution: Use RELU

• Another solution: Use RNNs with gates

– Adaptively decide how much of memory to keep 

– Gated Recurrent Units (GRUs), Long Short Term 
Memories (LSTMs)



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

35

Andrej Karpathy

Generating poetry with RNNs



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016

train more

train more

train more

Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

36

at first:

Andrej Karpathy

Generating poetry with RNNs

More info: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 2016Lecture 10 -

8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

37

Andrej Karpathy

Generating poetry with RNNs



CVPR 2015:

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei  

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.  

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Adapted from Andrej Karpathy

Image Captioning



Convolutional Neural Network

Recurrent Neural Network

Andrej Karpathy

Image Captioning



test image

Andrej Karpathy

Image Captioning



test image

Andrej Karpathy



test image

X
Andrej Karpathy



test image

x0
<START>

<START>

Andrej Karpathy

Image Captioning



h0

y0

<START>

test image

before:

h = tanh(Wxh * x + Whh * h)

now:

h = tanh(Wxh * x + Whh * h + Wih * im)

im

Wih

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

sample!

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

straw

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

sample!

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

h2

y2

straw hat

<START>

Andrej Karpathy

Image Captioning

x0
<START>



h0

y0

test image

h1

y1

h2

y2

sample

<END> token

=> finish.

straw hat

<START>

Adapted from Andrej Karpathy

Image Captioning

Caption generated:
“straw hat”

x0
<START>



Andrej Karpathy

Image Captioning



Plan for this lecture

• Language and vision

– Image captioning

– Tool: Recurrent neural networks

– Video captioning 

– Visual question answering

• Motion and video

– Modeling and replicating motion

– Tracking how an object moves



Generate descriptions for events depicted in video clips

A monkey pulls a dog’s tail and is chased by the dog.

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Video Captioning



Key Insight:

Generate feature representation of the video and “decode” it to a sentence

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]  

[Vinyals et al. CVPR’15]

English  

Sentence

RNN

encoder

RNN

decoder
French  

Sentence

Encode
RNN

decoder
Sentence

Encode
RNN

decoder
Sentence

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

[Venugopalan et. al.  

NAACL’15] (this work)

Video Captioning



Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Video Captioning

Input

Video
Sample frames

@1/10

Forward propagate  

Output: “fc7” features
(activations before classification layer) fc7: 4096 dimension  

“feature vector”

CNN



Input Video Output

A

...

boy

is

playing

golf

<EOS>

Convolutional Net Recurrent Net

LSTM LSTM

LSTM LSTM

LSTM LSTM

LSTM LSTM

LSTM LSTM

LSTM LSTM

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Video Captioning

Mean across  

all frames



FGM: A person is dancing with the person on the stage.  

YT: A group of men are riding the forest.

I+V: A group of people are dancing.

GT: Many men and women are dancing in the street.

FGM: A person is cutting a potato in the kitchen.  

YT: A man is slicinga tomato.

I+V:Amanisslicing a carrot.

GT: A man is slicing carrots.

FGM: A person is walkingwith a person in the forest.  

YT: A monkey is walking.

I+V:Abear is eating a tree.

GT: Two bear cubs are digging into dirt and plant matter  

at the base of a tree.

FGM: A person is riding a horse on the stage.

YT: A group of playing are playing in the ball.

I+V:Abasketball player isplaying.

GT: Dwayne wade does a fancy layup in an allstar game.

Venugopalan et al., “Translating Videos to Natural Language using Deep Recurrent Neural Networks”, NAACL-HTL 2015

Video Captioning



Encode

[Sutskever et al. NIPS’14]

[Donahue et al. CVPR’15]  

[Vinyals et al. CVPR’15]

English  

Sentence

RNN

encoder

RNN

decoder
French  

Sentence

Encode
RNN

decoder
Sentence

Encode
RNN

decoder
Sentence [Venugopalan et. al.  

NAACL’15]

RNN

decoder
Sentence

RNN

encoder
[Venugopalan et. al. ICCV’  

15] (this work)

3

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

Video Captioning



S2VT Overview

LSTM LSTMLSTMLSTM LSTM LSTMLSTMLSTM

LSTM LSTMLSTMLSTM LSTM LSTMLSTMLSTM

CNN CNN CNN CNN

A man is

...

talking ...
Encoding stage

Decoding stage

Now decode it toa sentence!

Venugopalan et al., “Sequence to Sequence - Video to Text”, ICCV 2015

Video Captioning



Visual Question Answering (VQA)

Task: Given an image and a natural language open-ended question, 
generate a natural language answer.

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html


Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected

4096-dim

Embedding

Embedding

“How many horses are in this image?”

Neural Network 
Softmax

over top K answers

Image

Question  

1024-dim

Visual Question Answering (VQA)

Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

LSTM

http://openaccess.thecvf.com/content_iccv_2015/html/Antol_VQA_Visual_Question_ICCV_2015_paper.html


Wu et al., “Ask Me Anything: Free-Form Visual Question Answering Based on Knowledge From External Sources”, CVPR 2016

Visual Question Answering (VQA)

http://openaccess.thecvf.com/content_cvpr_2016/html/Wu_Ask_Me_Anything_CVPR_2016_paper.html


Agrawal et al., “VQA: Visual Question Answering”, ICCV 2015

Visual Question Answering (VQA)



Reasoning for VQA

Andreas et al., “Neural Module Networks”, CVPR 2016

http://openaccess.thecvf.com/content_cvpr_2016/html/Andreas_Neural_Module_Networks_CVPR_2016_paper.html


Johnson et al., “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

Reasoning for VQA

http://openaccess.thecvf.com/content_iccv_2017/html/Johnson_Inferring_and_Executing_ICCV_2017_paper.html


Plan for this lecture

• Language and vision

– Image captioning

– Tool: Recurrent neural networks

– Video captioning 

– Visual question answering

• Motion and video

– Modeling and replicating motion

– Tracking how an object moves



Motion: Why is it useful?

Derek Hoiem



Motion: Why is it useful?

• Even “impoverished” motion data can evoke a 
strong percept 

G. Johansson, “Visual Perception of Biological Motion and a Model For Its 

Analysis", Perception and Psychophysics 14, 201-211, 1973.
Derek Hoiem



Modeling Motion: Optical Flow

Walker et al., “Dense Optical Flow Prediction from a Static Scene”, ICCV 2015



Transferring Motion

Thomas, Song and Kovashka

Optical flow in 
generated video

Optical flow in 
source video

Key idea: Generate videos with similar flow patterns as source videos (+ many details).



Transferring Motion

Thomas, Song and Kovashka



Transferring Motion

Thomas, Song and Kovashka

Baking Blooming



Body pose tracking, 
activity recognition

Surveillance

Video-based 
interfaces

Medical apps

Censusing a bat 
population

Kristen Grauman

Tracking: some applications



Tracking examples

Traffic: https://www.youtube.com/watch?v=DiZHQ4peqjg

Soccer: http://www.youtube.com/watch?v=ZqQIItFAnxg

Face: http://www.youtube.com/watch?v=i_bZNVmhJ2o

Body: https://www.youtube.com/watch?v=_Ahy0Gh69-M

Eye: http://www.youtube.com/watch?v=NCtYdUEMotg

Gaze: http://www.youtube.com/watch?v=-G6Rw5cU-1c

Amin Sadeghi

https://www.youtube.com/watch?v=DiZHQ4peqjg
http://www.youtube.com/watch?v=ZqQIItFAnxg
http://www.youtube.com/watch?v=i_bZNVmhJ2o
https://www.youtube.com/watch?v=_Ahy0Gh69-M
http://www.youtube.com/watch?v=NCtYdUEMotg
http://www.youtube.com/watch?v=-G6Rw5cU-1c


Things that make visual tracking difficult

• Erratic movements, moving very quickly

• Occlusions, leaving and coming back

• Surrounding similar-looking objects

Adapted from Amin Sadeghi



Strategies for tracking

• Tracking by repeated detection

– Works well if object is easily detectable (e.g., face 
or colored glove) and there is only one

– Need some way to link up detections

– Best you can do, if you can’t predict motion

Amin Sadeghi



Strategies for tracking

• Tracking w/ dynamics: Using model of expected 
motion, predict object location in next frame 
– Restrict search for the object

– Measurement noise is reduced by trajectory smoothness

– Robustness to missing or weak observations

– Assumptions: Camera is not moving instantly to new viewpoint, 
objects do not disappear/reappear in different places in the scene

Amin Sadeghi



Detection vs. tracking

…

t=1 t=2 t=20 t=21

Kristen Grauman



Detection vs. tracking

…

Detection: We detect the object independently in 

each frame and can record its position over time, 

e.g., based on detection window coordinates

Adapted from Kristen Grauman



Detection vs. tracking

…

Tracking with dynamics: We use image 

measurements to estimate position of object, but 

also incorporate position predicted by dynamics, 

i.e., our expectation of the object’s motion pattern

Kristen Grauman



Time t Time t+1

Tracking: prediction + correction 

Belief

Measurement

Corrected prediction

Kristen Grauman



old belief

measurement

belief: prediction

corrected prediction

belief: prediction

Tracking: prediction + correction 

Time t Time t+1

Kristen Grauman



General model for tracking

• State X: The actual state of the 
moving object that we want to 
estimate but cannot observe
– E.g. position, velocity

• Observations Y: Our actual 
measurement or observation of 
state X, which can be very noisy

• At each time t, the state changes to 
Xt and we get a new observation Yt

• Our goal is to recover the most 
likely state Xt given:
– All observations so far, i.e. y1, y2, …, yt

– Knowledge about dynamics of state 
transitions

Adapted from Amin Sadeghi and Kristen Grauman

X1 X2

Y1 Y2

Xt

Yt

… Xt-1

Yt-1Y0

X0



Steps of tracking

• Prediction: What is the next state of the 
object given past measurements? 

 1100 ,,   ttt yYyYXP 

Kristen Grauman

…



Steps of tracking

• Prediction: What is the next state of the 
object given past measurements? 

• Correction: Compute an updated estimate of 
the state from prediction and measurements

 1100 ,,   ttt yYyYXP 

 ttttt yYyYyYXP   ,,, 1100 

Kristen Grauman

…

…



Problem statement

• We have models for

Likelihood of next state given current state 
(dynamics model):

Likelihood of observation given the state 
(observation or measurement model):

• We want to recover, for each t: 

 1tt XXP

 tt XYP

 tt yyXP ,,0 

Amin Sadeghi

…



The Kalman filter

• Linear dynamics model: state undergoes linear 
transformation plus Gaussian noise

• Observation model: measurement is linearly 
transformed state plus Gaussian noise

• The predicted/corrected state distributions are 
Gaussian

– You only need to maintain the mean and covariance

– The calculations are easy

Amin Sadeghi



Example: Constant 

velocity (1D points)

time

measurements

states1
 d

 p
o

s
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n

 
1 d position 

Kristen Grauman



• State vector: position p and velocity v

• Measurement is position only

Example: Constant 

velocity (1D points)
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Kristen Grauman



Prediction and correction

Prediction:

Correction:

      1101110 ,,||,,|   ttttttt dXyyXPXXPyyXP 
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   
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tt

dXyyXPXyP
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10
0
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




dynamics

model

corrected estimate

from previous step

observation

model
predicted

estimate

Adapted from Amin Sadeghi

See hidden slides at end 
of deck for derivation

… …

…
…

…



Kalman filter processing

time

o state

x measurement

*  predicted mean estimate

+ corrected mean estimate

bars:  variance estimates

Example w/ constant velocity
p

o
s
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Time t Time t+1Adapted from Kristen Grauman
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CorrectionObservationGround Truth

Amin Sadeghi

Example w/ constant velocity


