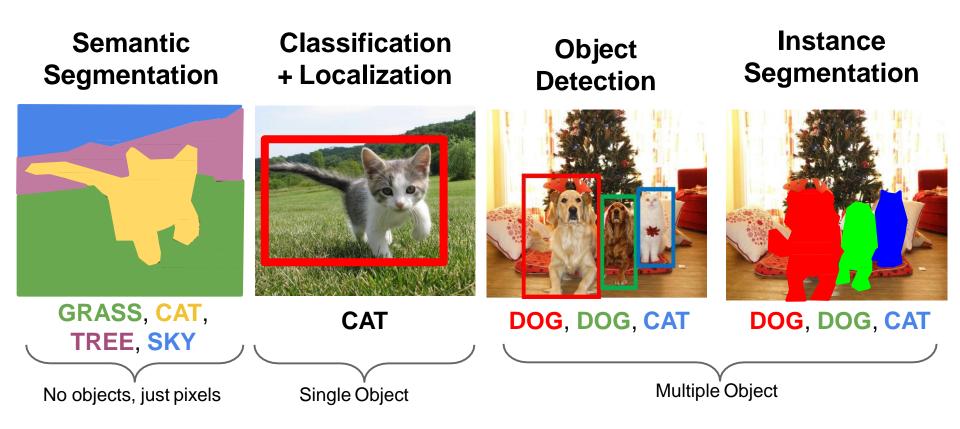
CS 1674: Intro to Computer Vision Object Recognition

Prof. Adriana Kovashka University of Pittsburgh November 15, 2018

Different Flavors of Object Recognition

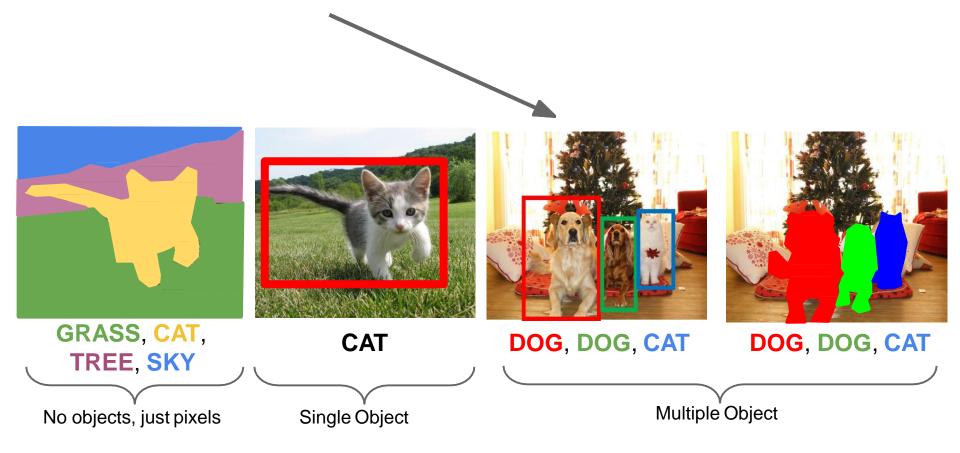


Adapted from Justin Johnson

Plan for the next two lectures

- Detection approaches
 - Pre-CNNs
 - Detection with whole windows: Pedestrian detection
 - Part-based detection: Deformable Part Models
 - Post-CNNs
 - Detection with region proposals: R-CNN, Fast R-CNN, Faster-R-CNN
 - Detection without region proposals: YOLO, SSD
- Segmentation approaches
 - Semantic segmentation: FCN
 - Instance segmentation: Mask R-CNN

Object Detection

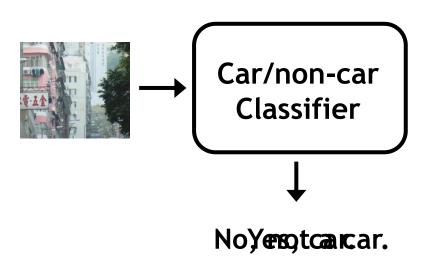


Object detection: basic framework

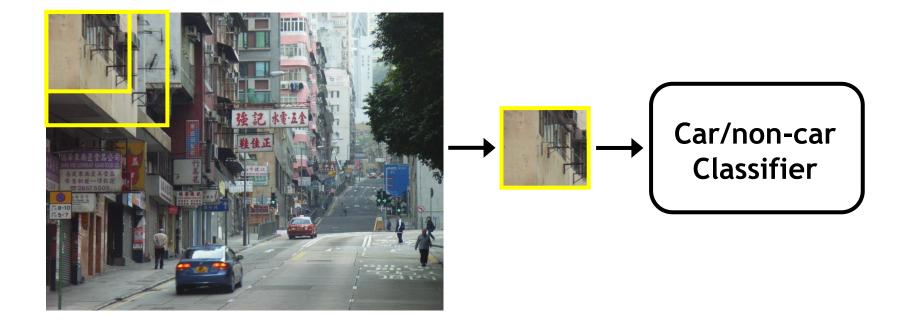
- Build/train object model
- Generate candidate regions in new image
- Score the candidates

Window-template-based models Building an object model

Given the representation, train a binary classifier



Window-template-based models Generating and scoring candidates



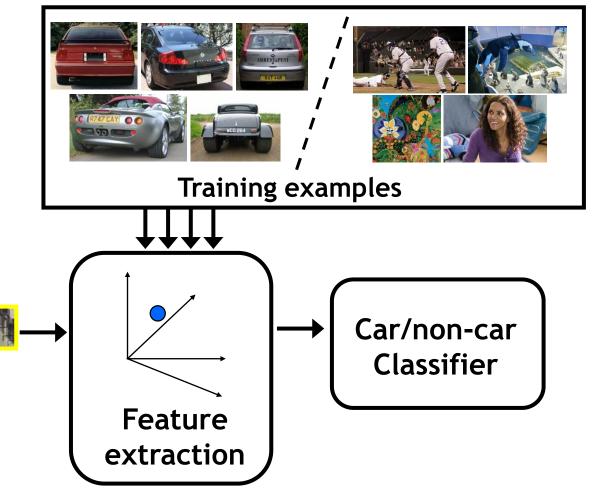
Window-template-based object detection: recap

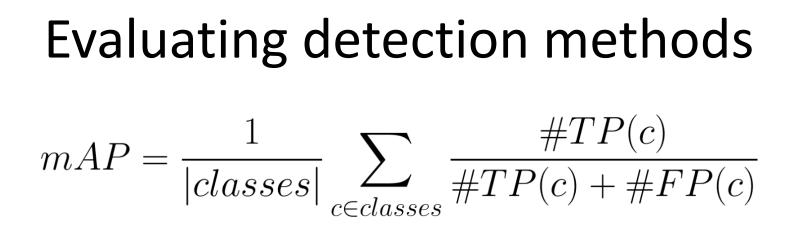
Training:

- 1. Obtain training data
- 2. Define features
- 3. Define classifier

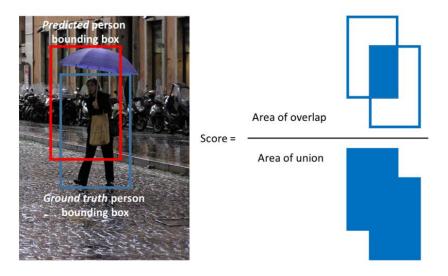
Given new image:

- 1. Slide window
- 2. Score by classifier





- True Positive TP(c): a predicted bounding box (pred_bb) was made for class c, there is a ground truth bounding box (gt_bb) of class c, and IoU(pred_bb, gt_bb) >= 0.5.
- False Positive FP(c): a pred_bb was made for class c, and there is no gt_bb of class c.
 Or there is a gt_bb of class c, but IoU(pred_bb, gt_bb) < 0.5.



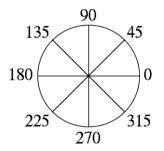
Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at multiple positions and scales
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores

Histograms of oriented gradients (HOG)

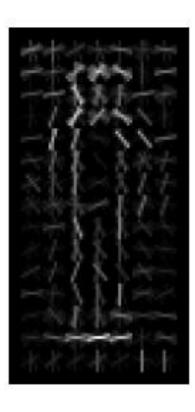
Divide image into 8x8 regions

Orientation: 9 bins (for unsigned angles)



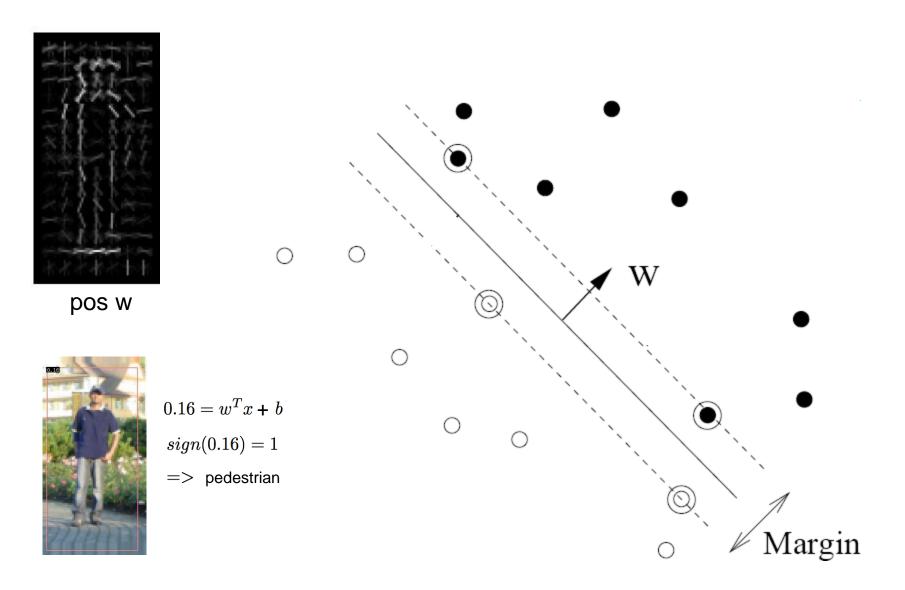
Histograms in 8x8 pixel cells

Votes weighted by magnitude



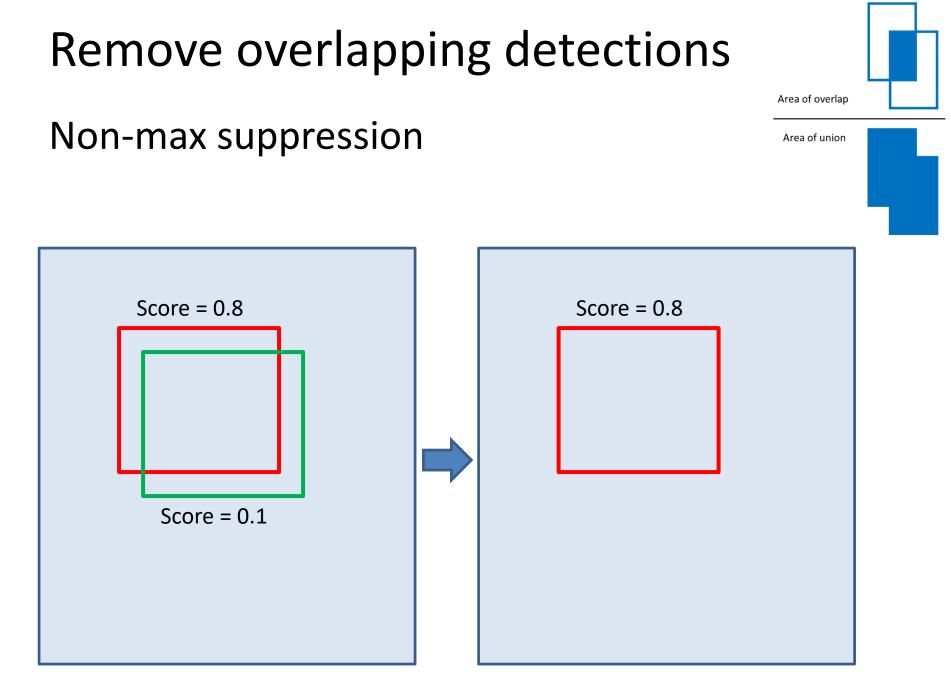
Adapted from Pete Barnum

Train SVM for pedestrian detection using HoG



Adapted from Pete Barnum

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Are window templates enough?

• Many objects are articulated, or have parts that can vary in configuration

Images from Caltech-256, D. Ramanan

• Many object categories look very different from different viewpoints, or from instance to instance

Adapted from N. Snavely, D. Tran

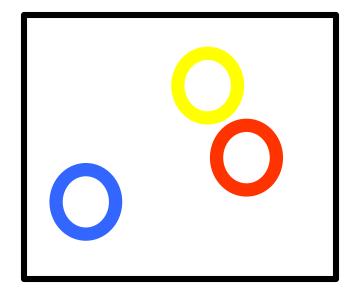
Parts-based Models

Define object by collection of parts modeled by

- 1. Appearance
- 2. Spatial configuration

How to model spatial relations?

• One extreme: fixed template



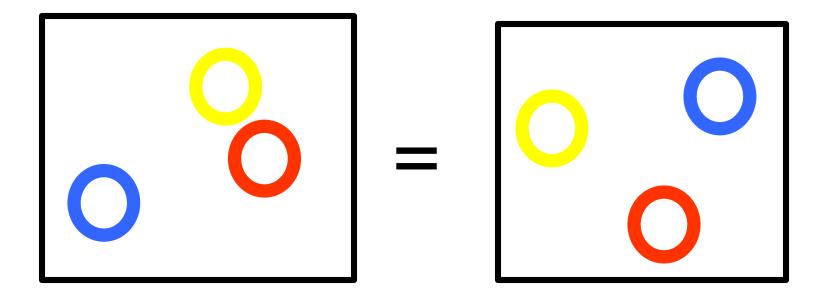
Fixed part-based template

 Object model = sum of scores of features at fixed positions



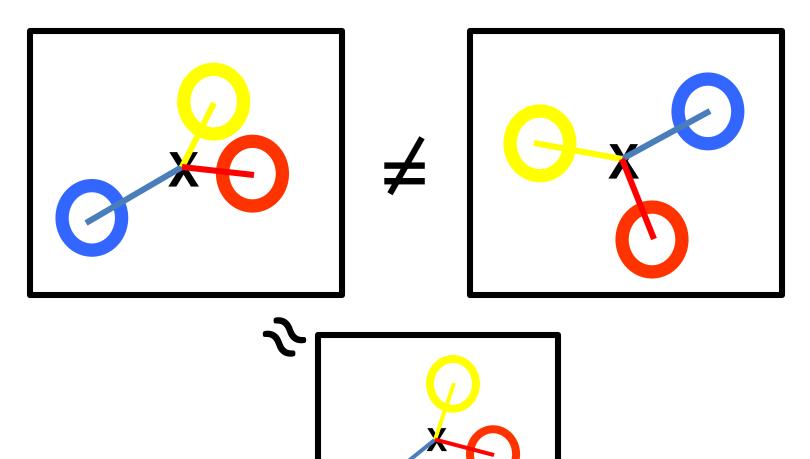
How to model spatial relations?

• Another extreme: bag of words



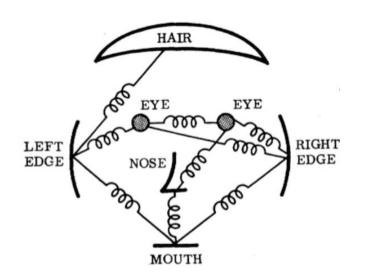
How to model spatial relations?

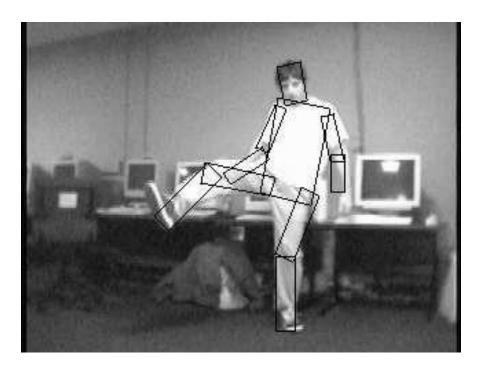
• Star-shaped model



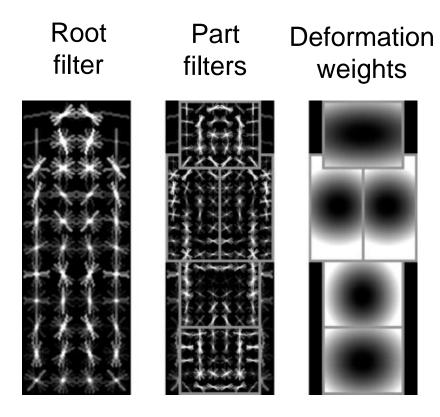
Parts-based Models

- Articulated parts model
 - Object is configuration of parts
 - Each part is detectable and can move around





Deformable Part Models



P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>Object Detection</u> with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

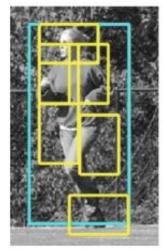
Lana Lazebnik

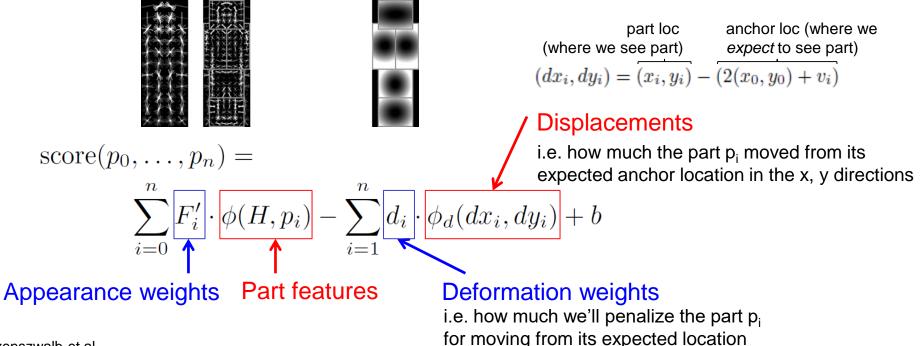
Scoring an object hypothesis

 The score of a hypothesis is the sum of appearance scores minus the sum of deformation costs

 $z=(p_0,...,p_n)$

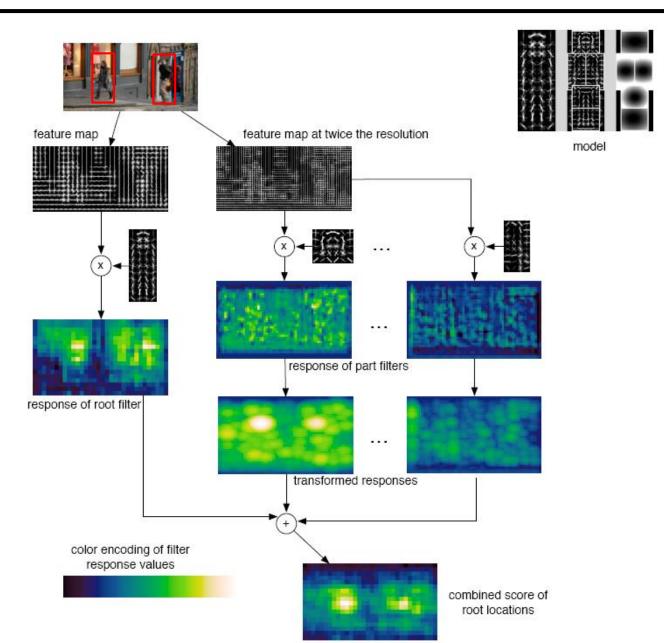
 p_0 : location of root $p_1,..., p_n$: location of parts





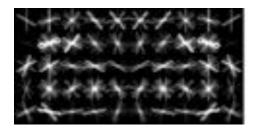
Felzenszwalb et al.

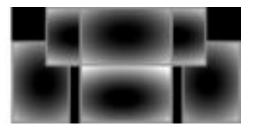
Detection



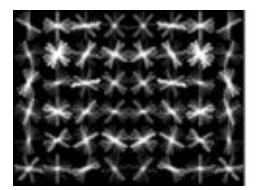
Felzenszwalb et al.

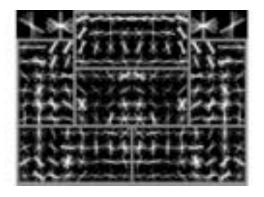
Car model

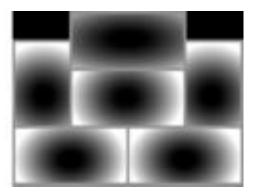




Component 2

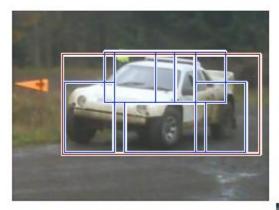


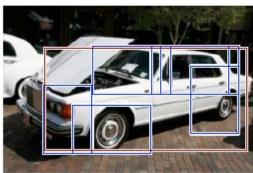


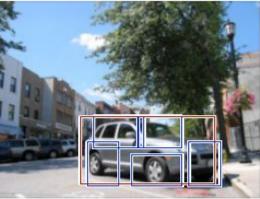


Car detections

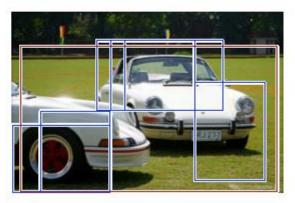
high scoring true positives

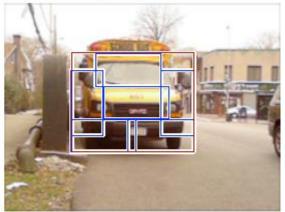




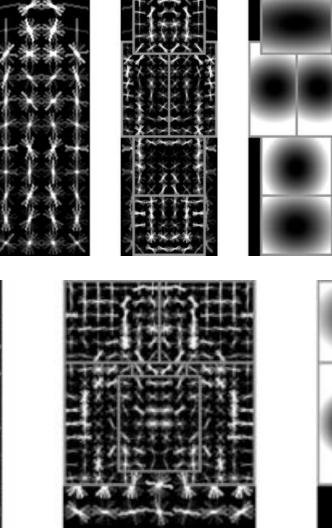


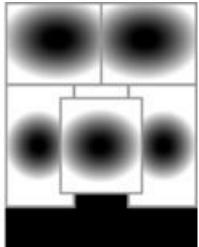
high scoring false positives





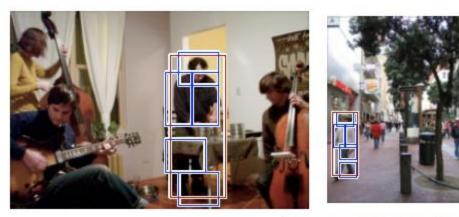
Person model

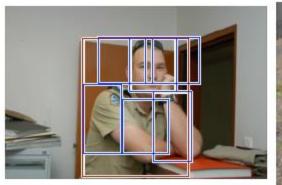




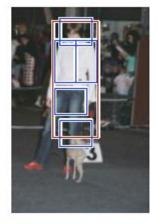
Person detections

high scoring true positives

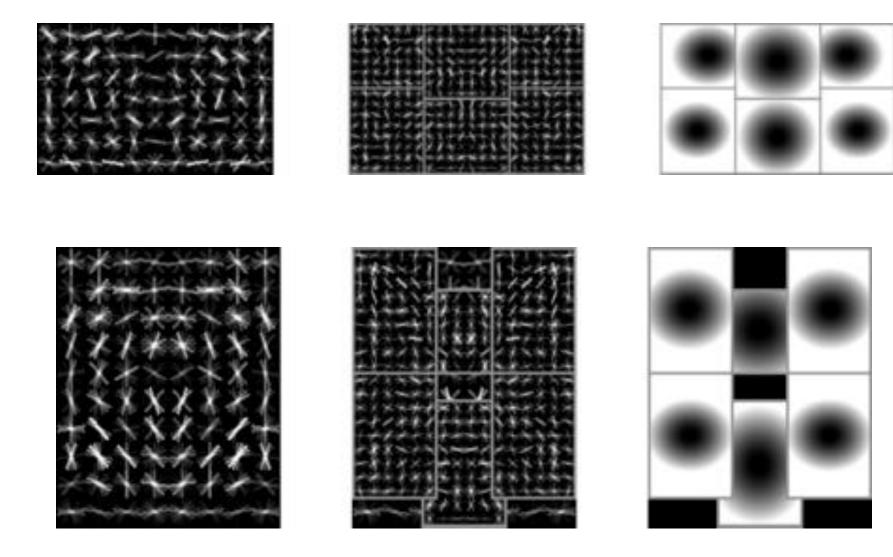




high scoring false positives (not enough overlap)

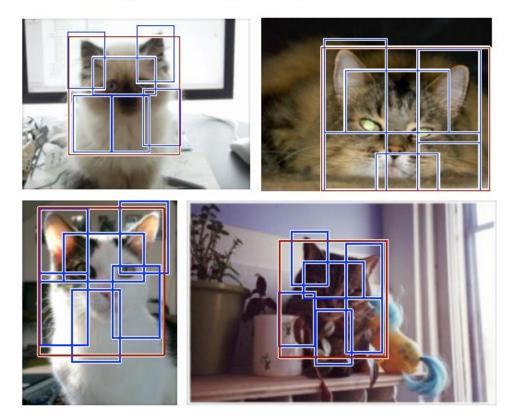


Cat model

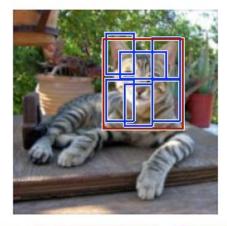


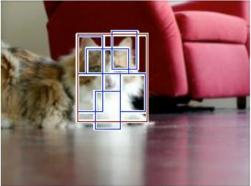
Cat detections

high scoring true positives



high scoring false positives (not enough overlap)



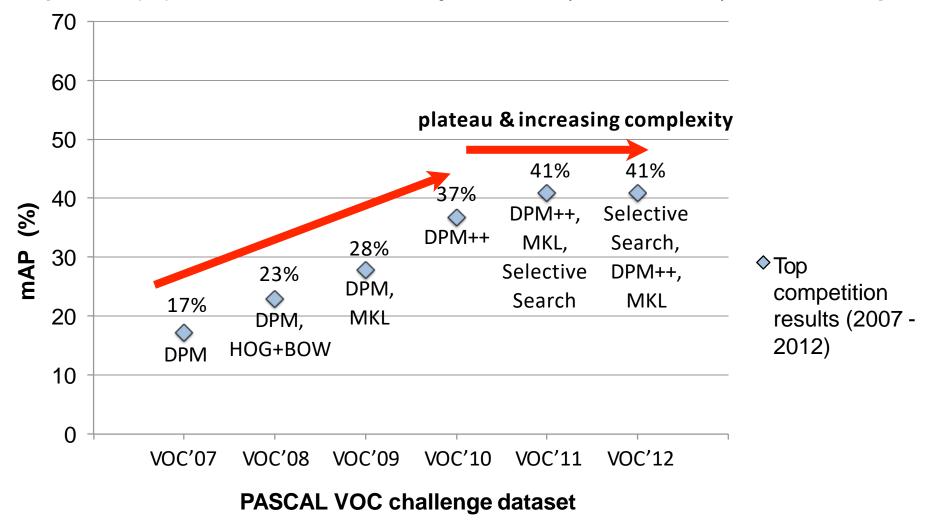


Plan for the next two lectures

- Detection approaches
 - Pre-CNNs
 - Detection with whole windows: Pedestrian detection
 - Part-based detection: Deformable Part Models
 - Post-CNNs
 - Detection with region proposals: R-CNN, Fast R-CNN, Faster-R-CNN
 - Detection without region proposals: YOLO, SSD
- Segmentation approaches
 - Semantic segmentation: FCN
 - Instance segmentation: Mask R-CNN

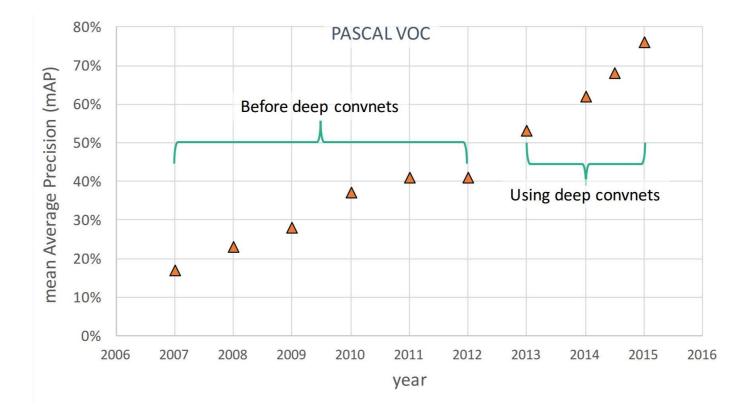
Complexity and the plateau

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

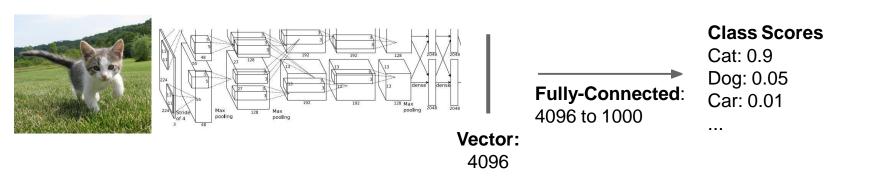


Girshick et al., "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation", CVPR 2014

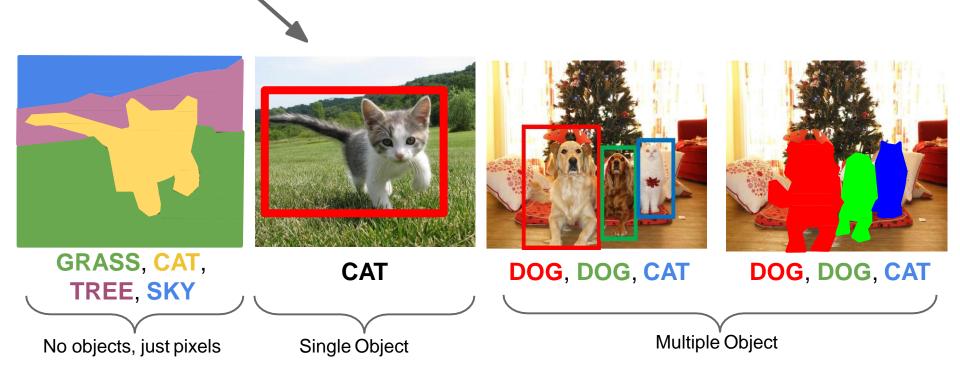
Impact of Deep Learning



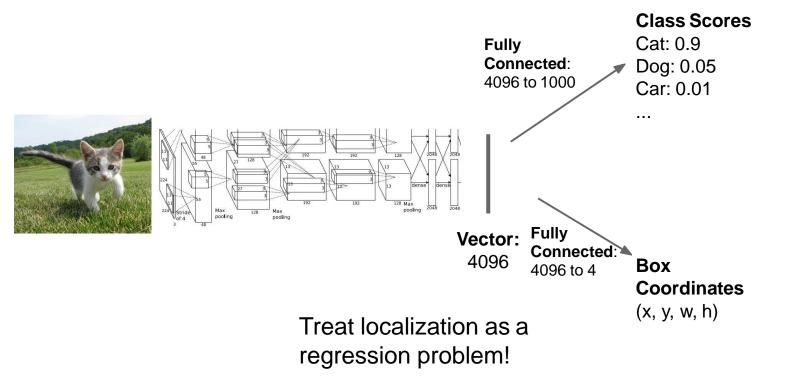
Before: Image Classification with CNNs



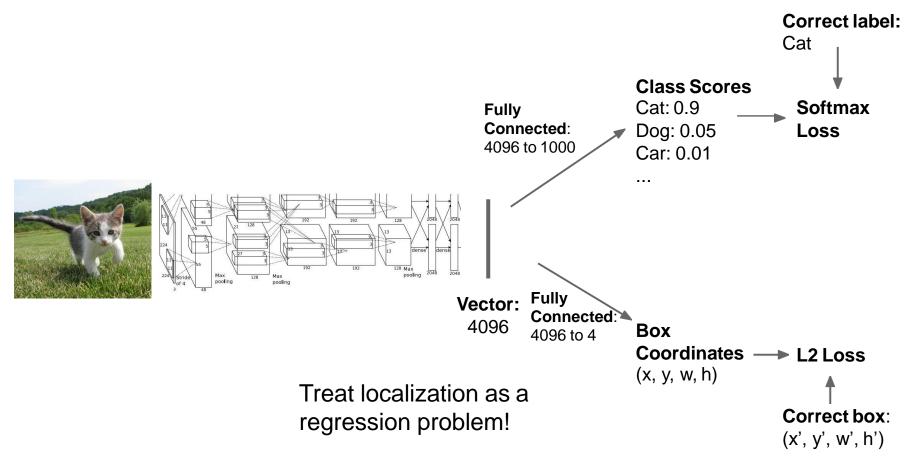
Classification + Localization



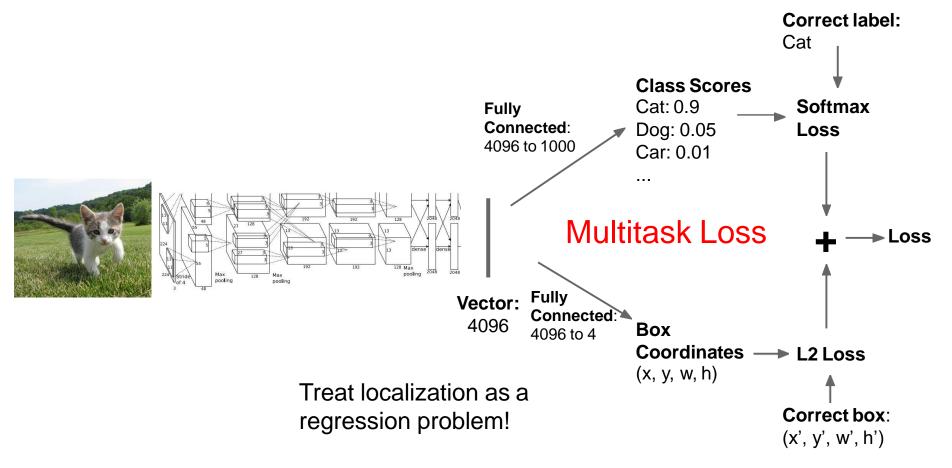
Classification + Localization



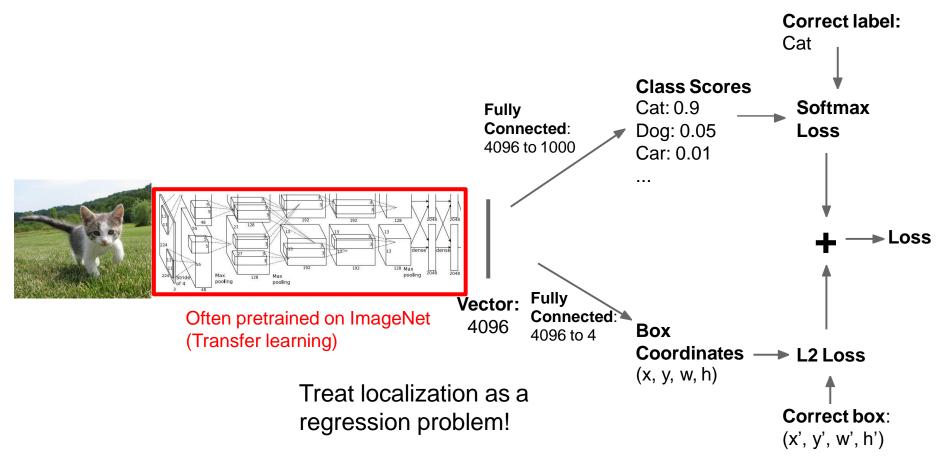
Classification + Localization



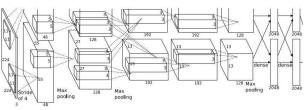
Classification + Localization



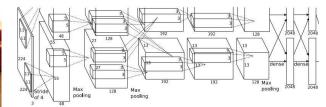
Classification + Localization



Object Detection as Regression?



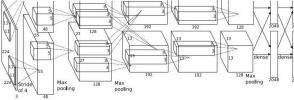
CAT: (x, y, w, h)



DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)

DUCK: (x, y, w, h) DUCK: (x, y, w, h)

Object Detection as Regression?



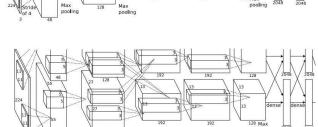
CAT: (x, y, w, h) 4 numbers

DOG: (x, y, w, h) DOG: (x, y, w, h) CAT: (x, y, w, h)

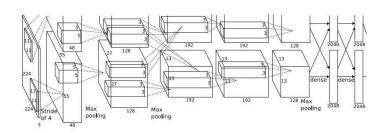
16 numbers

DUCK: (x, y, w, h) Many DUCK: (x, y, w, h) numbers!

Each image needs a different number of outputs!

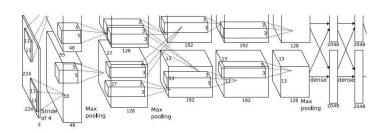


Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



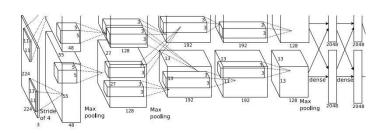
Dog? NO Cat? NO Background? YES

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



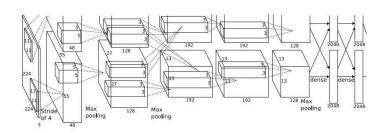
Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



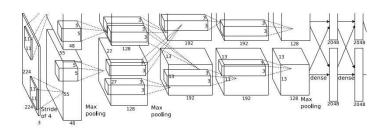
Dog? YES Cat? NO Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Dog? NO Cat? YES Background? NO

Apply a CNN to many different crops of the image, CNN classifies each crop as object or background



Dog? NO Cat? YES Background? NO

Problem: Need to apply CNN to huge number of locations and scales, very computationally expensive!

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- Relatively fast to run; e.g. Selective Search gives 1000 region proposals in a few seconds on CPU

Alexe et al, "Measuring the objectness of image windows", TPAMI 2012 Uijlings et al, "Selective Search for Object Recognition", IJCV 2013 Cheng et al, "BING: Binarized normed gradients for objectness estimation at 300fps", CVPR 2014 Zitnick and Dollar, "Edge boxes: Locating object proposals from edges", ECCV 2014

Speeding up detection: Restrict set of windows we pass through SVM to those w/ high "objectness"

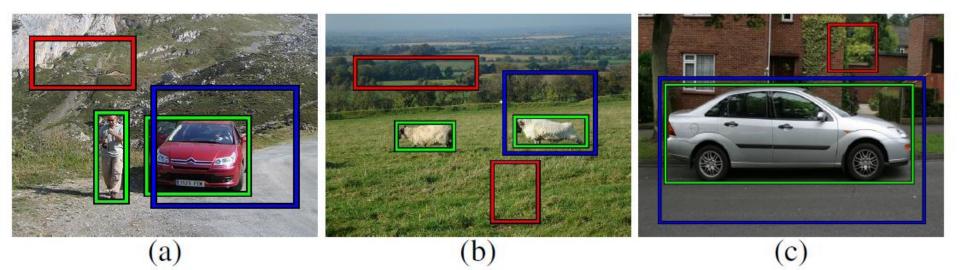


Fig. 1: **Desired behavior of an objectness measure.** The desired objectness measure should score the blue windows, partially covering the objects, lower than the ground truth windows (green), and score even lower the red windows containing only stuff or small parts of objects.

Objectness cue #1: Where people look

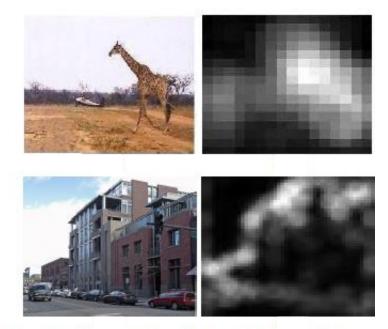
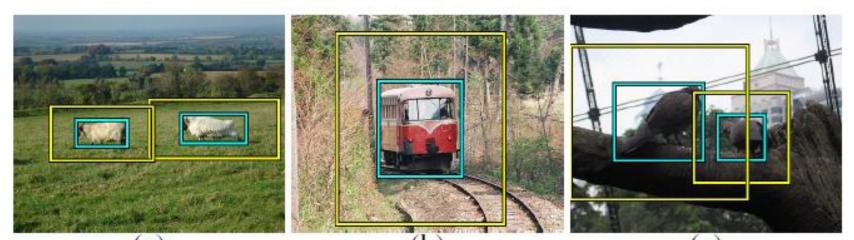


Fig. 2: MS success and failure.

Alexe et al., CVPR 2010

Objectness cue #2: color contrast at boundary



(a) (b) (c) Fig. 3: **CC success and failure. Success:** the windows containing the objects (cyan) have high color contrast with their surrounding ring (yellow) in images (a) and (b). **Failure:** the color contrast for windows in cyan in image (c) is much lower.

Objectness cue #3: no segments "straddling" the object box

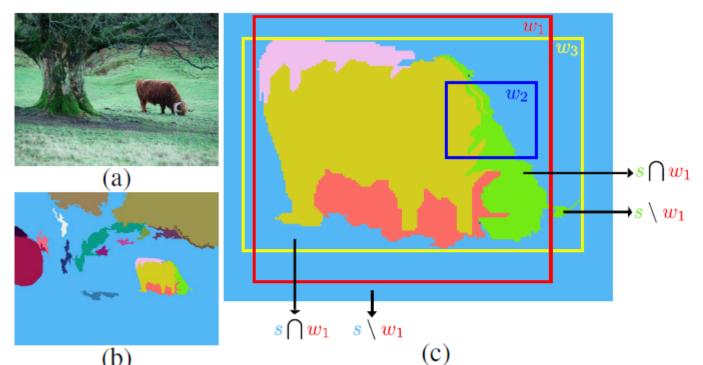
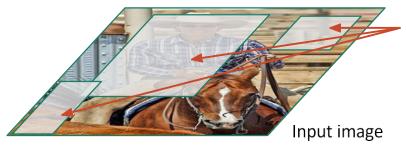
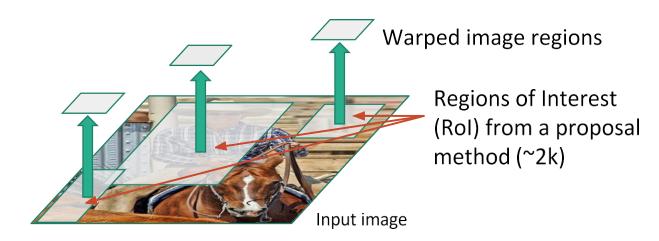
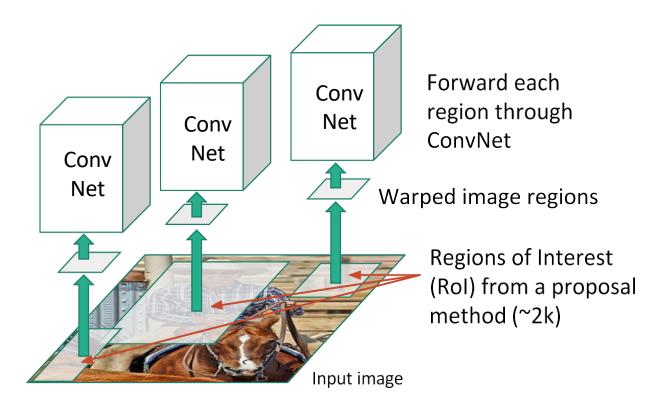


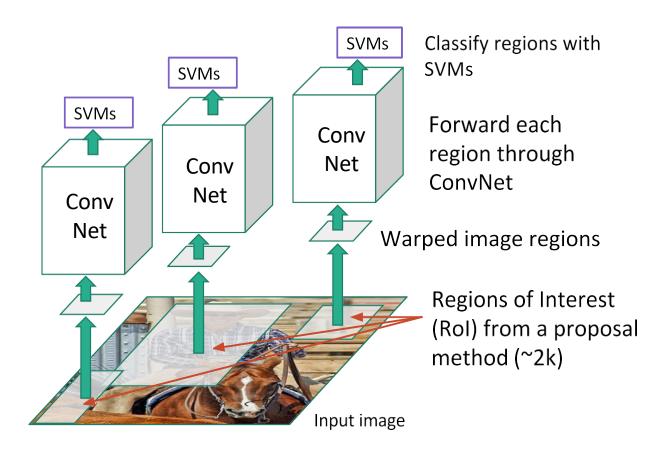
Fig. 5: The SS cue. Given the segmentation (b) of image (a), for a window w we compute $SS(w, \theta_{SS})$ (eq. 4). In (c), most of the surface of w_1 is covered by superpixels contained almost entirely inside it. Instead, all superpixels passing by w_2 continue largely outside it. Therefore, w_1 has a higher SS score than w_2 . The window w_3 has an even higher score as it fits the object tightly.



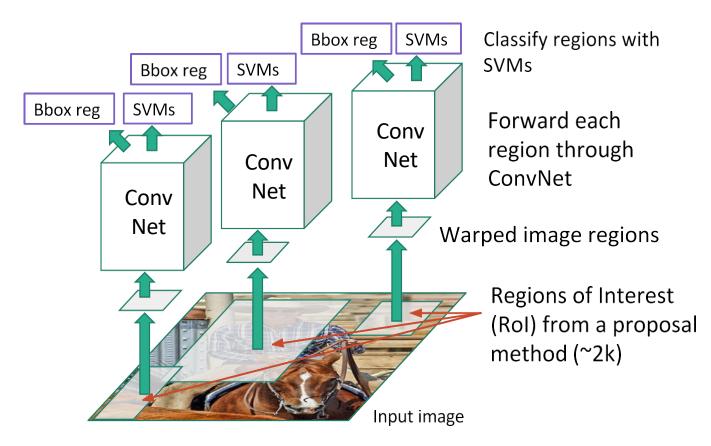
Regions of Interest (RoI) from a proposal method (~2k)







Linear Regression for bounding box offsets



R-CNN: Regions with CNN features

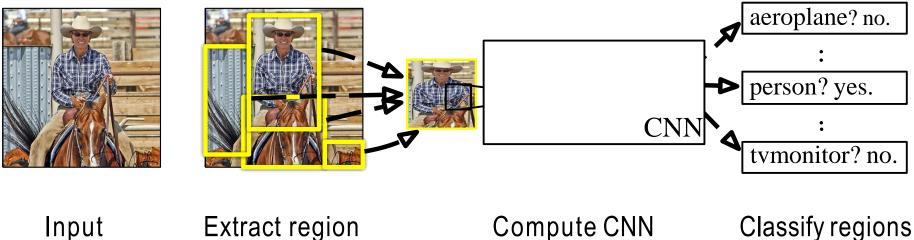
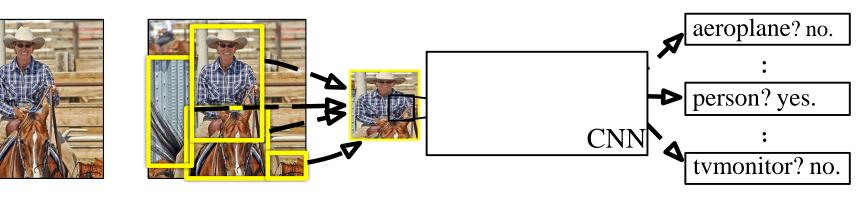


image proposals (~2k / image)

mpute CNN features

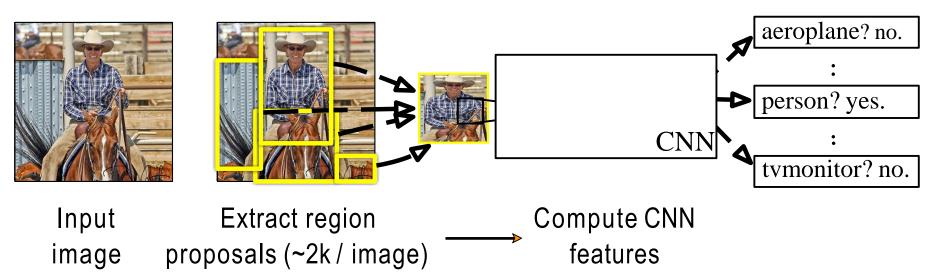
(linear SVM)

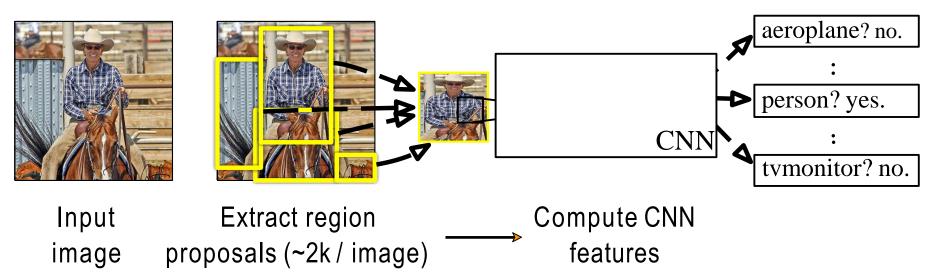


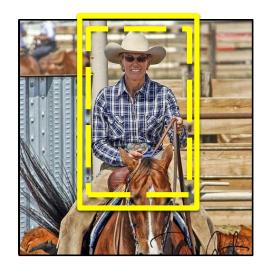
Input Extract region image proposals (~2k / image)

Proposal-method agnostic, many choices

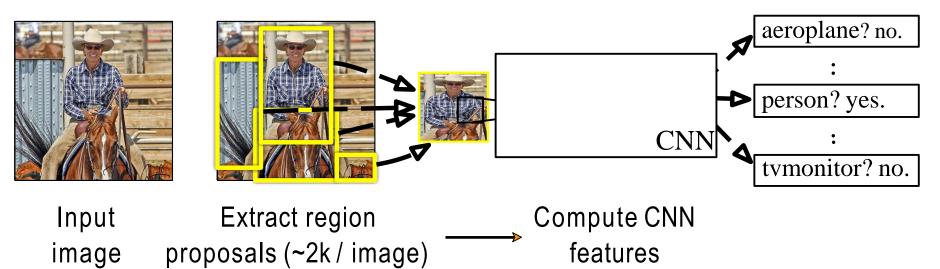
- Selective Search [van de Sande, Uijlings et al.] (Used in this work)
- Objectness [Alexe etal.]
- Category independent object proposals [Endres & Hoiem]
- CPMC [Carreira & Sminchisescu]

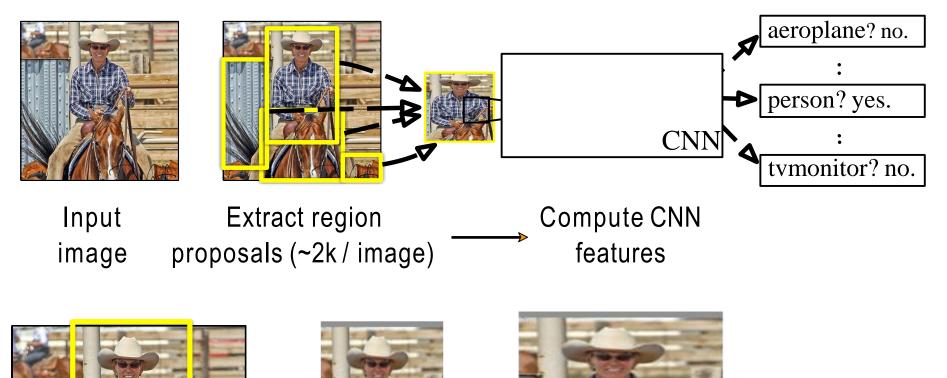






Dilate proposal



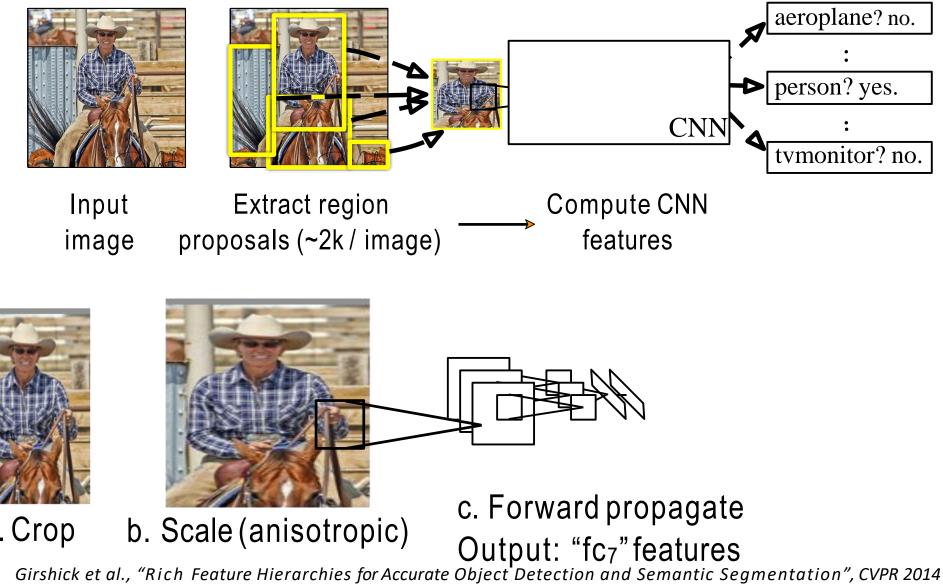


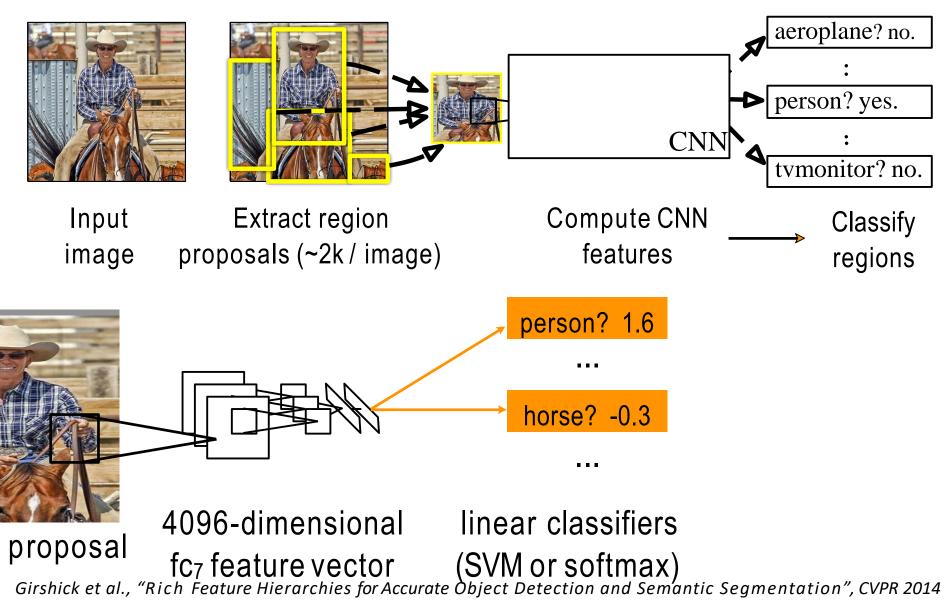
Girshick et al., "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation", CVPR 2014

a. Crop

b. Scale (anisotropic)

227 x 227





Step 4: Object proposal refinement

Linear regression

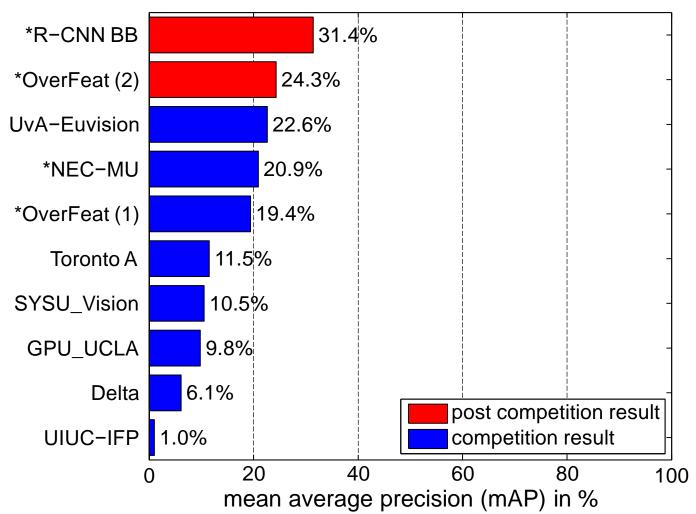
on CNN features

Original proposal Predicted object bounding box

Bounding-box regression

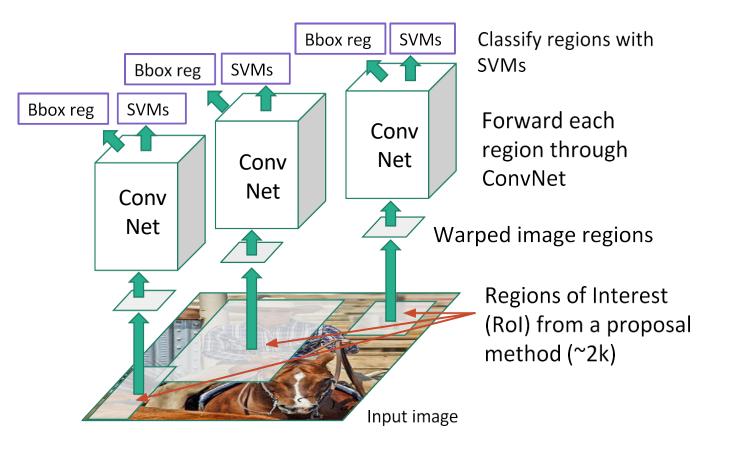
R-CNN on ImageNet detection

ILSVRC2013 detection test set mAP



Girshick et al., "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation", CVPR 2014

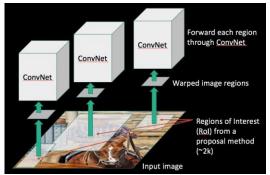
Linear Regression for bounding box offsets



Post hoc component

What's wrong with slow R-CNN?

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hingeloss)
 - Train post-hoc bounding-box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
- Inference (detection) is slow
 - 47s / image with VGG16 [Simonyan & Zisserman, ICLR15]



Girshick, "Fast R-CNN", ICCV 2015

~2000 ConvNet forward passes per image

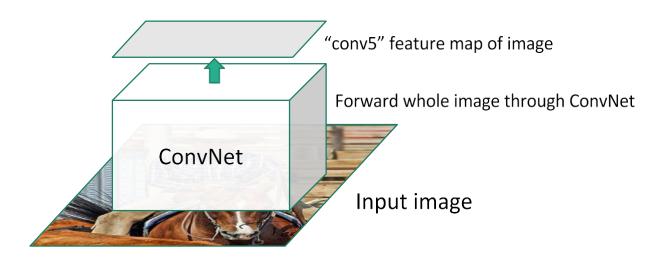
Fast R-CNN

- One network, applied one time, not 2000 times
- Trained end-to-end (in one stage)
- Fast test time
- Higher mean average precision

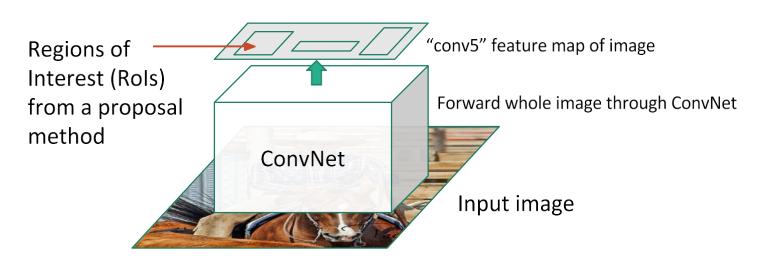
Fast R-CNN

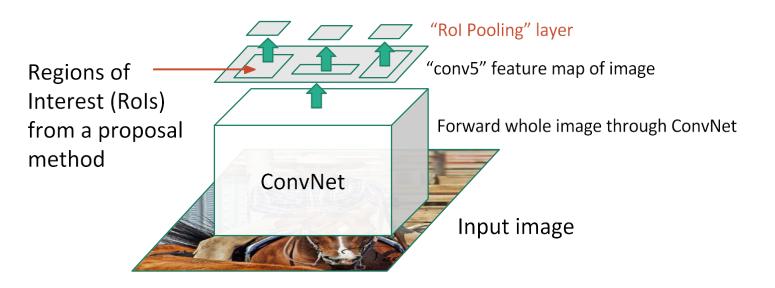
Girshick, "Fast R-CNN", ICCV 2015

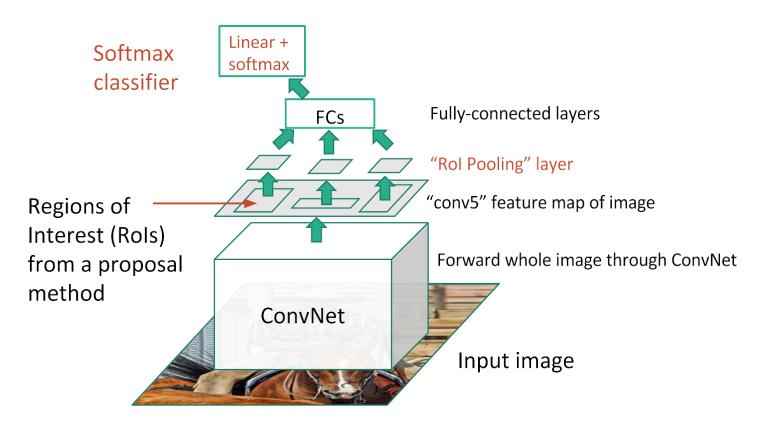
Fast R-CNN

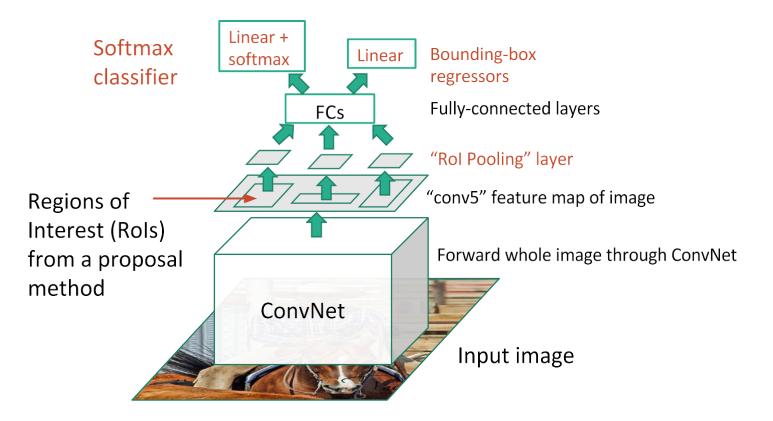


Girshick, "Fast R-CNN", ICCV 2015

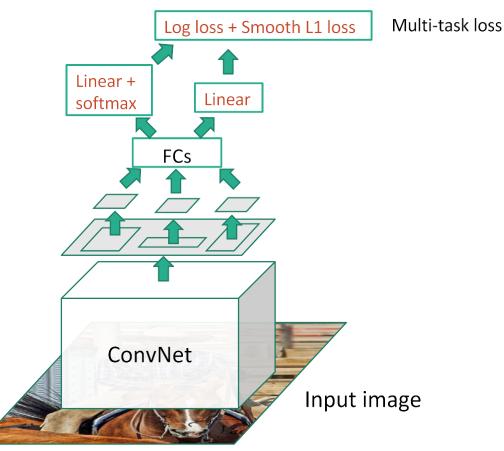




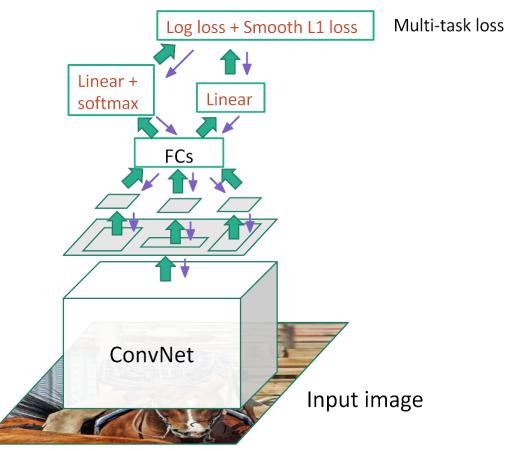




Fast R-CNN (Training)



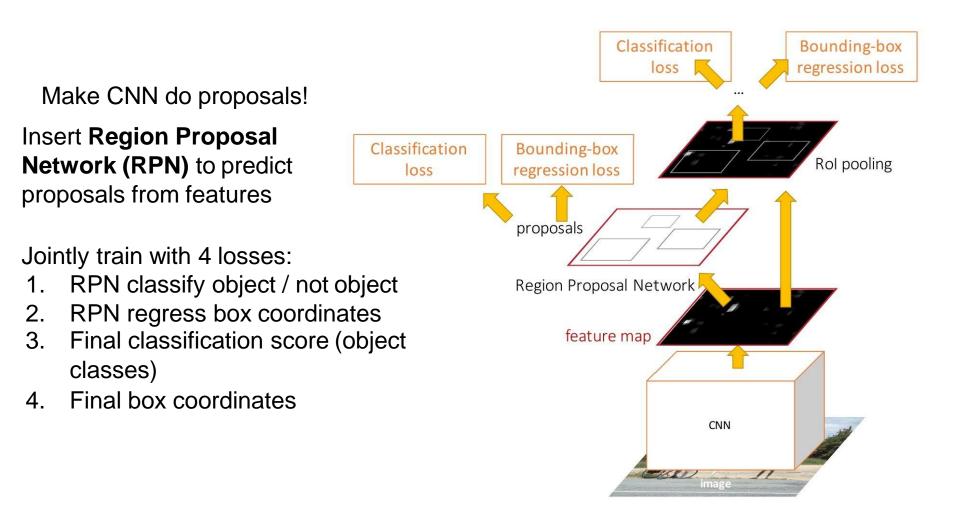
Fast R-CNN (Training)



Fast R-CNN vs R-CNN

	Fast R-CNN	R-CNN
Train time (h)	9.5	84
Speedup	8.8x	1x
Test time / image	0.32s	47.0s
Test speedup	146x	1x
mAP	66.9%	66.0%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.



Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

Accurate object detection is slow!

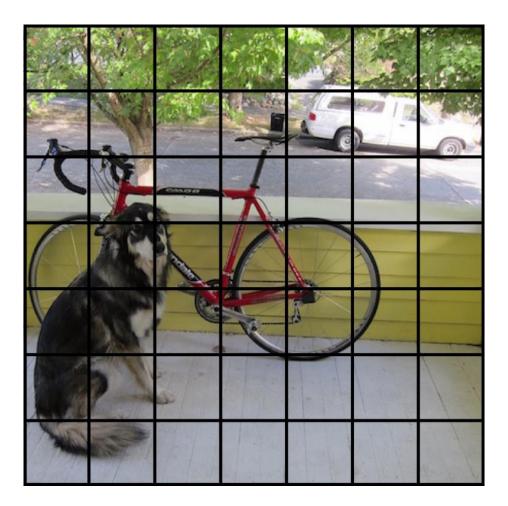
	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img

⅓ Mile, 1760 feet

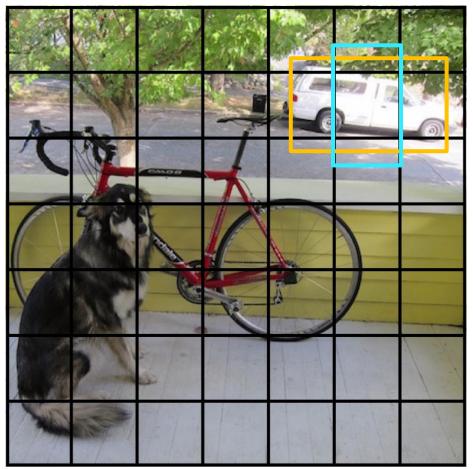
Accurate object detection is slow!

	Pascal 2007 mAP	Speed	
DPM v5	33.7	.07 FPS	14 s/img
R-CNN	66.0	.05 FPS	20 s/img
Fast R-CNN	70.0	.5 FPS	2 s/img
Faster R-CNN	73.2	7 FPS	140 ms/img
YOLO	69.0	45 FPS	22 ms/img

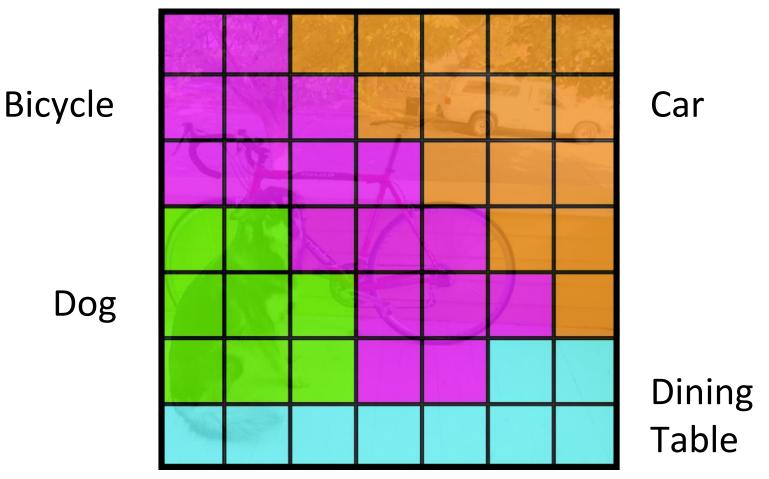
Detection without Proposals: YOLO



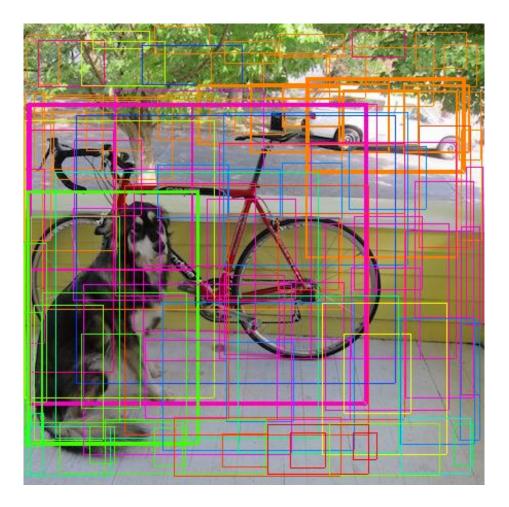
Each cell predicts boxes and confidences: P(Object)



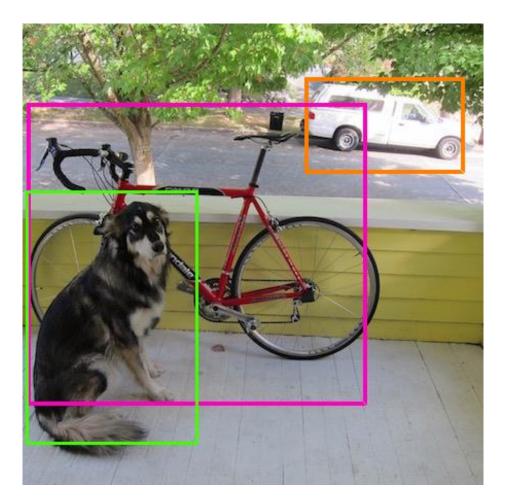
Each cell also predicts a probability P(Class | Object)



Combine the box and class predictions



Finally do NMS and threshold detections



This parameterization fixes the output size

Each cell predicts:

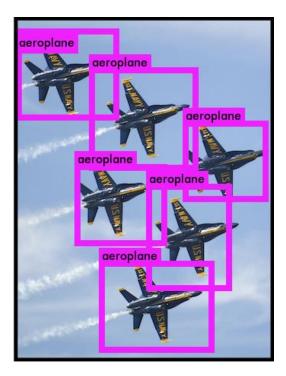
- For each bounding box:
 - 4 coordinates (x, y, w, h)
 - 1 confidence value
- Some number of class probabilities

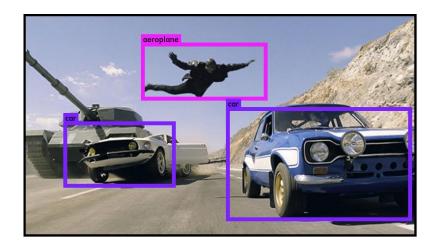
For Pascal VOC:

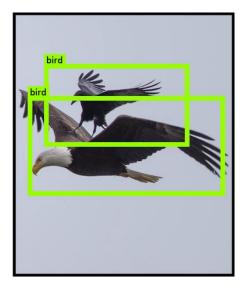
- 7x7 grid
- 2 bounding boxes / cell
- 20 classes

7 x 7 x (2 x 5 + 20) = 7 x 7 x 30 tensor = **1470 outputs**

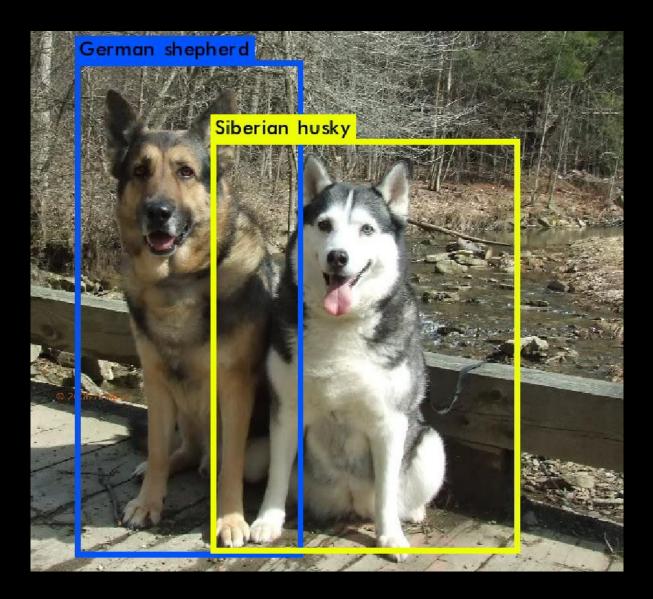
YOLO works across many natural images

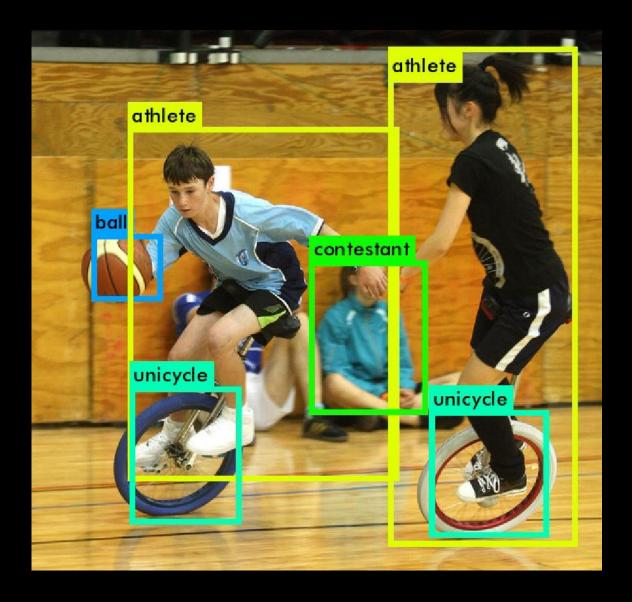


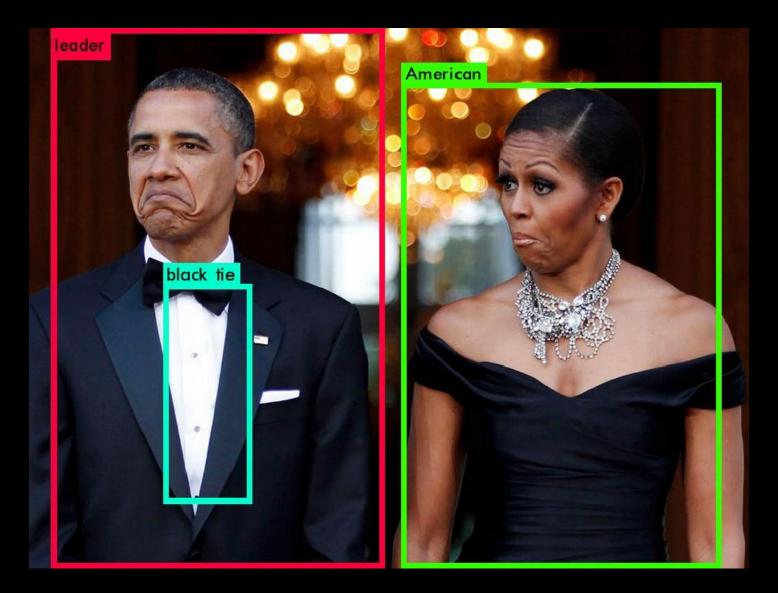


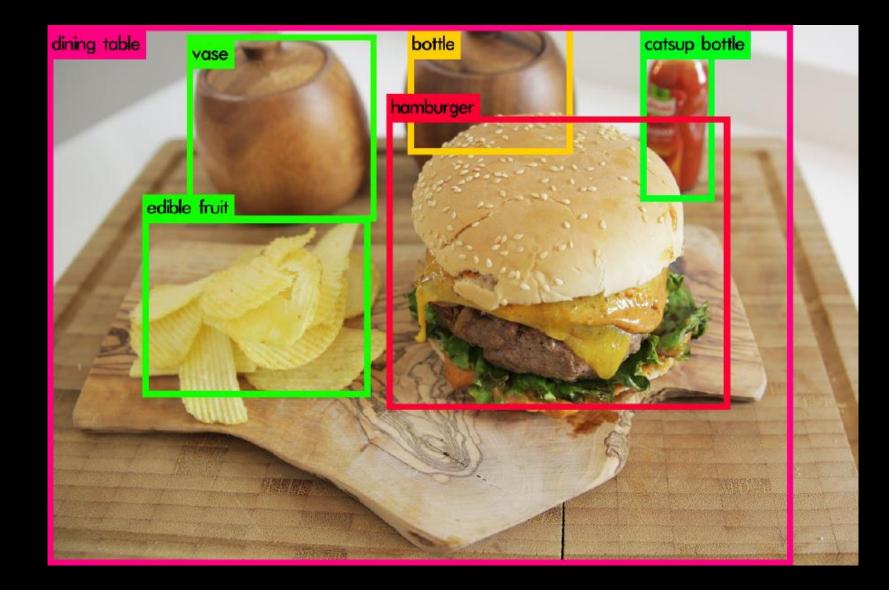


It also generalizes well to new domains





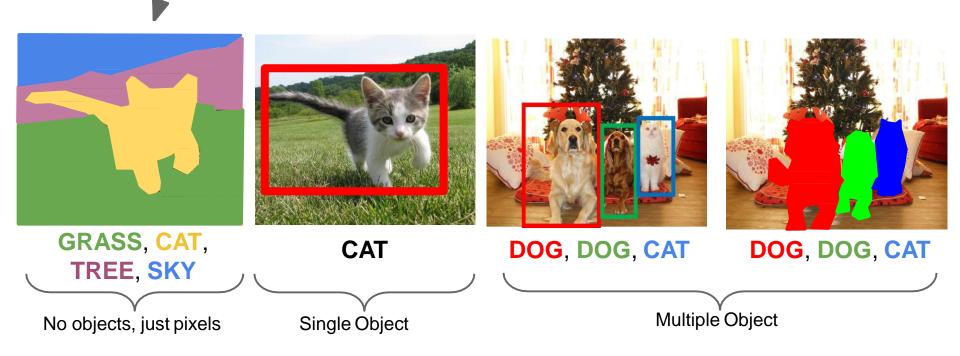




Plan for the next two lectures

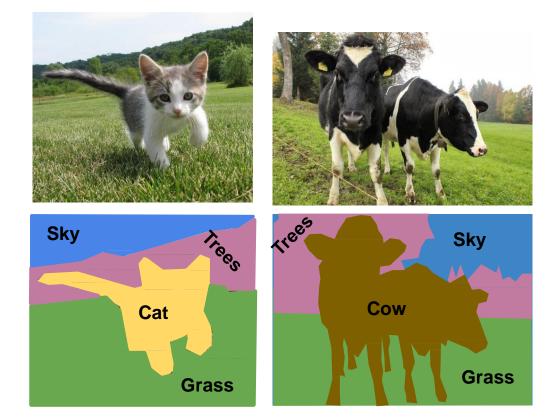
- Detection approaches
 - Pre-CNNs
 - Detection with whole windows: Pedestrian detection
 - Part-based detection: Deformable Part Models
 - Post-CNNs
 - Detection with region proposals: R-CNN, Fast R-CNN, Faster-R-CNN
 - Detection without region proposals: YOLO, SSD
- Segmentation approaches
 - Semantic segmentation: FCN
 - Instance segmentation: Mask R-CNN

Semantic Segmentation



Slide by: Justin Johnson

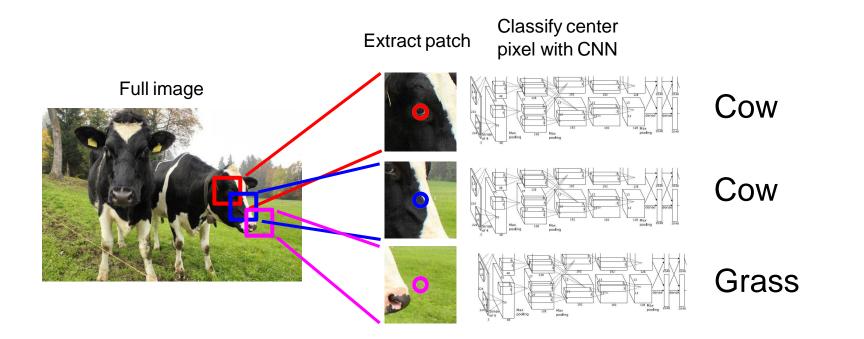
Semantic Segmentation



Label each pixel in the image with a category label

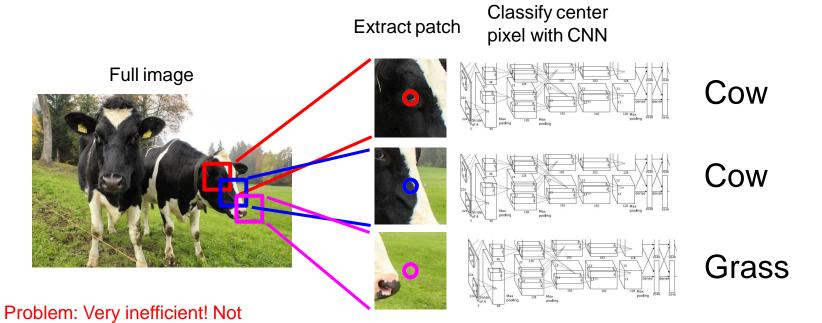
Don't differentiate instances, only care about pixels

Semantic Segmentation Idea: Sliding Window



Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

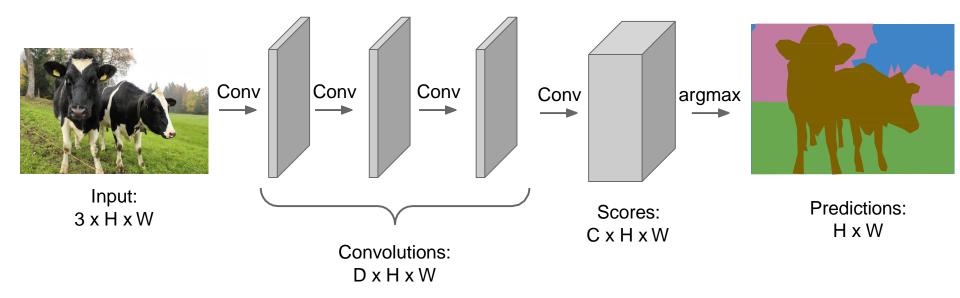
Semantic Segmentation Idea: Sliding Window



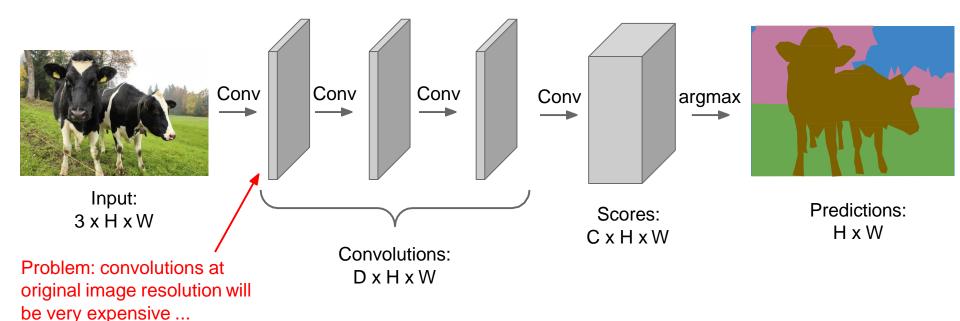
Problem: Very inefficient! Not reusing shared features between overlapping patches

Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

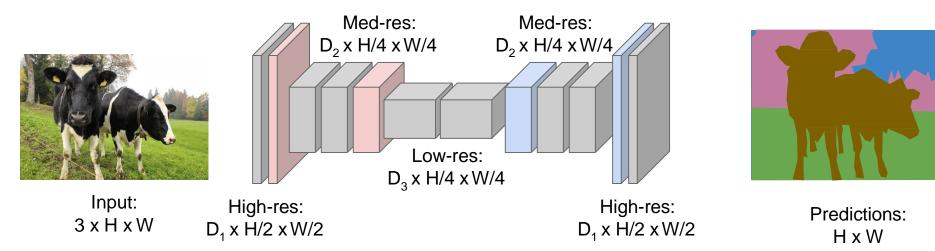
Design a network as a bunch of convolutional layers to make predictions for pixels all at once!



Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

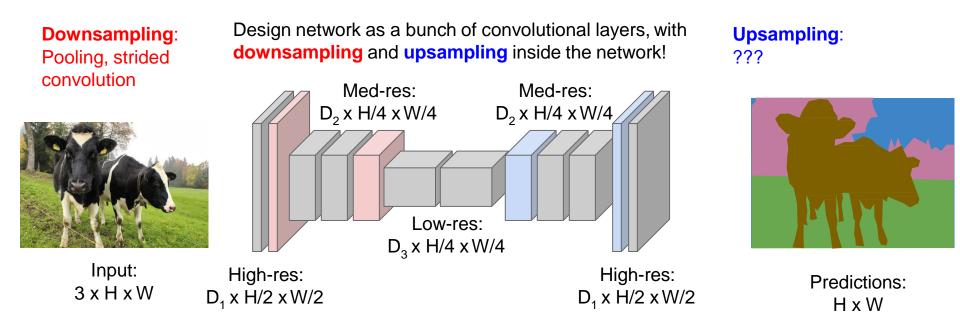


Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

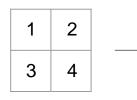
Slide by: Justin Johnson



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Slide by: Justin Johnson

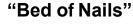
In-Network upsampling: "Unpooling"

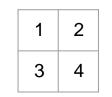


1	1	2	2
1	1	2	2
3	3	4	4
			-

Input: 2 x 2

Output: 4 x 4



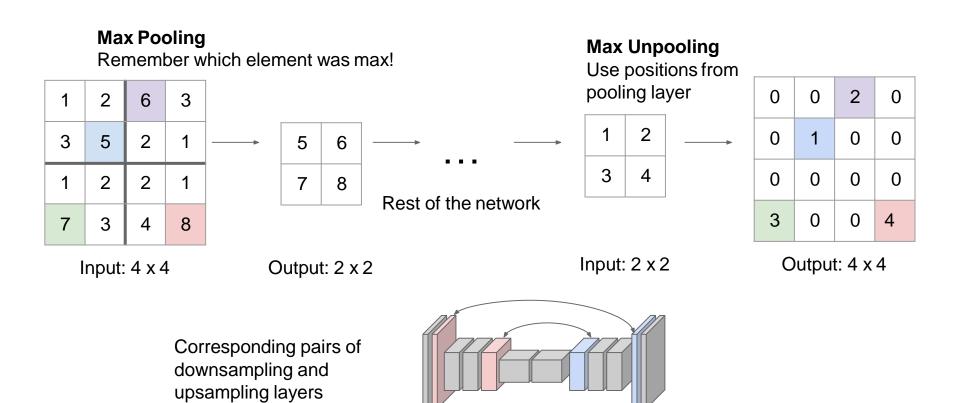


1	0	2	0
0	0	0	0
		_	
3	0	4	0

Input: 2 x 2

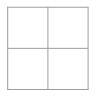
Output: 4 x 4

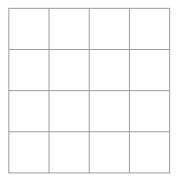
In-Network upsampling: "Max Unpooling"



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1



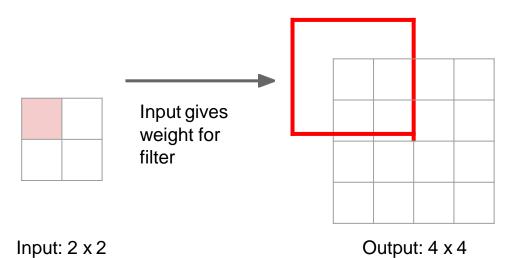


Input: 2 x 2

Output: 4 x 4

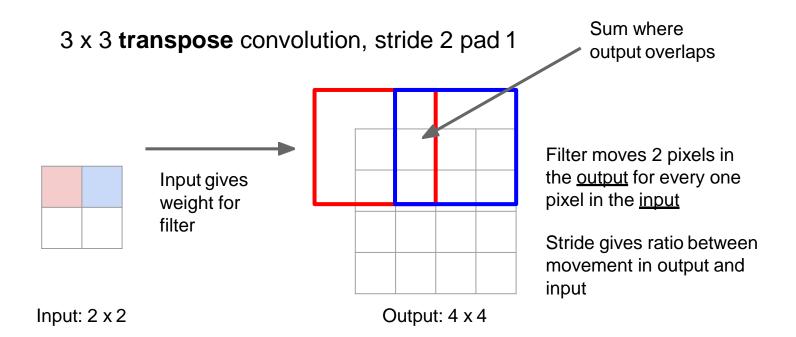
Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1



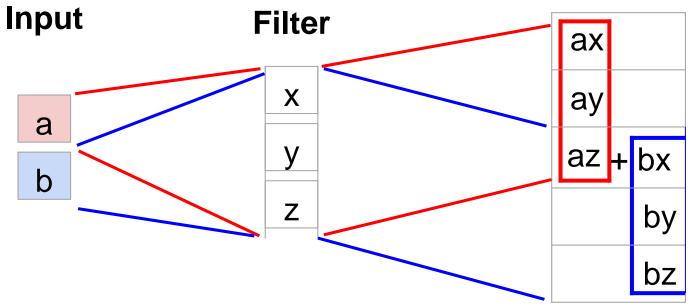
Slide by: Justin Johnson

Learnable Upsampling: Transpose Convolution



Slide by: Justin Johnson

Transpose Convolution: 1D Example

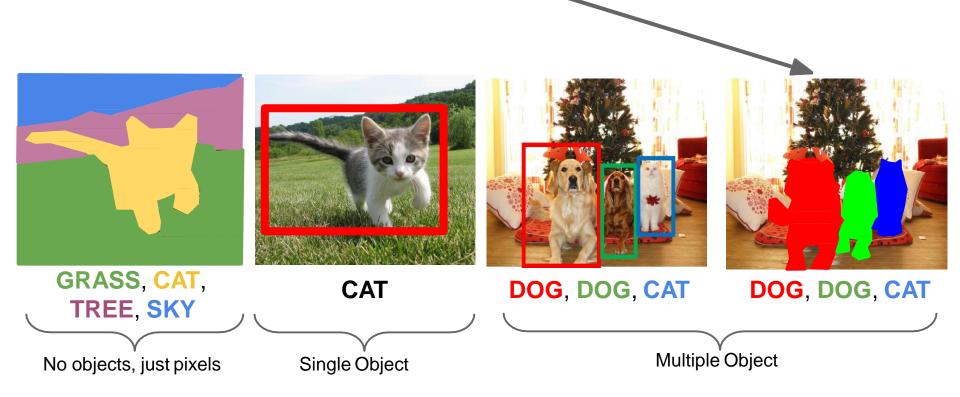


Output

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Adapted from Justin Johnson

Instance Segmentation

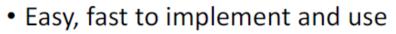


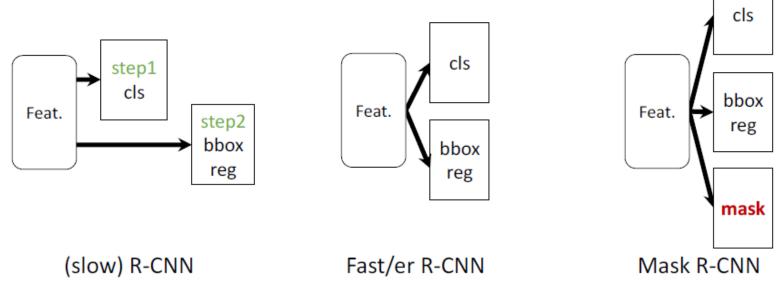
Slide by: Justin Johnson

Mask R-CNN

He et al, "Mask R-CNN", ICCV 2017

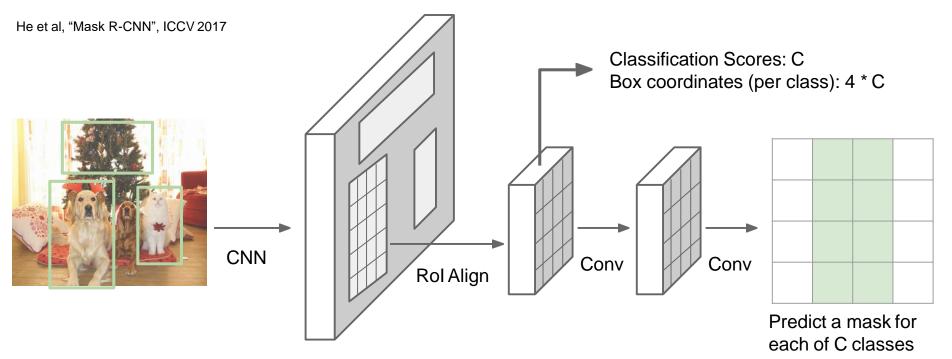
What is Mask R-CNN: Parallel Heads

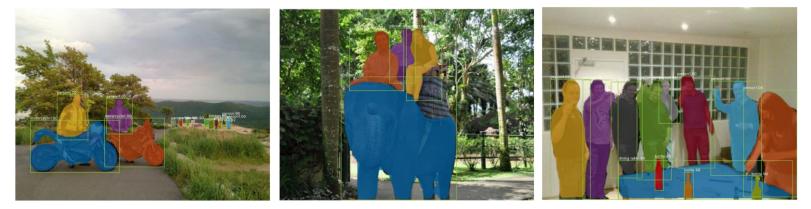




Slide by: Kaiming He

Mask R-CNN





Adapted from Justin Johnson