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Plan for the next few lectures

Why (convolutional) neural networks?

Neural network basics
» Architecture
Biological inspiration
Loss functions
Optimization / gradient descent
Training with backpropagation

Convolutional neural networks (CNNs)

» Special operations
« Common architectures

Practical matters
« Tips and tricks for training
» Transfer learning
» Software packages

Understanding CNNs

» Visualization
« Synthesis / style transfer
* Breaking CNNs



Neural network basics



Why (convolutional) neural networks?

State of the art performance on many problems

Most papers in recent vision conferences use
deep neural networks
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http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf

ImageNet Challenge 2012

« ~14 million labeled images, 20k
classes

* |Images gathered from Internet
 Human labels via Amazon Turk

« Challenge: 1.2 million training images,
1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012

Lana Lazebnik


http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012

AlexNet: Similar framework to LeCun’98 but:
« Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

« More data (10° vs. 103 images)
 GPU implementation (50x speedup over CPU)

Trained on two GPUs for a week
Better regularization for training (DropOut)
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A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, NIPS 2012

Adapted from Lana Lazebnik


http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)
Next best (non-convnet) — 26.2% error

Lana Lazebnik



Example: CNN features for detection

R-CNN: Regions with CNN features

] warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
1mage proposals (~2k) CNN features regions

Object detection system overview. Our system (1) takes an input image, (2) extracts
around 2000 bottom-up region proposals, (3) computes features for each proposal
using a large convolutional neural network (CNN), and then (4) classifies each region
using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP)
of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1%
MAP using the same region proposals, but with a spatial pyramid and bag-of-visual-
words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate
Object Detection and Semantic Segmentation, CVPR 2014.

Lana Lazebnik



http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf

What are CNNs?

« Convolutional neural networks are a type of
neural network with layers that perform
special operations

« Used in vision but also in NLP, biomedical etc.
« Often they are deep

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Figure from http://neuralnetworksanddeeplearning.com/chap5.html



Traditional Recognition Approach

Image/ Video

Pixels E>

Object
Class

* Features are key to recent progress in recognition,
but research shows they're flawed...
* Where next?

Adapted from Lana Lazebnik



What about learning the features?

« Learn a feature hierarchy all the way from pixels to
classifier

« Each layer extracts features from the output of
previous layer

« Train all layers jointly

Object
Class

Image/
Video
Pixels

Lana Lazebnik



“Shallow” vs. “deep” architectures

Traditional recognition: “Shallow” architecture

Image/
Video —)»
Pixels

Object
Class

Deep learning: “Deep” architecture
Image/
Video
Pixels

Lana Lazebnik

Object
Class




Neural network definition

Figure 5.1 Network diagram for the two- hidden units
layer neural network corre- -
sponding to (5.7). The input, ey M
hidden, and output variables M D

are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables zp; and
zp. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.
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* Nonlinear activation function h (e.g. sigmoid,
RELU): z; = h(a;)

Figure from Christopher Bishop



Neural network definition

 Layer 2 D

« Layer 3 (finah
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* Outputs (e.g. sigmoid/softmax)
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Activation functions
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Andrej Karpathy




A multi-layer neural network

Input Hidden Layer Output
Layer Layer
Input #1 —=
Input #2 —=
~ Output
Input #3 —=
Input #4 —=

* Nonlinear classifier

« Can approximate any continuous function to arbitrary
accuracy given sufficiently many hidden units

Lana Lazebnik



Inspiration: Neuron cells

e Neurons
« accept information from multiple inputs,
* transmit information to other neurons.

« Multiply inputs by weights along edges
* Apply some function to the set of inputs at each node
 If output of function over threshold, neuron “fires”

Zo wo
axon from a neuro>n. Sy
impulses carried
toward cell body Woo
, branches
dendrites ( of axon cell body Z
) f w;T; +b
nucleus 3 *~ terminals ¥ Zwimi g output axon
=2 ¢ A .
impulses carried \f& MR

N function

' away from cell body

Wo T2

Text: HKUST, figures: Andrej Karpathy



Biological analog

Axonal arborization

Output: o(w-x + b)

Sigmoid function:

a(l)= -
l+e

A biological neuron An artificial neuron

Jia-bin Huang



Biological analog

Hubel & Weisel featural hierarchy

topographical mapping '
hyrer—complex @ high leve!

5
@ mid level
D

O low level

cell
complex cells

simple cells

Hubel and Weisel’s architecture

Adapted from Jia-bin Huang

hidden layver 1  hidden laver 2  hidden layer 3

input layer

Multi-layer neural network




Multilayer networks

« (Cascade neurons together
« Output from one layer is the input to the next
« Each layer has its own sets of weights

HKUST



Feed-forward networks

* Predictions are fed forward through the
network to classify

HKUST



Feed-forward networks

* Predictions are fed forward through the
network to classify

HKUST



Feed-forward networks

* Predictions are fed forward through the
network to classify

Lo Boo ,
X1 ) 90_:1
I . y
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HKUST



Feed-forward networks

* Predictions are fed forward through the
network to classify
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Feed-forward networks

* Predictions are fed forward through the
network to classify
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Feed-forward networks

* Predictions are fed forward through the
network to classify
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Deep neural networks

Lots of hidden layers

Depth

power (usually)
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Figure from http://neuralnetworksanddeeplearning.com/chap5.html



How do we train them?

The goal is to iteratively find such a set of
weights that allow the activations/outputs to
match the desired output

We want to minimize a loss function

The loss function is a function of the weights
In the network

For now let's simplify and assume there’s a
single layer of weights in the network



Classification goal

airplane

bird
cat
deer
dog
frog
horse
ship

truck

Andrej Karpathy
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Example dataset: CIFAR-10

« 10 labels

50,000 training images
each image is 32x32x3

10,000 test images.



Classification scores

flz,W) =Wz
x{ (X, W) 10 numbers,
x indicating class
e scores

[32x 32X 3]
array of numbers 0...1
(3072 numbers total)

Andrej Karpathy



Linear classifier

f(z, W)|=Wig 3072*L  [(+b)]10x1

10x1 10x3072
\ 10 numbers,

Indicating class

s scores
[32x 32X 3]

array of numbers 0...1

parameters, or “weights”

Andrej Karpathy



Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 |-05| 01 | 20 56 1.1 -96.8 | cat score

15113 | 21 | 0.0 231 4 3.2 | | 437.9 dog score

: 0 025| 0.2 | -0.3 -1.2 ;
input image 24 61.95 ship score

Andrej Karpathy



Linear classifier

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

Andrej Karpathy

Going forward: Loss function/Optimization

TODO:

1. Define aloss function
that quantifies our
unhappiness with the
scores across the training

2 2 data.

2 5 2. Come up with a way of
- efficiently finding the
3.1 parameters that minimize

the loss function.
(optimization)




Linear classifier

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

Adapted from Andrej Karpathy



Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

Adapted from Andrej Karpathy

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,
and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Want: Sy, >=s; 1
I.e. Sj— Sy, * 1<=0

If true, loss is O
If false, loss is magnitude of violation




Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes. Hinge loss:
With some W the scores f(z, W) = Wz are:
Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

cat

car 5.1 4.9 2.5 = max(0, 5.1-3.2+1)

) _ +max(0, -1.7- 3.2 + 1)
frog 1.7 2.0 3.1 = max(0, 2.9) + max(0, -3.9)
Losses: | 2.9 o

Adapted from Andrej Karpathy



Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2

car 5.1
frog -1.7

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 2.9

Adapted from Andrej Karpathy

=max(0, 1.3-4.9+1)
+max(0,2.0-4.9+1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0




Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z, W) = Wz are:

cat 3.2
car 51
frog  -1.7

Hinge loss:

Given an example (wi, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:

Losses: 29

Adapted from Andrej Karpathy

12.9

=max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5- (-3.1) + 1)
= max(0, 5.3+ 1)
+ max(0, 5.6 + 1)
=6.3+6.6
=12.9




Linear classifier: Hinge loss

Suppose: 3 training examples, 3 classes.
With some W the scores f(z,W) = Wz are:

cat 3.2 1.3
car 5.1 4.9
frog -1.7 2.0

Losses: 2.9 0

Adapted from Andrej Karpathy

Hinge loss:

Given an example (33i, yi)
where g, is the image and
where Yi Is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the loss has the form:
Li =34, max(0,s; — sy, + 1)

and the full training loss is the mean
over all examples in the training data:

N
L= % Zizl Li

L=(2.9 + 0+ 12.9)/3
=158/3=5.3



Linear classifier: Hinge loss

flx, W) =Wx

L = % sz\il Zj#yi max(0, f(zi; W); — f(zi; W)y, + 1)

Adapted from Andrej Karpathy



Linear classifier: Hinge loss

Weight Regularization

A = regularization strengt
(hyperparameter)
\

h

S

AR(W)

L= X5, X, max(0, f(ziW); — f(zi; W)y, +1) +

n common use:
_2 regularization
_1 regularization
Dropout

Adapted from Andrej Karpathy

RW) =32, W
R(W) — Zk Zl |Wkl|




Another loss: Softmax (cross-entropy)

PY = k| X = m3) = ;’;sj

where

scores = unnormalized log probabilities of the classes.

s = flzs; W)

Want to maximize the log likelihood, or (for a loss function)
cat 3 2 to minimize the negative log likelihood of the correct class:

L; = —log P(Y = 4| X = z;)

car 51
frog -1.7

Andrej Karpathy




Another loss: Softmax (cross-entropy)

L; = —log( Eejyéj )
. Unnormalized probabilities
cat 3.2 24 5 0.13 |- L_i=-log(0.13)
car 5 1 ﬂD 164.0 normaliz>e 0.87 =0.89
frog -1.7 0.18 0.00
unnormalized log probabilities probabilities

Adapted from Andrej Karpathy



Other losses

« Triplet loss (Schroff, FaceNet)

)
S [17@) = IR - 1£@2) - I +a]

T

Negative m
Ar::{ll{ir/,. LEARNING e
— .‘::’;_::r Negative

Anchor -
Positive Positive

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

* Anything you want!

a denotes anchor
p denotes positive
n denotes negative



How to minimize the loss function?

Andrej Karpathy



How to minimize the loss function?

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).

Andrej Karpathy



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Andrej Karpathy

gradient dW:
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current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Andrej Karpathy

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW.
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[]
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current W: W + h (first dim): gradient dW:

[0.34, [0.34 + 0.0001, [-2.5,

-1.11, -1.11, ?,

0.78, 0.78, 2, \

0.12, 0.12, (1.25322 - 1.25347)/0.0001
0.55, 0.55, =-25

2.81, 2.81, Af(@) _ . f@+h) - fa)
‘3.1, —3_1, dzx h —0 h

-1.5, -1.5, 7,

0.33,..] 0.33...] 2 ]

loss 1.25347 loss 1.25322

Andrej Karpathy



current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353

Andrej Karpathy



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Andrej Karpathy

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

[-2.5,
0.6,

>\

(1.25353 - 1.25347)/0.0001

=0.6

.. fz+h) = f(z)
T i h

2,..]




current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25347

Andrej Karpathy



This is silly. The loss is just a function of W:
L=+Y Li+YX,W

Li =Y., max(0,s; — sy, + 1)

s= f(z; W) =Wz

want VL

Andrej Karpathy



This is silly. The loss is just a function of W:
L=+Y Li+YX,W

Li = ). ,., max(0,s; — sy, +1)
s= f(z; W) =Wz

want VL

Calculus

VwL =..

Andrej Karpathy



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Andrej Karpathy

dw = ...
(some function
data and W)

\

gradient dW:

[-2.5,
0.6,

0,

0.2,
0.7,
0.5,
1.1,
1.3,
2.1,..]



Loss gradients

 Denoted as (diff notations):  JL£

ﬁuﬁi

* |.e. how does the loss change as a function
of the weights

 We want to change the weights in such a
way that makes the loss decrease as fast as

possible

- Vwl

tangent line




Gradient descent

« We'll update weights

* Move in direction opposite to gradient:
|

_ ( \
W("”{” =w!™) —nVE(w™))

Time

Learning rate

_ r ‘

i o i original W

W_ 1

/
negative gradient direction

Figure from Andrej Karpathy



Gradient descent

 lteratively subtract the gradient with respect
to the model parameters (w)

* |.e. we're moving in a direction opposite to
the gradient of the loss

* |l.e. we're moving towards smaller loss



Mini-batch gradient descent

* In classic gradient descent, we compute the
gradient from the loss for all training
examples

 Could also only use some of the data for
each gradient update

« We cycle through all the training examples
multiple times

« Each time we’ve cycled through all of them
once is called an ‘epoch’

* Allows faster training (e.g. on GPUSs),
parallelization



Learning rate selection

The effects of step size (or “learning rate”)
25 : - - - A

loss

20

low learning rate

high learning rate

good learning rate
0,00 iO 40 60 80 100 ’

Epoch 4 epoch

Andrej Karpathy



Gradient descent in multi-layer nets

« We'll update weights
* Move in direction opposite to gradient:

wlTt) = w(™ — ) VE(w())

 How to update the weights at all layers?

« Answer: backpropagation of error from
higher layers to lower layers



Backpropagation: Graphic example

First calculate error of output units and use this
to change the top layer of weights.

output K

Update weights into | e

hidden ]

w®)

iInput i

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Next calculate error for hidden units based on
errors on the output units it feeds into.

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Finally update bottom layer of weights based on
errors calculated for hidden units.

output K

Update weights into i hidden j

iInput i

Adapted from Ray Mooney, equations from Chris Bishop



f(z,y,2) = (¢ + y)z
eg.x=-2,y=95,z=-4

Andrej Karpathy
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f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

qg=—+YyY %:1,%:1
of of .
f=qz By gy 4 Chain rule: Oy
of _ 9f &g
of of o Oy 0q 9y
Want: L ot

oz 9y’ 0z

Andrej Karpathy
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Andrej Karpathy



f(@,y,2) = (z +y)z
eg.x=-2,y=52z=-4

_ 9 _ . Og __
of of .
f:qz 8—q:z,5:q Chain rule: Oz
of _of &
Bf 8f 8f or Bq oz

Want: 3.5 3, B2

Andrej Karpathy




-z activations

2

Andrej Karpathy




Andrej Karpathy

-z activations

“local gradient”

gradients



Andrej Karpathy

-z activations

“local gradient”

OL
0z

gradients



-z activations

“local gradient”
OL
/ 0z

gradients

Andrej Karpathy



-] activations

“local gradient”
OL
0
% Z
oL

gradients

Andrej Karpathy



Convolutional neural networks



Convolutional Neural Networks (CNN)

Neural network with specialized
connectivity structure

Stack multiple stages of feature
extractors

Higher stages compute more global,
more invariant, more abstract features

Classification layer at the end

ﬂ“;i
ol

z BoE

[ |
=
o
: |

| X |

¥ |

o |
I3

'y |

e d
-1
> |

C3:f. maps 16@10x10

INPUT g,é) ggg;uare maps S4:f. maps 16@5x5
32x32 S2: f. maps C5: layer ’ OUTPUT
6@14x14 120 P layer "0

I | FuIIconrl-ection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

Adapted from Rob Fergus


http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Convolutional Neural Networks (CNN)

 Feed-forward feature extraction: [ Output (class probs) ]
1. Convolve input with learned filters ﬁ
2. Apply non-linearity
3. Spatial pooling (downsample)

Spatial pooling

{}

Non-linearity

[ |
[ |
{} .

[ Convolution J
[ |

« Supervised training of convolutional
filters by back-propagating
classification error

(Learned)

{}

Input Image

Adapted from Lana Lazebnik



1. Convolution

Apply learned filter weights
One feature map per filter

Stride can be greater than
1 (faster, less memory)

Feature Map



2. Non-Linearity

* Per-element (independent)

« Some options:
 Tanh £
: 1/(1+exp(-x))
* Rectified linear unit (ReLU)
— Avoids saturation issues

Adapted from Rob Fergus



3. Spatial Pooling

* Sum or max over non-overlapping /
overlapping regions

224x224x64 Single depth slice
112x112x64 A
pool % I 2 | 4
—_— max pool with 2x2 filters
aNeeNl 7 | 8 and stride 2
3/2[1]0 ]
l T 1 | 2

. 112 "
downsampling y -
112

s —

224

Rob Fergus, figure from Andrej Karpathy




3. Spatial Pooling

* Sum or max over non-overlapping /
overlapping regions
* Role of pooling:

* Invariance to small transformations
« Larger receptive fields (neurons see more of input)

Sum

Adapted from Rob Fergus



Convolutions: More detall

32x32x3 image

32 height

3 depth

Andrej Karpathy



Convolutions: More detall

32x32x3 image

5x5x3 filter
32 £/
Il Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Andrej Karpathy



Convolutions: More detall

Convolution Layer
__— 32x32x3 Image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

~~ 1number:

Andrej Karpathy



Convolutions: More detall

Convolution Layer

activation map

32x32x3 image

— .
V 5x5x3 filter /
@> 28

convolve (slide) over all

spatial locations
32 28

3 1

Andrej Karpathy



Convolutions: More detall

Convolution Layer consider a second, green filter

— 32x32x3 image activation maps

K E 5x5x3 filter %/ 28
=0

convolve (slide) over all

spatial locations /

Andrej Karpathy



Convolutions: More detall

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

activation maps

27'

ANNN

32

28

Convolution Layer

7

We stack these up to get a “new image” of size 28x28x6!

NN NN
SN N NN

32 ) 28

3 6

. . N

Andrej Karpathy



Convolutions: More detall

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONYV,
RelLU
e.g. 6

5x5x3
32 filters 28

Andrej Karpathy



Convolutions: More detall

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g. 6 e.g. 10
5x5x3 5x5x6
32 filters 28 filters 24

Andrej Karpathy



Convolutions: More detall

[From recent Yann

Preview LeCun slides]

Low-Level| |Mid-Level| |[High-Level|] | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Andrej Karpathy



Convolutions: More detall

, RECINSEESEMNZIIANANENESEORSETISEERRERG
one filter => _
one activation map example 5x5 filters
’ - (32 total)

Activations:

We call the layer convolutional
because it is related to convolution
of two signals:

k k
Gli,j1= > Y. Hlu,v]F[i+ u,j+ v]

u=—kv=-—Fk

Element-wise multiplication and sum
of a filter and the signal (image)

Adapted from Andrej Karpathy, Kristen Grauman



Convolutions: More detall

A closer look at spatial dimensions:

activation map

32x32x3 image

/ .
5x5x3 filter /
2
@>@ :
convolve (slide) over all

spatial locations
32 28

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

/X7 Input (spatially)
assume 3x3 filter

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

Andrej Karpathy

/X7 Input (spatially)
assume 3x3 filter
=> 5X5 output



Convolutions: More detall

A closer look at spatial dimensions:

7
/X7 Iinput (spatially)

assume 3x3 filter
applied with stride 2

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

7
/X7 Iinput (spatially)

assume 3x3 filter
applied with stride 2

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

7

Andrej Karpathy

/X7 Iinput (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!



Convolutions: More detall

A closer look at spatial dimensions:

7
/X7 Iinput (spatially)

assume 3x3 filter
applied with stride 3?7

Andrej Karpathy



Convolutions: More detall

A closer look at spatial dimensions:

7

Andrej Karpathy

/X7 Iinput (spatially)
assume 3x3 filter
applied with stride 3?7

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.



Convolutions: More detail

N

Output size:
(N-F)/stride +1

eg.N=7,F=3:
stridel1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

Andrej Karpathy



Convolutions: More detall

n practice: Common to zero pad the border
0O/0|0|O0O|0 O
e.g. input 7x7

° 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
0

(recall:)

(N -F)/stride + 1

Andrej Karpathy



Convolutions: More detall

n practice: Common to zero pad the border

0[{0|0|0|0]|O

e.g. input 7x7
3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?

/X7 output!

Andrej Karpathy



Convolutions: More detall

0

0

0

0

0

0

0

0

0

Andrej Karpathy

n practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

/X7 output!
In general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3

(N + 2*padding - F) / stride + 1



Convolutions: More detail

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Andrej Karpathy

N

N




Convolutions: More detail

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Andrej Karpathy

N

N




Convolutions: More detail

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Andrej Karpathy

N

N




Convolutions: More detall

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 i

N
N

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=>76*10 =760

Andrej Karpathy




Putting it all together

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONVlCONVl CONVlCONVl FC
car

EIELEER

—

WA NGRS

A EETEIVE R

il

1 1) 1" I 6

Andrej Karpathy



A Common Architecture: AlexNet
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Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm



Case Study: VGGNet

ConvNet Conhg-uration i |
A A-LRN B C || D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
[Simonyan and Zisserman, 2014] Mmput (224 x 221 RGB imag})

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

Only 3)(3 CONV Strlde 1’ pad 1 conv3-128 | conv3-128 (c:(c:::g:iiz conv3-128 { conv3-128 W conv3-128

conv3-128 N conv3-128 [ conv3-128

: maxpool
and 2X2 MAX POOL Strlde 2 conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
conv3-256 | conv3-256 | conv3-256 | cony conv3-256 W conv3-256
/fnvjlj?: conv3-256 f| conv3-256
conv3-256
maxpool

conv3-512 | conv3-512 | conv3-512 | conv3-512 § conv3-512 [ conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 § conv3-512 [ conv3-512
convl-512 | conv3-512 [ conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 W conv3-512

best model conv3-512 | conva-512 | comv3-512 | comv3:512 | comva-512 | comvd-si2

convl-512 | conv3-512 [§ conv3-512

conv3-512

maxpool
FC-4096
FC-4096

11.2% top 5 error in ILSVRC 2013 FC-T000

soft-max
->
Table 2: Number of parameters (in millions).

7.3% top 5 error Network AALIRN| B [ C [ D | E

Number of parameters 133 133 ] 134 | 138 | 144

Andrej Karpathy



Case Study: GooglLeNet

Filter
concatenation

&3 a

ﬂ‘\

1x1 convolutions

ﬂﬁon s

Andrej Karpathy

3x3 convolutions 5x5 convolutions 1x1 convolutions
“ : )
1x1 convolutions 3x3 max pooling

Previous layer

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)



Case Study: ResNet

[He et al., 2015]
ILSVRC 2015 winner (3.6% top 5 error)

* 1st places in all five main tracks

* COCO Detection: 11% better than 2nd

ZICCV

1g He, Xiangyu Zhang, Shaoging Ren, & Jian

MSRA @ ILSVRC & COCO 2015 Competitions

* ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets
* ImageNet Detection: 16% better than 2nd
* ImageNet Localization: 27% better than 2nd

* COCO Segmentation: 12% better than 2nd

Sun. “Deep R

Research

*improvements are relative numbers

Residual Learning for Image Recognition”. arXiv 2015

Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGL|-uKT1w

Andrej Karpathy



https://www.youtube.com/watch?v=1PGLj-uKT1w

Case Study: ResNet

Revolution of Depth

152 layers

[ 22 layers ] 19 Iayers

\67

357 l I

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

wlccv

l—vvmm'-—'w-—

shallow

28.2

ILSVRC'10

‘Research

Kaiming He, Xiangyu Zhang, Shaoqging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.

(slide from Kaiming He’s recent presentation)

Andrej Karpathy




Case Study: ResNet

[He et al., 2015]
ILSVRC 2015 winner (3.6% top 5 error)

Research 2.3 weeks of training
Revolution of Depth on 8 GPU machine
AlexNet, 8 layers % VGG, 19 layers % ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
at runtime: faster
than a VGGNet!
(even though it has
8x more layers)

(slide from Kaiming He’s recent presentation)

Andrej Karpathy



Practical matters



Comments on training algorithm

Not guaranteed to converge to zero training error, may
converge to local optima or oscillate indefinitely.

However, in practice, does converge to low error for
many large networks on real data, with good choice of
hyperparameters (e.g. learning rate).

Thousands of epochs (epoch = network sees all training
data once) may be required, hours or days to train.

To avoid local-minima problems, run several trials
starting with different random weights (random restarts),
and take results of trial with lowest training set error.

May be hard to set learning rate and to select number of
hidden units and layers.

Neural networks had fallen out of fashion in 90s, early
2000s; back with a new name and improved performance
(deep networks trained with dropout and lots of data).

Ray Mooney, Carlos Guestrin, Dhruv Batra



Over-training prevention

* Running too many epochs can result in over-fitting.

error

on test data

on training data

—
0 # training epochs

« Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

Adapted from Ray Mooney



Training: Best practices

Use reqgularization

To initialize weights, use “Xavier
initialization”

Use RELU or leaky RELU or ELU, don’t use
sigmoid

Use data augmentation

Use mini-batch

Center (subtract mean from) your data

Use cross-validation for your parameters

Learning rate: too high? Too low?



Regularization: Dropout

(a) Standard Neural Net

« Randomly turn off some neurons
* Allows individual neurons to independently be
responsible for performance

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

Adapted from Jia-bin Huang


http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

Data Augmentation (Jittering)

Create virtual training samples

» Horizontal flip
 Random crop
« Color casting
« Geometric distortion

Jia-bin Huang, Image: https://github.com/aleju/imgaug



https://github.com/aleju/imgaug

Transfer Learning

If you want to
NNs”

“You need a lot of&
tra@

Andrej Karpathy



Transfer Learning with CNNs

 The more weights you need to learn, the
more data you need

« That's why with a deeper network, you need
more data for training than for a shallower
network

* One possible solution:

Set these to the already learned Learn these on your own task
weights from another network



Transfer Learning with CNNSs

Source: classification on ImageNet Target: some other task/data
1. Train on 2. Small dataset: _ 3. Medium dataset:
| image | ImageNet image | [ image | fi netuning
conv-64 conv-64 \ conv-64 \
come-64 — com-64 more data = retrain more of
maxpool maxpool maxpool .
conv-128 conv-128 conv-128 the n etWO rk (Or a” Of It)
conv-128 conv-128 conv-128
maxpool maxpool maxpool
conv-256 conv-256 conv-256 F reeze th ese
conv-256 conv-256 conv-256
maxpool maxpool F reeze th ese maxpool
conv-512 conv-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpool j
conv-512 conv-512 conv-512
conv-512 conv-512 conv-512
maxpool maxpool maxpool
FC-4096 FC-4096 j FC-4096 <+—— Train this
FC-4096 FC-4096 FC-4096
FC-1000 FC-1000 . . FC-1000
softmax softmax D — Tl’al n th IS softmax

Another option: use network as feature extractor,
train SVM on extracted features for target task

Adapted from Andrej Karpathy



Transfer Learning with CNNSs

image

conv-64
conv-64

maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

Andrej Karpathy

T~

more generic

more specific

very similar very different
dataset dataset

very little data | Use linear You're in
classifier ontop |trouble... Try

layer

linear classifier
from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers




Pre-training on ImageNet

 Have a source domain and target domain

« Train a network to classify ImageNet classes
 Coarse classes and ones with fine distinctions (dog breeds)

 Remove last layers and train layers to
replace them, that predict target classes

Training images Source task Source task labels
Convolutional layers Fully-connected layers AR SRpa
1: Feature ,1 Wall clock
learning C1-C2-C3-CA4-C5 [+ rc6 p* FC7 FC8 1.
4096 or
ey 6144-dim Green snake
1 ) \ | vector :
\I' H Yorkshire terrier
2: Feature Transfer
transfer parameters :
T _ . Chair
e
‘ : I Back d
. e ackgroun
3 : Classifier ' C1-C2-C3-C4-C5 b rce b re7 —— fca —»! kcb s -
learning 4096 or wr
6144.dim N Person
9216-dim 4096 or vector
el 6:‘;2:’“ TV/monitor
Traini = Slid h New adaptation {
raining images Sliding patches layers trained
Target task oh target task Target task labels

Oquab et al., “Learning and Transferring Mid-Level Image Representations...”, CVPR 2014



Transfer learning with CNNSs Is pervasive...

classifier Image Captioning

 § Karpathy and Fei-Fei, “Deep Visual-
Rol pooling Semantic Alignments for Generating

Image Descriptions”, CVPR 2015
propoy =3

<
Region Proposal Network,
feature maps

CNN pretrained
on ImageNet

“straw” “hat” END

conv layers

START “straw” “hat”

Object Detection
Ren et al., “Faster R-CNN* NIPS 2015

Adapted from Andrej Karpathy



Semantic segmentation

Extract Run through Classify
patch a CNN center pixel

Eqﬁﬁm
- J,

Repeat for
every pixel

Andrej Karpathy



Photographer identification

Who took this photograph?

* Deep net features achieve 74% accuracy
« Chance is less than 3%, human performance is 47%

« Method learns what proto-objects + scenes
authors shoot

Thomas and Kovashka, CVPR 2016



Analysis of pre-training on ImageNet

¢ Source:
distinguish 1000 ImageNet categories (incl. many dog breeds)

« Target tasks:
object detection and action recognition on PASCAL

scene recognition on SUN
* Pre-training with 500 images per class is about
as good as pre-training with 1000

* Pre-training with 127 classes is about as good
as pre-training with 1000

* Pre-training with (fewer classes, more images
per class) > (more classes, fewer images)

« Small drop In if classes with fine-grained
distinctions removed from pre-training set

Huh et al., “What makes ImageNet good for transfer learning?”, arxiv 2016



Packages

TensorFlow
Torch / PyTorch

Keras
Caffe and Caffe Model Zoo



https://www.tensorflow.org/
http://torch.ch/
https://pytorch.org/
https://keras.io/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo

Some Learning Resources

http://deeplearning.net/
http://cs231n.stanford.edu



http://deeplearning.net/
http://cs231n.stanford.edu/syllabus.html

Understanding CNNs



Recall: Biological analog

3

Hubel & Weisel featural hierarchy
topographical mapping
hy er complex @ high level
complex cells m|d level
simple cells
0 low level

Hubel and Weisel’s architecture Multi-layer neural network

er 2 hidden layer

hidden layer 1  hidden lay

Adapted from Jia-bin Huang
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Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

« Activations projected « Patches from validation images that give
down to pixel level maximal activation of a given feature map
via decovolution

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]



http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]


http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

Occlusion experiments

(d) Classifier, probability

(a) Input Image of correct class \
v 2} .
TR

(as a function of the
position of the
square of zeros in
the original image)

True Label: Afghan Hound

[Zeiler & Fergus 2014]

Andrej Karpathy



Occlusion experiments

(d) Classifier, probability

(a) Input Image of correct class \
- o
S e :

¥ '% '

(as a function of the
position of the
square of zeros in
the original image)

True Label: Afghan Hound

[Zeiler & Fergus 2014]

Andrej Karpathy



What image maximizes a class score?

55

Repeat:

1. Forward animage
Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

2.
3. Backprop to image
4. Do an “image update”

Andrej Karpathy



What image maximizes a class score?

Flamingo Pelican Hartebeest Billiard Table

Ground Beetle Indian Cobra Station Wagon Black Swan

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]
http://yosinski.com/deepvis

Andrej Karpathy


http://yosinski.com/deepvis

What image maximizes a class score?

e

Layer 8

Pirate Ship Rocking Chair Teddy Bear Windsor Tie Pitcher

Layer 7

Andrej Karpathy



Breaking CNNs

correct +distort ostrich correct +distort ostrich

Take a correctly classified image (left image in both columns), and add a tiny distortion (middle) to fool the ConvNet with the
resulting image (right).

Intriguing properties of neural networks [Szegedy ICLR 2014]

Andrej Karpathy



http://arxiv.org/pdf/1312.6199v4.pdf

Breaking CNNs
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Deep Neural Networks are Easily Fooled: High Confidence Predictions for
Jia-bin Huang Unrecognizable Images [Nguyen et al. CVPR 2015]



http://arxiv.org/pdf/1412.1897.pdf

Fooling a linear classifier

12.5% dasy

Fooled linear classifier: The starting image ('eft) s classified as a kit fox. That's incorrect, but then what can you expect from a
linear classifier? However, If we add a small amount “goldfish® weights to the Image (top row, migadie), suddenly the classifier is
convinced that it's looking at one with high confidence. We can distort it with the school bus template instead if we wanted 1o.

To fool a linear
classifier, add a small
multiple of the weight
vector to the training
example:

X € X + ow

http://karpathy.github.io/2015/03/30/breaking-convnets/

Jia-bin Huang


http://karpathy.github.io/2015/03/30/breaking-convnets/

Summary

* We use deep neural networks because of
their strong performance in practice

« Convolutional neural network (CNN)
«  Convolution, nonlinearity, max pooling

« Training deep neural nets

 We need an objective function that measures and guides us
towards good performance

 We need a way to minimize the loss function: stochastic
gradient descent

« We need backpropagation to propagate error towards all
layers and change weights at those layers

« Practices for preventing overfitting
« Dropout; data augmentation; transfer learning



