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Plan for the next few lectures

Why (convolutional) neural networks?  

Neural network basics
• Architecture

• Biological inspiration

• Loss functions

• Optimization / gradient descent

• Training with backpropagation 

Convolutional neural networks (CNNs)
• Special operations 

• Common architectures

Practical matters
• Tips and tricks for training

• Transfer learning 

• Software packages

Understanding CNNs
• Visualization 

• Synthesis / style transfer  

• Breaking CNNs



Neural network basics



Why (convolutional) neural networks? 

State of the art performance on many problems

Most papers in recent vision conferences use 

deep neural networks

Razavian et al., CVPR 2014 Workshops

http://www.cv-foundation.org/openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf


ImageNet Challenge 2012

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k 

classes

• Images gathered from Internet

• Human labels via Amazon Turk 

• Challenge: 1.2 million training images, 

1000 classes

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 

Convolutional Neural Networks, NIPS 2012
Lana Lazebnik

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge 2012

• AlexNet: Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)

• More data (106 vs. 103 images)

• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week

• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep 

Convolutional Neural Networks, NIPS 2012
Adapted from Lana Lazebnik

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


ImageNet Challenge 2012

Krizhevsky et al. -- 16.4% error (top-5)

Next best (non-convnet) – 26.2% error
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Example: CNN features for detection

Object detection system overview. Our system (1) takes an input image, (2) extracts 

around 2000 bottom-up region proposals, (3) computes features for each proposal 

using a large convolutional neural network (CNN), and then (4) classifies each region 

using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP) 

of 53.7% on PASCAL VOC 2010. For comparison, Uijlings et al. (2013) report 35.1% 

mAP using the same region proposals, but with a spatial pyramid and bag-of-visual-

words approach. The popular deformable part models perform at 33.4%.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich Feature Hierarchies for Accurate 

Object Detection and Semantic Segmentation, CVPR 2014. 

Lana Lazebnik

http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdf


What are CNNs? 

• Convolutional neural networks are a type of 

neural network with layers that perform 

special operations 

• Used in vision but also in NLP, biomedical etc. 

• Often they are deep

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 



Traditional Recognition Approach

Hand-designed

feature extraction 

(e.g. SIFT, HOG)

Trainable

classifier

Image/ Video

Pixels

• Features are key to recent progress in recognition, 

but research shows they’re flawed…

• Where next? 

Object

Class

Adapted from Lana Lazebnik



What about learning the features?

• Learn a feature hierarchy all the way from pixels to 

classifier

• Each layer extracts features from the output of 

previous layer

• Train all layers jointly

Layer 1 Layer 2 Layer 3 Object 

Class

Image/ 

Video

Pixels

Lana Lazebnik



“Shallow” vs. “deep” architectures

Hand-designed

feature extraction

Trainable

classifier

Image/ 

Video

Pixels

Object

Class

Layer 1 Layer N
Simple 

classifier
Object 

Class

Image/ 

Video

Pixels

Traditional recognition: “Shallow” architecture

Deep learning: “Deep” architecture

…

Lana Lazebnik



Neural network definition

• Activations: 

• Nonlinear activation function h (e.g. sigmoid, 

RELU):
Figure from Christopher Bishop 

Recall SVM: 

wTx + b



• Layer 2

• Layer 3 (final)

• Outputs (e.g. sigmoid/softmax)

• Finally:

Neural network definition

(binary)

(multiclass)

(binary)



Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU

max(0.1x, x)

Maxout  

ELU

Activation functions

Andrej Karpathy



A multi-layer neural network

• Nonlinear classifier

• Can approximate any continuous function to arbitrary 

accuracy given sufficiently many hidden units

Lana Lazebnik



Inspiration: Neuron cells

• Neurons

• accept information from multiple inputs, 

• transmit information to other neurons.

• Multiply inputs by weights along edges

• Apply some function to the set of inputs at each node

• If output of function over threshold, neuron “fires”

Text: HKUST, figures: Andrej Karpathy



Biological analog

A biological neuron An artificial neuron

Jia-bin Huang



Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Biological analog



Multilayer networks

• Cascade neurons together

• Output from one layer is the input to the next

• Each layer has its own sets of weights

HKUST



Feed-forward networks

• Predictions are fed forward through the 

network to classify

HKUST



Feed-forward networks

• Predictions are fed forward through the 

network to classify

HKUST



Feed-forward networks

• Predictions are fed forward through the 

network to classify

HKUST



Feed-forward networks

• Predictions are fed forward through the 

network to classify

HKUST



Feed-forward networks

• Predictions are fed forward through the 

network to classify

HKUST



Feed-forward networks

• Predictions are fed forward through the 

network to classify

HKUST



Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 
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How do we train them? 

• The goal is to iteratively find such a set of 

weights that allow the activations/outputs to 

match the desired output

• We want to minimize a loss function

• The loss function is a function of the weights 

in the network

• For now let’s simplify and assume there’s a 

single layer of weights in the network 



Classification goal

Example dataset: CIFAR-10  

10 labels

50,000 training images  

each image is 32x32x3

10,000 test images.

Andrej Karpathy



Classification scores

[32x32x3]

array of numbers 0...1  

(3072 numbers total)

f(x,W)

image parameters

10 numbers,  

indicating class  

scores

Andrej Karpathy



Linear classifier 

[32x32x3]

array of numbers 0...1

10 numbers,  

indicating class  

scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy



Linear classifier 

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy



Linear classifier 

Going forward: Loss function/Optimization

1. Define a loss function  

that quantifies our  

unhappiness with the  

scores across the training  

data.

2. Come up with a way of  

efficiently finding the  

parameters that minimize  

the loss function.  

(optimization)

TODO:

Andrej Karpathy

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1



Linear classifier 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0

If false, loss is magnitude of violation



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)

+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

cat

car  

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)

+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) 

+ max(0, 5.6 + 1)

= 6.3 + 6.6

= 12.9

cat

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.  

With some W the scores are:
Hinge loss:

Given an example

where  

where

is the image and

is the (integer) label,

and using the shorthand for the  

scores vector:

the loss has the form:

and the full training loss is the mean  

over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Losses: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Adapted from Andrej Karpathy



Linear classifier: Hinge loss 

Weight Regularization
λ = regularization strength  

(hyperparameter)

In common use:  

L2 regularization  

L1 regularization

Dropout (will see later)

Adapted from Andrej Karpathy



Want to maximize the log likelihood, or (for a loss function)  

to minimize the negative log likelihood of the correct class:cat

car

frog

3.2

5.1

-1.7

scores = unnormalized log probabilities of the classes.

where

Another loss: Softmax (cross-entropy)

Andrej Karpathy



cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)

= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy



Other losses

• Triplet loss (Schroff, FaceNet)

• Anything you want! 

a denotes anchor

p denotes positive

n denotes negative



How to minimize the loss function? 

Andrej Karpathy



How to minimize the loss function? 

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).

Andrej Karpathy



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Andrej Karpathy



gradient dW:

[-2.5,

?,

?,

?,
?,

?,

?,
?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

Andrej Karpathy



gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

Andrej Karpathy



gradient dW:

[-2.5,

0.6,

?,

?,
?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Andrej Karpathy



gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Andrej Karpathy



This is silly. The loss is just a function of W:

want

Andrej Karpathy



This is silly. The loss is just a function of W:

want

Calculus

= ...

Andrej Karpathy



gradient dW:

[-2.5,

0.6,

0,

0.2,

0.7,

-0.5,

1.1,

1.3,

-2.1,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

dW = ...

(some function  

data and W)

Andrej Karpathy



Loss gradients

• Denoted as (diff notations):

• i.e. how does the loss change as a function 

of the weights

• We want to change the weights in such a 

way that makes the loss decrease as fast as 

possible  



Gradient descent

• We’ll update weights

• Move in direction opposite to gradient:

L

Learning rate
Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2



Gradient descent

• Iteratively subtract the gradient with respect 

to the model parameters (w)

• I.e. we’re moving in a direction opposite to 

the gradient of  the loss

• I.e. we’re moving towards smaller loss



Mini-batch gradient descent

• In classic gradient descent, we compute the 

gradient from the loss for all training 

examples

• Could also only use some of the data for 

each gradient update

• We cycle through all the training examples 

multiple times 

• Each time we’ve cycled through all of them 

once is called an ‘epoch’

• Allows faster training (e.g. on GPUs), 

parallelization



Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)



Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of error from 

higher layers to lower layers



Backpropagation: Graphic example

First calculate error of output units and use this 

to change the top layer of weights.

output

hidden

input

Update weights into j

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)



Backpropagation: Graphic example

Next calculate error for hidden units based on 

errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Finally update bottom layer of weights based on 

errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Lecture 4 - 10

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 11

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 12

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 13

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 14

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 15

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 16

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 17

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 18

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 19

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 20

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 21

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Lecture 4 - 22

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy

“local gradient”

f

gradients



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson

Andrej Karpathy



Convolutional neural networks



Convolutional Neural Networks (CNN)

• Neural network with specialized 

connectivity structure

• Stack multiple stages of feature 

extractors

• Higher stages compute more global, 

more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document 

recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.
Adapted from Rob Fergus

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf


• Feed-forward feature extraction: 

1. Convolve input with learned filters

2. Apply non-linearity 

3. Spatial pooling (downsample)

• Supervised training of convolutional 

filters by back-propagating 

classification error

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution 

(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…



1. Convolution

• Apply learned filter weights

• One feature map per filter

• Stride can be greater than 

1 (faster, less memory)

Input Feature Map

.

.

.

Adapted from Rob Fergus



2. Non-Linearity

• Per-element (independent)

• Some options:
• Tanh

• Sigmoid: 1/(1+exp(-x))

• Rectified linear unit  (ReLU)

– Avoids saturation issues

Adapted from Rob Fergus



3. Spatial Pooling

• Sum or max over non-overlapping / 
overlapping regions

Rob Fergus, figure from Andrej Karpathy



3. Spatial Pooling

• Sum or max over non-overlapping / 
overlapping regions

• Role of pooling:
• Invariance to small transformations

• Larger receptive fields (neurons see more of input)

Max

Sum

Adapted from Rob Fergus



32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy



32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,  

computing dot products”

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

1 number:
the result of taking a dot product between the  

filter and a small 5x5x3 chunk of the image

(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy



32

32

3

Convolution Layer

32x32x3 image  

5x5x3 filter

activation maps

1

28

28

convolve (slide) over all  

spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy



32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolution Layers, interspersed with  

activation functions

32

32

3

28

28

6

CONV,  

ReLU

e.g. 6

5x5x3

filters

Convolutions: More detail

Andrej Karpathy



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  

activation functions

32

32

3

CONV,  

ReLU

e.g. 6

5x5x3

filters 28

28

6

CONV,  

ReLU

e.g. 10  

5x5x6  

filters

CONV,  

ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy



Preview
[From recent Yann  

LeCun slides]

Convolutions: More detail

Andrej Karpathy



example 5x5 filters
(32 total)

We call the layer convolutional  

because it is related to convolution  

of two signals:

Element-wise multiplication and sum 

of  a filter and the signal (image)

one filter =>

one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman



A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all  

spatial locations

Convolutions: More detail

Andrej Karpathy



7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail
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7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



=> 5x5 output

7

7x7 input (spatially)  

assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 2

=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy



7x7 input (spatially)  

assume 3x3 filter  

applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!

cannot apply 3x3 filter on  

7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy



N

F

F

N

Output size:

(N - F) / stride + 1

e.g. N = 7, F = 3:

stride 1 => (7 - 3)/1 + 1 = 5

stride 2 => (7 - 3)/2 + 1 = 3

stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy



In practice: Common to zero pad the border

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with  

stride 1, filters of size FxF, and zero-padding with  

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2

F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Convolutions: More detail

Andrej Karpathy

(N + 2*padding - F) / stride + 1



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size: ?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Output volume size:

(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Convolutions: More detail

Andrej Karpathy



Examples time:

Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2

(+1 for bias)

Number of parameters in this layer?  

each filter has 5*5*3 + 1 = 76 params

=> 76*10 = 760

Convolutions: More detail

Andrej Karpathy



Putting it all together

Andrej Karpathy



Figure from http://www.mdpi.com/2072-4292/7/11/14680/htm 

A Common Architecture: AlexNet



Case Study: VGGNet

Only 3x3 CONV stride 1, pad 1  

and  2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

[Simonyan and Zisserman, 2014]

Andrej Karpathy



[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

Andrej Karpathy



Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Case Study: ResNet

Andrej Karpathy

https://www.youtube.com/watch?v=1PGLj-uKT1w


(slide from Kaiming He’s recent presentation)

Case Study: ResNet

Andrej Karpathy



[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s recent presentation)

2-3 weeks of training  

on 8 GPU machine

at runtime: faster  

than a VGGNet!  

(even though it has  

8x more layers)

Case Study: ResNet

Andrej Karpathy



Practical matters



Comments on training algorithm

• Not guaranteed to converge to zero training error, may 

converge to local optima or oscillate indefinitely.

• However, in practice, does converge to low error for 

many large networks on real data, with good choice of 

hyperparameters (e.g. learning rate).

• Thousands of epochs (epoch = network sees all training 

data once) may be required, hours or days to train.

• To avoid local-minima problems, run several trials 

starting with different random weights (random restarts), 

and take results of trial with lowest training set error.

• May be hard to set learning rate and to select number of 

hidden units and layers.

• Neural networks had fallen out of fashion in 90s, early 

2000s; back with a new name and improved performance 

(deep networks trained with dropout and lots of data).

Ray Mooney, Carlos Guestrin, Dhruv Batra



Over-training prevention

• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it 
after every epoch. Stop training when additional 
epochs actually increase validation error.

0 # training epochs

e
rr

o
r

on training data

on test data

Adapted from Ray Mooney



Training: Best practices

• Use regularization

• To initialize weights, use “Xavier 

initialization” 

• Use RELU or leaky RELU or ELU, don’t use 

sigmoid

• Use data augmentation 

• Use mini-batch 

• Center (subtract mean from) your data

• Use cross-validation for your parameters

• Learning rate: too high? Too low? 



Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

• Randomly turn off some neurons

• Allows individual neurons to independently be 

responsible for performance

Adapted from Jia-bin Huang

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf


Data Augmentation (Jittering)

Create virtual training samples
• Horizontal flip

• Random crop

• Color casting

• Geometric distortion

Jia-bin Huang, Image: https://github.com/aleju/imgaug

https://github.com/aleju/imgaug


Transfer Learning

“You need a lot of a data if you want to  

train/use CNNs”

Andrej Karpathy



Transfer Learning with CNNs

• The more weights you need to learn, the 

more data you need

• That’s why with a deeper network, you need 

more data for training than for a shallower 

network

• One possible solution: 

Set these to the already learned 

weights from another network

Learn these on your own task



1. Train on  

ImageNet
2. Small dataset:

Freeze these

Train this

3. Medium dataset:

finetuning

more data = retrain more of  

the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer Learning with CNNs

Adapted from Andrej Karpathy

Another option: use network as feature extractor, 

train SVM on extracted features for target task

Source: classification on ImageNet Target: some other task/data



more generic

more specific

Lecture 11 - 34

very similar  

dataset

very different  

dataset

very little data Use linear  

classifier on top  

layer

You’re in  

trouble… Try  

linear classifier  

from different  

stages

quite a lot of  

data

Finetune a few  

layers

Finetune a  

larger number of  

layers

Transfer Learning with CNNs

Andrej Karpathy



Pre-training on ImageNet

• Have a source domain and target domain

• Train a network to classify ImageNet classes
• Coarse classes and ones with fine distinctions (dog breeds)

• Remove last layers and train layers to 

replace them, that predict target classes

Oquab et al., “Learning and Transferring Mid-Level Image Representations…”, CVPR 2014 



Transfer learning with CNNs is pervasive…

Object Detection  
Ren et al., “Faster R-CNN“, NIPS 2015

Image Captioning

Karpathy and Fei-Fei, “Deep Visual-

Semantic Alignments for Generating 

Image Descriptions”, CVPR 2015

CNN pretrained  

on ImageNet

Adapted from Andrej Karpathy



Extract  

patch

CNN

Run through  

a CNN

COW

Classify  

center pixel

Repeat for  

every pixel

Lecture 13 - 28

Semantic segmentation

Andrej Karpathy



Photographer identification

Who took this photograph?

• Deep net features achieve 74% accuracy 
• Chance is less than 3%, human performance is 47%

• Method learns what proto-objects + scenes 

authors shoot

Thomas and Kovashka, CVPR 2016



Analysis of pre-training on ImageNet

• Source: 
• distinguish 1000 ImageNet categories (incl. many dog breeds)

• Target tasks: 
• object detection and action recognition on PASCAL

• scene recognition on SUN 

• Pre-training with 500 images per class is about 

as good as pre-training with 1000

• Pre-training with 127 classes is about as good 

as pre-training with 1000

• Pre-training with (fewer classes, more images 

per class) > (more classes, fewer images) 

• Small drop in if classes with fine-grained 

distinctions removed from pre-training set 
Huh et al., “What makes ImageNet good for transfer learning?”, arxiv 2016



Packages

TensorFlow

Torch / PyTorch

Keras

Caffe and Caffe Model Zoo

https://www.tensorflow.org/
http://torch.ch/
https://pytorch.org/
https://keras.io/
http://caffe.berkeleyvision.org/
https://github.com/BVLC/caffe/wiki/Model-Zoo


Some Learning Resources

http://deeplearning.net/

http://cs231n.stanford.edu

http://deeplearning.net/
http://cs231n.stanford.edu/syllabus.html


Understanding CNNs



Hubel and Weisel’s architecture Multi-layer neural network

Adapted from Jia-bin Huang

Recall: Biological analog



Layer 1

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 2

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

• Patches from validation images that give 

maximal activation of a given feature map 

• Activations projected 

down to pixel level 

via decovolution

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 3

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Layer 4 and 5

Visualizing and Understanding Convolutional Networks [Zeiler and Fergus, ECCV 2014]

http://ftp.cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf


Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

Andrej Karpathy

[Zeiler & Fergus 2014]



Occlusion experiments

(as a function of the  

position of the  

square of zeros in  

the original image)

[Zeiler & Fergus 2014]

Andrej Karpathy



What image maximizes a class score?

Repeat:

1. Forward an image

2. Set activations in layer of interest to all zero, except for a 1.0 for a neuron of interest

3. Backprop to image

4. Do an “image update”

Andrej Karpathy



What image maximizes a class score?

[Understanding Neural Networks Through Deep Visualization, Yosinski et al. , 2015]

http://yosinski.com/deepvis

Andrej Karpathy

http://yosinski.com/deepvis


What image maximizes a class score?

Andrej Karpathy



Breaking CNNs

Intriguing properties of neural networks [Szegedy ICLR 2014]
Andrej Karpathy

http://arxiv.org/pdf/1312.6199v4.pdf


Breaking CNNs

Deep Neural Networks are Easily Fooled: High Confidence Predictions for 

Unrecognizable Images [Nguyen et al. CVPR 2015]Jia-bin Huang

http://arxiv.org/pdf/1412.1897.pdf


Fooling a linear classifier

To fool a linear 

classifier, add a small 

multiple of the weight 

vector to the training 

example: 

x  x + αw

http://karpathy.github.io/2015/03/30/breaking-convnets/
Jia-bin Huang

http://karpathy.github.io/2015/03/30/breaking-convnets/


Summary

• We use deep neural networks because of 

their strong performance in practice

• Convolutional neural network (CNN)
• Convolution, nonlinearity, max pooling

• Training deep neural nets
• We need an objective function that measures and guides us 

towards good performance

• We need a way to minimize the loss function: stochastic 

gradient descent

• We need backpropagation to propagate error towards all 

layers and change weights at those layers

• Practices for preventing overfitting
• Dropout; data augmentation; transfer learning


