
CS 1674: Intro to Computer Vision

Visual Recognition

Prof. Adriana Kovashka
University of Pittsburgh

October 25, 2018

Plan for this lecture

• What is recognition?
– a.k.a. classification, categorization

• Support vector machines
– Separable case / non-separable case
– Linear / non-linear (kernels)

• The importance of generalization
– The bias-variance trade-off (applies to all classifiers)

• Example approach for scene classification

• Given a feature representation for images, how

do we learn a model for distinguishing features

from different classes?

Zebra

Non-zebra

Decision

boundary

Slide credit: L. Lazebnik

Classification

Classification
• Assign input vector to one of two or more classes

• Input space divided into decision regions

separated by decision boundaries

Slide credit: L. Lazebnik

Examples of image classification

• Two-class (binary): Cat vs Dog

Adapted from D. Hoiem

Examples of image classification

• Multi-class (often): Object recognition

Caltech 101 Average Object Images
Adapted from D. Hoiem

Examples of image classification

• Fine-grained recognition

Visipedia Project
Slide credit: D. Hoiem

http://www.vision.caltech.edu/visipedia/

Examples of image classification

• Place recognition

Places Database [Zhou et al. NIPS 2014]
Slide credit: D. Hoiem

http://places.csail.mit.edu/places_NIPS14.pdf

Examples of image classification

• Material recognition

[Bell et al. CVPR 2015]
Slide credit: D. Hoiem

http://arxiv.org/pdf/1412.0623.pdf

Examples of image classification

• Dating historical photos

[Palermo et al. ECCV 2012]

1940 1953 1966 1977

Slide credit: D. Hoiem

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1776&context=robotics

Examples of image classification

• Image style recognition

[Karayev et al. BMVC 2014] Slide credit: D. Hoiem

http://arxiv.org/pdf/1311.3715.pdf

Recognition: A machine

learning approach

The machine learning

framework

• Apply a prediction function to a feature representation of

the image to get the desired output:

f() = “apple”

f() = “tomato”

f() = “cow”
Slide credit: L. Lazebnik

The machine learning

framework

y = f(x)

• Training: given a training set of labeled examples {(x1,y1),

…, (xN,yN)}, estimate the prediction function f by minimizing

the prediction error on the training set

• Testing: apply f to a never before seen test example x and

output the predicted value y = f(x)

output prediction

function

image / image feature

Slide credit: L. Lazebnik

Prediction

The old-school way

Training

Labels
Training

Images

Training

Training

Image

Features

Image

Features

Testing

Test Image

Learned

model

Learned

model

Slide credit: D. Hoiem and L. Lazebnik

The simplest classifier

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test

example
Training

examples

from class 1

Training

examples

from class 2

Slide credit: L. Lazebnik

K-Nearest Neighbors classification

k = 5

Slide credit: D. Lowe

• For a new point, find the k closest points from training data

• Labels of the k points “vote” to classify

If query lands here, the 5

NN consist of 3 negatives

and 2 positives, so we

classify it as negative.

Black = negative

Red = positive

Nearest Neighbors according to bag of SIFT + color histogram + a few others

Slide credit: James Hays

im2gps: Estimating Geographic Information from a Single Image
James Hays and Alexei Efros, CVPR 2008

Where was this image taken?

The Importance of Data

Slides: James Hays

Linear classifier

• Find a linear function to separate the classes

f(x) = sgn(w1x1 + w2x2 + … + wDxD) = sgn(w  x)

Slide credit: L. Lazebnik

• What should the weights be?

x1

x2

(0, 0)

• Decision = sign(wTx) = sign(w1*x1 + w2*x2)

Linear classifier

Lines in R2

0 bcyax











c

a
w 










y

x
xLet

Kristen Grauman

Lines in R2

0 bxw











c

a
w 










y

x
x

0 bcyax

Let

w

Kristen Grauman

Lines in R2

0 bxw











c

a
w 










y

x
x

0 bcyax

Let

w

 00, yx

Kristen Grauman

Lines in R2

0 bxw











c

a
w 










y

x
x

0 bcyax

Let

w

 00, yx

D

w

xw b

ca

bcyax
D











22

00 distance from

point to line

Kristen Grauman

Lines in R2

0 bxw











c

a
w 










y

x
x

0 bcyax

Let

w

 00, yx

D

w

xw ||

22

00 b

ca

bcyax
D










distance from

point to line

Kristen Grauman

Linear classifiers

• Find linear function to separate positive and

negative examples

0:negative

0:positive





b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Discriminative

classifier based on

optimal separating

line (for 2d case)

• Maximize the

margin between the

positive and

negative training

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive





by

by

iii

iii

wxx

wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

For support, vectors, 1 bi wx

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive





by

by

iii

iii

wxx

wxx

Support vectors

For support, vectors, 1 bi wx

Distance between point

and line: ||||

||

w

wx bi 

www

211



M

For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

Margin ww

xw 1


 bΤ

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)(positive





by

by

iii

iii

wxx

wxx

MarginSupport vectors

For support, vectors, 1 bi wx

Distance between point

and line: ||||

||

w

wx bi 

Therefore, the margin is 2 / ||w||

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to yi(w·xi+b) ≥ 1

ww
T

2

1

1:1)(negative

1:1)(positive





by

by

iii

iii

wxx

wxx

One constraint for each

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

• Solution:  i iii y xw 

Support

vector

Learned

weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

 i iii y xw 

 by

xf

ii 



 xx

xw

i isign

b)(sign)(



If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Inner product

Adapted from Milos Hauskrecht

 by

xf

ii 



 xx

xw

i isign

b)(sign)(



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs

Φ: x→ φ(x)

• General idea: the original input space can

always be mapped to some higher-dimensional

feature space where the training set is

separable:

Andrew Moore

Nonlinear SVMs

Nonlinear kernel: Example

• Consider the mapping),()(2xxx 

22

2222

),(

),(),()()(

yxxyyxK

yxxyyyxxyx





x2

Svetlana Lazebnik

• The linear classifier relies on dot product between

vectors K(xi,xj) = xi · xj

• If every data point is mapped into high-dimensional

space via some transformation Φ: xi → φ(xi), the dot

product becomes: K(xi,xj) = φ(xi) · φ(xj)

• A kernel function is similarity function that

corresponds to an inner product in some expanded

feature space

• The kernel trick: instead of explicitly computing the

lifting transformation φ(x), define a kernel function K

such that: K(xi,xj) = φ(xi) · φ(xj)

Andrew Moore

The “Kernel Trick”

Examples of kernel functions

 Linear:

 Polynomials of degree up to d:

 Gaussian RBF:

 Histogram intersection:

)
2

exp()(
2

2



ji

ji

xx
,xxK





k

jiji kxkxxxK))(),(min(),(

j

T

iji xxxxK ),(

Andrew Moore / Carlos Guestrin

𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖
𝑇𝑥𝑗 + 1)𝑑

Hard-margin SVMs

Maximize margin

The w that minimizes…

Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification
cost

data samples

Soft-margin SVMs

What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-
class SVM formulation

• In practice, we have to obtain a multi-class
SVM by combining multiple two-class SVMs

• One vs. others
• Training: learn an SVM for each class vs. the others

• Testing: apply each SVM to the test example, and assign it
to the class of the SVM that returns the highest decision
value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to
the test example

Svetlana Lazebnik

Multi-class problems

One-vs-all (a.k.a. one-vs-others)
• Train K classifiers

• In each, pos = data from class i, neg = data from classes other

than i

• The class with the most confident prediction wins

• Example:

– You have 4 classes, train 4 classifiers

– 1 vs others: score 3.5

– 2 vs others: score 6.2

– 3 vs others: score 1.4

– 4 vs other: score 5.5

– Final prediction: class 2

Multi-class problems

One-vs-one (a.k.a. all-vs-all)
• Train K(K-1)/2 binary classifiers (all pairs of classes)

• They all vote for the label

• Example:

– You have 4 classes, then train 6 classifiers

– 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4

– Votes: 1, 1, 4, 2, 4, 4

– Final prediction is class 4

1. Select a kernel function.

2. Compute pairwise kernel values between labeled

examples.

3. Use this “kernel matrix” to solve for SVM support

vectors & alpha weights.

4. To classify a new example: compute kernel values

between new input and support vectors, apply alpha

weights, check sign of output.

Adapted from Kristen Grauman

Using SVMs

Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002

Moghaddam and Yang, Face & Gesture 2000

Kristen Grauman

Example: Learning gender w/ SVMs

Kristen Grauman

Support faces

Example: Learning gender w/ SVMs

SVMs performed
better than humans,
at either resolution

Kristen Grauman

Example: Learning gender w/ SVMs

Some SVM packages

• LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• LIBLINEAR

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

• SVM Light http://svmlight.joachims.org/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/

Linear classifiers vs nearest neighbors

• Linear pros:

+ Low-dimensional parametric representation

+ Very fast at test time

• Linear cons:

– Can be tricky to select best kernel function for a problem

– Learning can take a very long time for large-scale problem

• NN pros:

+ Works for any number of classes

+ Decision boundaries not necessarily linear

+ Nonparametric method

+ Simple to implement

• NN cons:

– Slow at test time (large search problem to find neighbors)

– Storage of data

– Especially need good distance function (but true for all classifiers)

Adapted from L. Lazebnik

• What do we want?
– High accuracy on training data?
– No, high accuracy on unseen/new/test data!
– Why is this tricky?

• Training data
– Features (x) and labels (y) used to learn mapping f

• Test data
– Features (x) used to make a prediction
– Labels (y) only used to see how well we’ve learned f!!!

• Validation data
– Held-out set of the training data
– Can use both features (x) and labels (y) to tune parameters of

the model we’re learning

Training vs Testing

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

• Components of generalization error

– Noise in our observations: unavoidable

– Bias: due to inaccurate assumptions/simplifications made by the

model

– Variance: models estimated from different training sets differ

greatly rom each other

• Underfitting: model is too “simple” to represent all the

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Generalization

• Models with too few

parameters are inaccurate

because of a large bias (not

enough flexibility).

• Models with too many

parameters are inaccurate

because of a large variance

(too much sensitivity to the

sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model Blue curve = our predicted model/fit

Purple dots = possible test points

Generalization

Training vs test error

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

The effect of training set size

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Choosing the trade-off between

bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Generalization tips

• Try simple classifiers first

• Better to have smart features and simple

classifiers than simple features and smart

classifiers

• Use increasingly powerful classifiers with more

training data

• As an additional technique for reducing variance,

try regularizing the parameters (penalize high

magnitude weights)

Slide credit: D. Hoiem

Beyond Bags of Features: Spatial Pyramid Matching

for Recognizing Natural Scene Categories

CVPR 2006

Svetlana Lazebnik (slazebni@uiuc.edu)

Beckman Institute, University of Illinois at Urbana-Champaign

Cordelia Schmid (cordelia.schmid@inrialpes.fr)

INRIA Rhône-Alpes, France

Jean Ponce (ponce@di.ens.fr)

Ecole Normale Supérieure, France

Winner of 2016

Longuet-Higgins Prize

Scene category dataset
Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce_grp/data

Slide credit: L. Lazebnik

http://www-cvr.ai.uiuc.edu/ponce_grp/data

Bag-of-words representation

1. Extract local features

2. Learn “visual vocabulary” using clustering

3. Quantize local features using visual vocabulary

4. Represent images by frequencies of “visual words”

Slide credit: L. Lazebnik

Image categorization with bag of words

Training
1. Compute bag-of-words representation for training images

2. Train classifier on labeled examples using histogram values as

features

3. Labels are the scene types (e.g. mountain vs field)

Testing
1. Extract keypoints/descriptors for test images

2. Quantize into visual words using the clusters computed at training

time

3. Compute visual word histogram for test images

4. Compute labels on test images using classifier obtained at training

time

5. Measure accuracy of test predictions by comparing them to ground-

truth test labels (obtained from humans)

Adapted from D. Hoiem

Weak features Strong features

Edge points at 2 scales and 8 orientations

(vocabulary size 16)

SIFT descriptors of 16x16 patches sampled

on a regular grid, quantized to form visual

vocabulary (size 200, 400)
Slide credit: L. Lazebnik

Feature extraction (on which BOW is based)

What about spatial layout?

All of these images have the same color histogram
Slide credit: D. Hoiem

Spatial pyramid

Compute histogram in each spatial bin

Slide credit: D. Hoiem

Spatial pyramid

[Lazebnik et al. CVPR 2006]
Slide credit: D. Hoiem

http://www.di.ens.fr/sierra/pdfs/cvpr06b.pdf

Level 2

Level 1

Level 0

Feature histograms:

Level 3

Total weight (value of pyramid match kernel):

Pyramid matching
Indyk & Thaper (2003), Grauman & Darrell (2005)

Matching using pyramid and histogram intersection for some particular visual word:

Original images

Adapted from L. Lazebnik

xi xj

K(xi , xj)

Scene category dataset

Fei-Fei & Perona: 65.2%

Multi-class classification results (100 training images per class)

Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce_grp/data

Slide credit: L. Lazebnik

http://www-cvr.ai.uiuc.edu/ponce_grp/data

Scene category confusions

Difficult indoor images

kitchen living room bedroom
Slide credit: L. Lazebnik

Caltech101 dataset

Multi-class classification results (30 training images per class)

Fei-Fei et al. (2004)

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Slide credit: L. Lazebnik

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

