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Plan for this lecture

• What is recognition? 
– a.k.a. classification, categorization

• Support vector machines
– Separable case / non-separable case
– Linear / non-linear (kernels)

• The importance of generalization
– The bias-variance trade-off (applies to all classifiers)

• Example approach for scene classification



• Given a feature representation for images, how 

do we learn a model for distinguishing features 

from different classes?

Zebra

Non-zebra

Decision

boundary

Slide credit: L. Lazebnik

Classification



Classification
• Assign input vector to one of two or more classes

• Input space divided into decision regions

separated by decision boundaries

Slide credit: L. Lazebnik



Examples of image classification

• Two-class (binary): Cat vs Dog

Adapted from D. Hoiem



Examples of image classification

• Multi-class (often): Object recognition

Caltech 101 Average Object Images
Adapted from D. Hoiem



Examples of image classification

• Fine-grained recognition

Visipedia Project
Slide credit: D. Hoiem

http://www.vision.caltech.edu/visipedia/


Examples of image classification

• Place recognition

Places Database [Zhou et al. NIPS 2014]
Slide credit: D. Hoiem

http://places.csail.mit.edu/places_NIPS14.pdf


Examples of image classification

• Material recognition

[Bell et al. CVPR 2015]
Slide credit: D. Hoiem

http://arxiv.org/pdf/1412.0623.pdf


Examples of image classification

• Dating historical photos

[Palermo et al. ECCV 2012]

1940 1953 1966 1977

Slide credit: D. Hoiem

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1776&context=robotics


Examples of image classification

• Image style recognition

[Karayev et al. BMVC 2014] Slide credit: D. Hoiem

http://arxiv.org/pdf/1311.3715.pdf


Recognition: A machine 

learning approach



The machine learning 

framework

• Apply a prediction function to a feature representation of 

the image to get the desired output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. Lazebnik



The machine learning 

framework

y = f(x)

• Training: given a training set of labeled examples {(x1,y1), 

…, (xN,yN)}, estimate the prediction function f by minimizing 

the prediction error on the training set

• Testing: apply f to a never before seen test example x and 

output the predicted value y = f(x)

output prediction 

function

image / image feature

Slide credit: L. Lazebnik



Prediction

The old-school way

Training 

Labels
Training 

Images

Training

Training

Image 

Features

Image 

Features

Testing

Test Image

Learned 

model

Learned 

model

Slide credit: D. Hoiem and L. Lazebnik



The simplest classifier

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test 

example
Training 

examples 

from class 1

Training 

examples 

from class 2

Slide credit: L. Lazebnik



K-Nearest Neighbors classification

k = 5

Slide credit: D. Lowe

• For a new point, find the k closest points from training data

• Labels of the k points “vote” to classify

If query lands here, the 5 

NN consist of 3 negatives 

and 2 positives, so we 

classify it as negative.

Black = negative

Red = positive



Nearest Neighbors according to bag of SIFT + color histogram + a few others

Slide credit: James Hays

im2gps: Estimating  Geographic Information from a Single Image 
James Hays and Alexei Efros, CVPR 2008

Where was this image taken?



The Importance of Data

Slides: James Hays



Linear classifier

• Find a linear function to separate the classes

f(x) = sgn(w1x1 + w2x2 + … + wDxD) = sgn(w  x)

Slide credit: L. Lazebnik



• What should the weights be?

x1

x2

(0, 0)

• Decision = sign(wTx) = sign(w1*x1 + w2*x2)

Linear classifier
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Lines in R2
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Linear classifiers

• Find linear function to separate positive and 

negative examples

0:negative

0:positive





b

b

ii

ii

wxx

wxx

Which line

is best?

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines 

• Discriminative 

classifier based on 

optimal separating 

line (for 2d case)

• Maximize the 

margin between the 

positive and 

negative training 

examples

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive





by

by

iii

iii

wxx

wxx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive
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Support vectors

For support, vectors, 1 bi wx
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For support vectors:

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 
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Support vector machines

• Want line that maximizes the margin.

1:1)(negative

1:1)( positive





by

by

iii
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MarginSupport vectors

For support, vectors, 1 bi wx

Distance between point 

and line: ||||

||

w

wx bi 

Therefore, the margin is  2 / ||w||

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

Quadratic optimization problem:

Minimize

Subject to  yi(w·xi+b) ≥ 1

ww
T

2

1

1:1)(negative

1:1)( positive
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One constraint for each 

training point.

Note sign trick.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

• Solution:  i iii y xw 

Support 

vector

Learned

weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)

• Classification function:

• Notice that it relies on an inner product between the test

point x and the support vectors xi

• (Solving the optimization problem also involves

computing the inner products xi · xj between all pairs of

training points)

 i iii y xw 
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If f(x) < 0, classify as negative, otherwise classify as positive.

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1998 

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf


Inner product

Adapted from Milos Hauskrecht
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• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Andrew Moore

Nonlinear SVMs



Φ:  x→ φ(x)

• General idea: the original input space can 

always be mapped to some higher-dimensional 

feature space where the training set is 

separable:

Andrew Moore

Nonlinear SVMs



Nonlinear kernel: Example

• Consider the mapping ),()( 2xxx 
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Svetlana Lazebnik



• The linear classifier relies on dot product between 

vectors K(xi,xj) = xi · xj

• If every data point is mapped into high-dimensional 

space via some transformation Φ:  xi → φ(xi ), the dot 

product becomes: K(xi,xj) = φ(xi ) · φ(xj)

• A kernel function is similarity function that 

corresponds to an inner product in some expanded 

feature space

• The kernel trick: instead of explicitly computing the 

lifting transformation φ(x), define a kernel function K 

such that: K(xi,xj) = φ(xi ) · φ(xj)

Andrew Moore

The “Kernel Trick”



Examples of kernel functions

 Linear:

 Polynomials of degree up to d:

 Gaussian RBF:

 Histogram intersection:
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Hard-margin SVMs

Maximize margin

The w that minimizes…



Maximize margin Minimize misclassification

Slack variable

The w that minimizes…

Misclassification 
cost

# data samples

Soft-margin SVMs



What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-
class SVM formulation

• In practice, we have to obtain a multi-class 
SVM by combining multiple two-class SVMs 

• One vs. others
• Training: learn an SVM for each class vs. the others

• Testing: apply each SVM to the test example, and assign it 
to the class of the SVM that returns the highest decision 
value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to 
the test example

Svetlana Lazebnik



Multi-class problems

One-vs-all (a.k.a. one-vs-others)
• Train K classifiers

• In each, pos = data from class i, neg = data from classes other 

than i

• The class with the most confident prediction wins

• Example: 

– You have 4 classes, train 4 classifiers

– 1 vs others: score 3.5

– 2 vs others: score 6.2

– 3 vs others: score 1.4

– 4 vs other: score 5.5

– Final prediction: class 2



Multi-class problems

One-vs-one (a.k.a. all-vs-all)
• Train K(K-1)/2 binary classifiers (all pairs of classes)

• They all vote for the label

• Example:

– You have 4 classes, then train 6 classifiers

– 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4

– Votes: 1, 1, 4, 2, 4, 4 

– Final prediction is class 4



1. Select a kernel function.

2. Compute pairwise kernel values between labeled 

examples.

3. Use this “kernel matrix” to solve for SVM support 

vectors & alpha weights.

4. To classify a new example: compute kernel values 

between new input and support vectors, apply alpha 

weights, check sign of output.

Adapted from Kristen Grauman

Using SVMs



Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002

Moghaddam and Yang, Face & Gesture 2000

Kristen Grauman

Example: Learning gender w/ SVMs



Kristen Grauman

Support faces

Example: Learning gender w/ SVMs



SVMs performed 
better than humans, 
at either resolution

Kristen Grauman

Example: Learning gender w/ SVMs



Some SVM packages

• LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/

• LIBLINEAR 

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

• SVM Light http://svmlight.joachims.org/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org/


Linear classifiers vs nearest neighbors

• Linear pros:

+ Low-dimensional parametric representation

+ Very fast at test time

• Linear cons:

– Can be tricky to select best kernel function for a problem

– Learning can take a very long time for large-scale problem

• NN pros:

+ Works for any number of classes

+ Decision boundaries not necessarily linear

+ Nonparametric method

+ Simple to implement

• NN cons:

– Slow at test time (large search problem to find neighbors)

– Storage of data

– Especially need good distance function (but true for all classifiers)

Adapted from L. Lazebnik



• What do we want? 
– High accuracy on training data? 
– No, high accuracy on unseen/new/test data!
– Why is this tricky?

• Training data
– Features (x) and labels (y) used to learn mapping f

• Test data
– Features (x) used to make a prediction
– Labels (y) only used to see how well we’ve learned f!!!

• Validation data
– Held-out set of the training data
– Can use both features (x) and labels (y) to tune parameters of 

the model we’re learning

Training vs Testing



Generalization

• How well does a learned model generalize from 

the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



• Components of generalization error 

– Noise in our observations: unavoidable

– Bias: due to inaccurate assumptions/simplifications made by the 

model

– Variance: models estimated from different training sets differ 

greatly rom each other

• Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Generalization



• Models with too few 

parameters are inaccurate 

because of a large bias (not 

enough flexibility).

• Models with too many 

parameters are inaccurate 

because of a large variance 

(too much sensitivity to the 

sample).

Adapted from D. Hoiem

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model Blue curve = our predicted model/fit

Purple dots = possible test points

Generalization



Training vs test error

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem



The effect of training set size

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t 
E

rr
o
r

Slide credit: D. Hoiem



Choosing the trade-off between 

bias and variance

• Need validation set (separate from the test set)

Training error

Validation error

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem



Generalization tips

• Try simple classifiers first

• Better to have smart features and simple 

classifiers than simple features and smart 

classifiers

• Use increasingly powerful classifiers with more 

training data

• As an additional technique for reducing variance, 

try regularizing the parameters (penalize high 

magnitude weights)

Slide credit: D. Hoiem



Beyond Bags of Features: Spatial Pyramid Matching  

for Recognizing Natural Scene Categories

CVPR 2006

Svetlana Lazebnik (slazebni@uiuc.edu)

Beckman Institute, University of Illinois at Urbana-Champaign

Cordelia Schmid (cordelia.schmid@inrialpes.fr)

INRIA Rhône-Alpes, France

Jean Ponce (ponce@di.ens.fr)

Ecole Normale Supérieure, France

Winner of 2016 

Longuet-Higgins Prize



Scene category dataset
Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce_grp/data

Slide credit: L. Lazebnik

http://www-cvr.ai.uiuc.edu/ponce_grp/data


Bag-of-words representation 

1. Extract local features

2. Learn “visual vocabulary” using clustering

3. Quantize local features using visual vocabulary 

4. Represent images by frequencies of “visual words” 

Slide credit: L. Lazebnik



Image categorization with bag of words

Training
1. Compute bag-of-words representation for training images

2. Train classifier on labeled examples using histogram values as 

features

3. Labels are the scene types (e.g. mountain vs field)

Testing
1. Extract keypoints/descriptors for test images

2. Quantize into visual words using the clusters computed at training 

time

3. Compute visual word histogram for test images

4. Compute labels on test images using classifier obtained at training 

time

5. Measure accuracy of test predictions by comparing them to ground-

truth test labels (obtained from humans)

Adapted from D. Hoiem



Weak features Strong features

Edge points at 2 scales and 8 orientations  

(vocabulary size 16)

SIFT descriptors of 16x16 patches sampled  

on a regular grid, quantized to form visual  

vocabulary (size 200, 400)
Slide credit: L. Lazebnik

Feature extraction (on which BOW is based)



What about spatial layout?

All of these images have the same color histogram
Slide credit: D. Hoiem



Spatial pyramid

Compute histogram in each spatial bin

Slide credit: D. Hoiem



Spatial pyramid

[Lazebnik et al. CVPR 2006]
Slide credit: D. Hoiem

http://www.di.ens.fr/sierra/pdfs/cvpr06b.pdf


Level 2

Level 1

Level 0

Feature histograms:  

Level 3

Total weight (value of pyramid match kernel):

Pyramid matching
Indyk & Thaper (2003), Grauman & Darrell (2005)

Matching using pyramid and histogram intersection for some particular visual word:

Original images

Adapted from L. Lazebnik

xi xj

K( xi , xj )



Scene category dataset

Fei-Fei & Perona: 65.2%

Multi-class classification results (100 training images per class)

Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce_grp/data

Slide credit: L. Lazebnik

http://www-cvr.ai.uiuc.edu/ponce_grp/data


Scene category confusions

Difficult indoor images

kitchen living room bedroom
Slide credit: L. Lazebnik



Caltech101 dataset

Multi-class classification results (30 training images per class)

Fei-Fei et al. (2004)

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Slide credit: L. Lazebnik

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

