CS 1674: Intro to Computer Vision Visual Recognition

Prof. Adriana Kovashka University of Pittsburgh October 25, 2018

Plan for this lecture

• What is recognition?

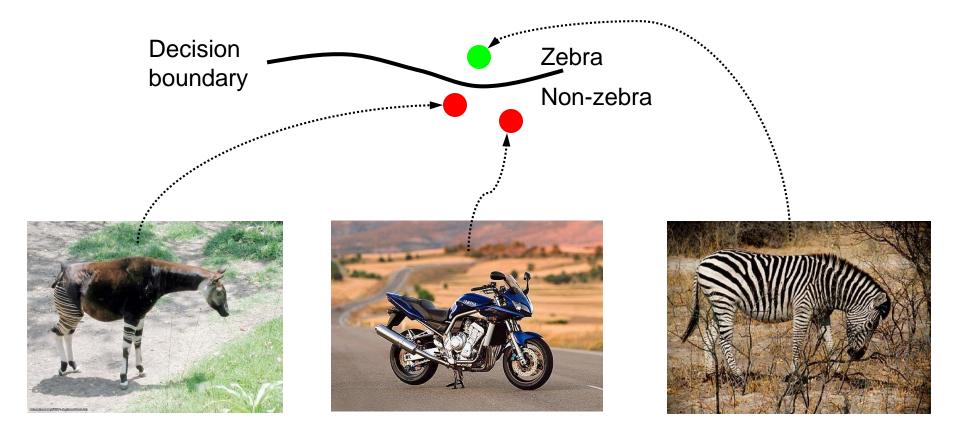
- a.k.a. classification, categorization

- Support vector machines
 - Separable case / non-separable case
 - Linear / non-linear (kernels)
- The importance of generalization

 The bias-variance trade-off (applies to all classifiers)
- Example approach for scene classification

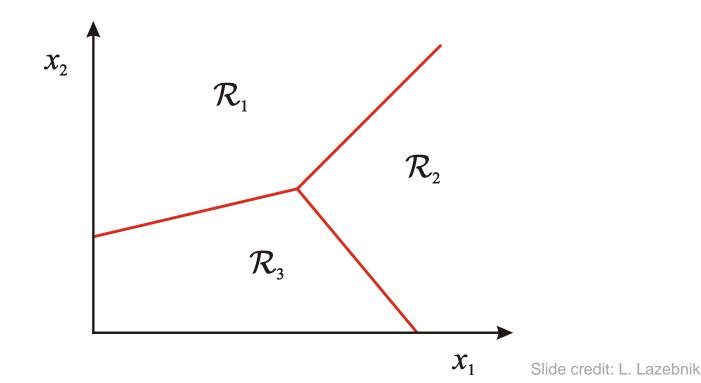
Classification

 Given a feature representation for images, how do we learn a model for distinguishing features from different classes?



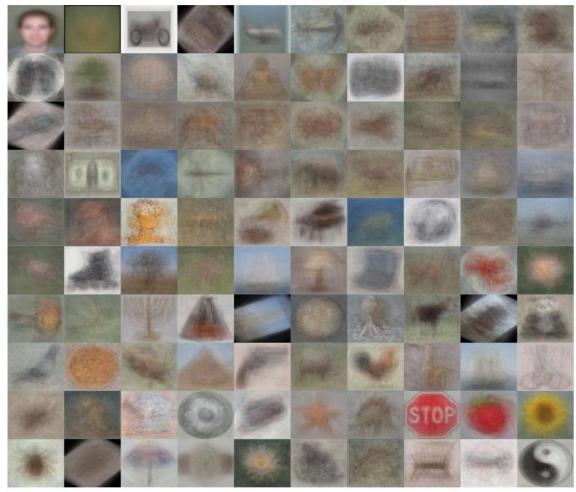
Classification

- Assign input vector to one of two or more classes
- Input space divided into decision regions separated by decision boundaries



• Two-class (binary): Cat vs Dog

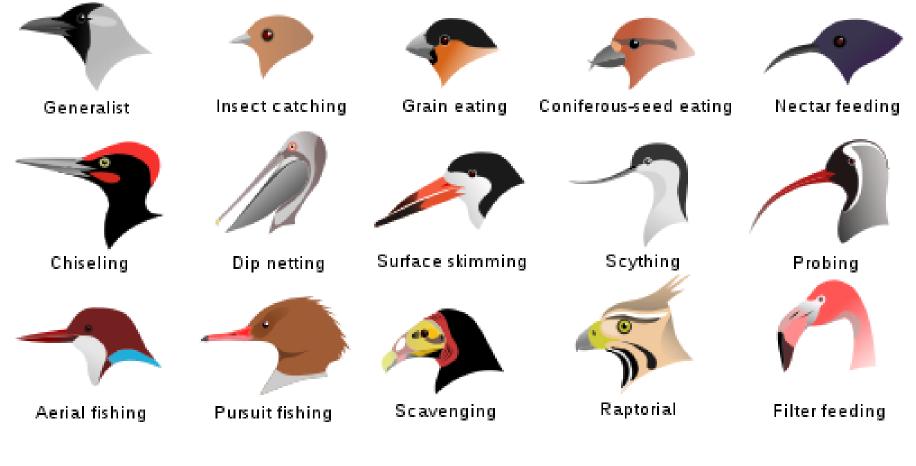
• Multi-class (often): Object recognition



Caltech 101 Average Object Images

Adapted from D. Hoiem

• Fine-grained recognition



Visipedia Project

Place recognition

spare bedroom

messy kitchen

romantic bedroom

greener forest path

wooded kitchen

stylish kitchen

misty coast

sunny coast

Places Database [Zhou et al. NIPS 2014]

Material recognition

[Bell et al. CVPR 2015]

• Dating historical photos

1940195319661977

[Palermo et al. ECCV 2012]

Slide credit: D. Hoiem

Image style recognition

HDR

Vintage

Macro

Noir

Minimal

Long Exposure

Hazy

Romantic

Flickr Style: 80K images covering 20 styles.

Baroque

Northern Renaissance

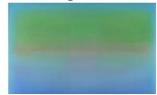
Impressionism

Abs. Expressionism

Roccoco

Cubism

Post-Impressionism



Color Field Painting

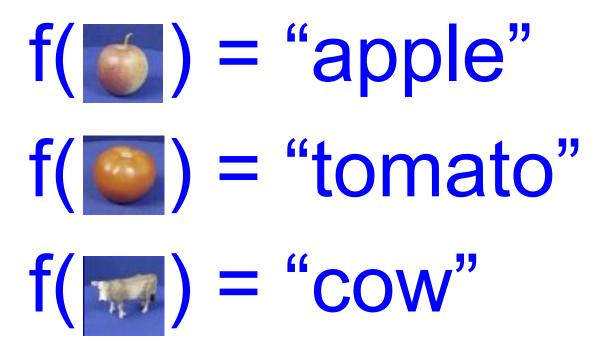
Wikipaintings: 85K images for 25 art genres.

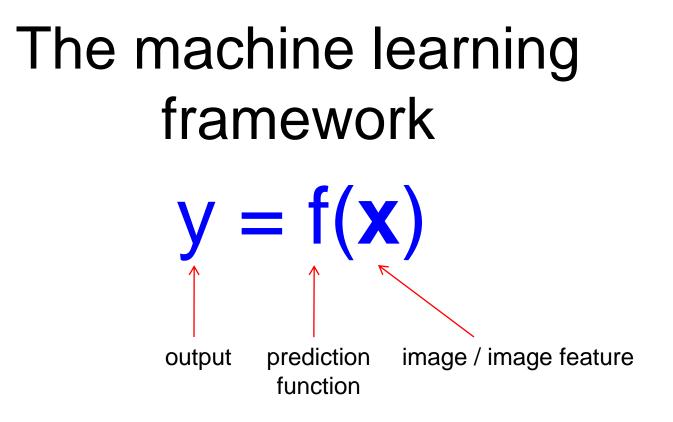
[Karayev et al. BMVC 2014]

Recognition: A machine learning approach

The machine learning framework

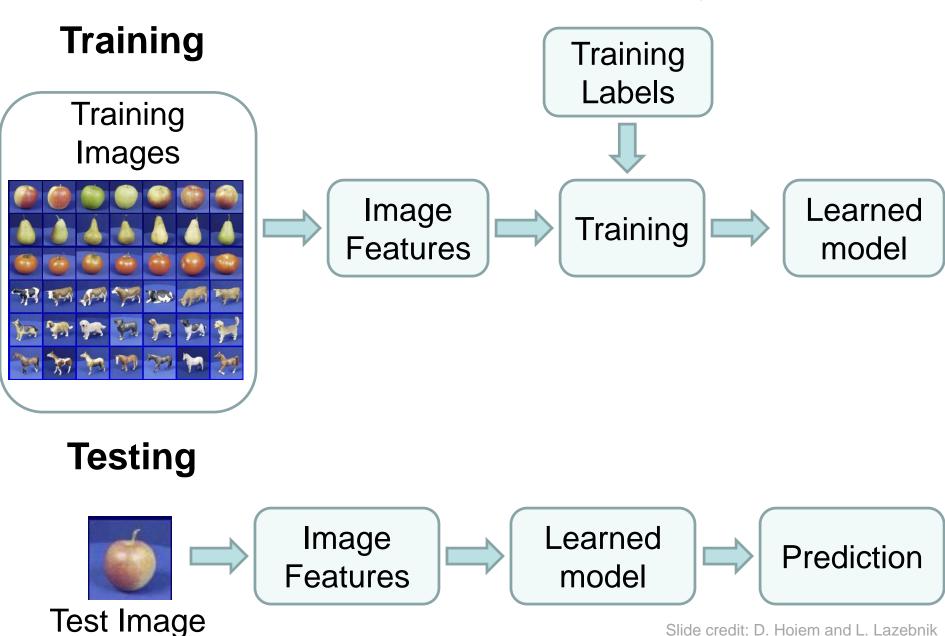
• Apply a prediction function to a feature representation of the image to get the desired output:





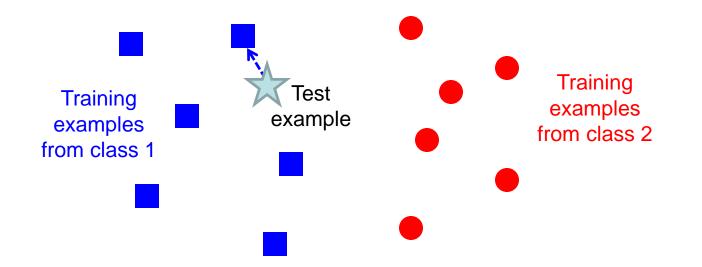
- Training: given a *training set* of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

The old-school way



Slide credit: D. Hoiem and L. Lazebnik

The simplest classifier



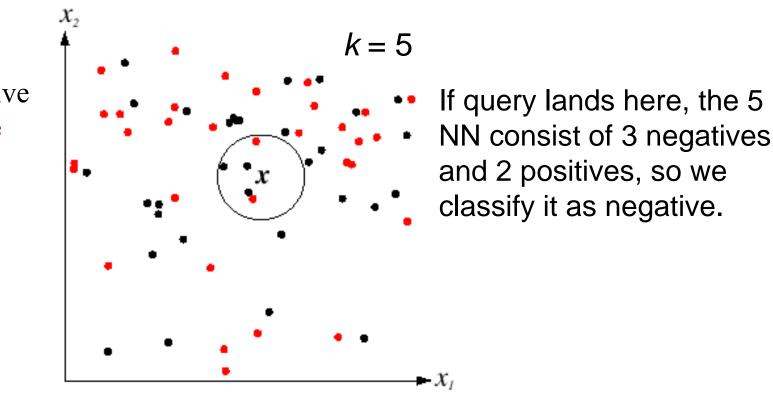
$f(\mathbf{x}) =$ label of the training example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

K-Nearest Neighbors classification

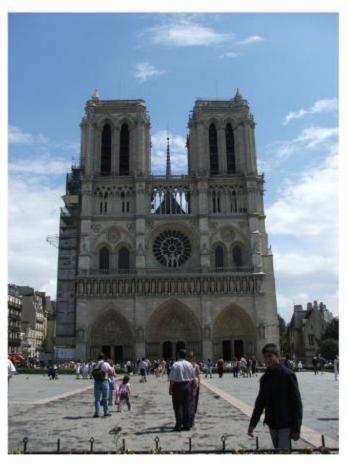
- For a new point, find the *k* closest points from training data
- Labels of the k points "vote" to classify

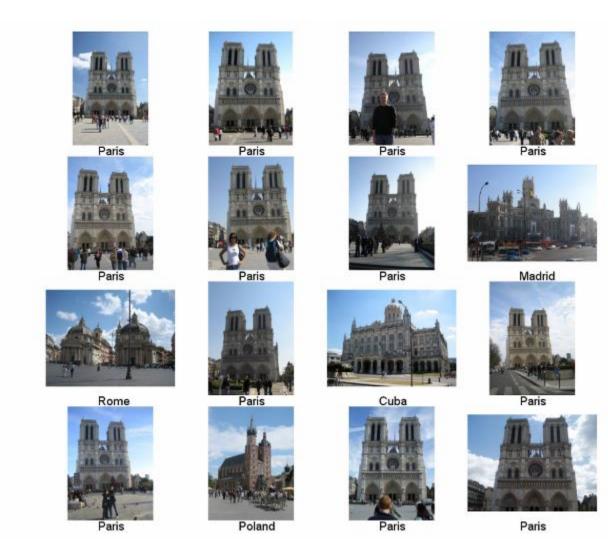
Black = negative Red = positive



im2gps: Estimating Geographic Information from a Single Image James Hays and Alexei Efros, CVPR 2008

Where was this image taken?

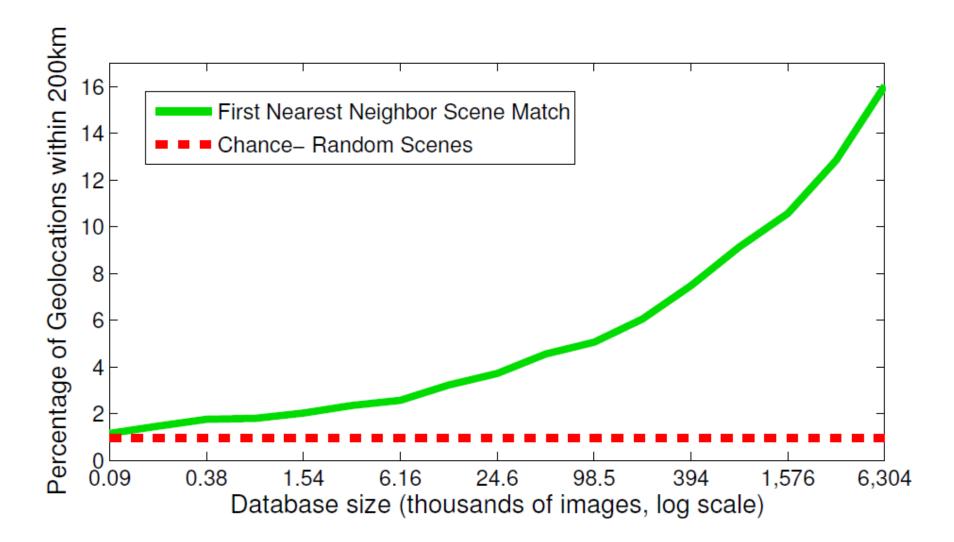


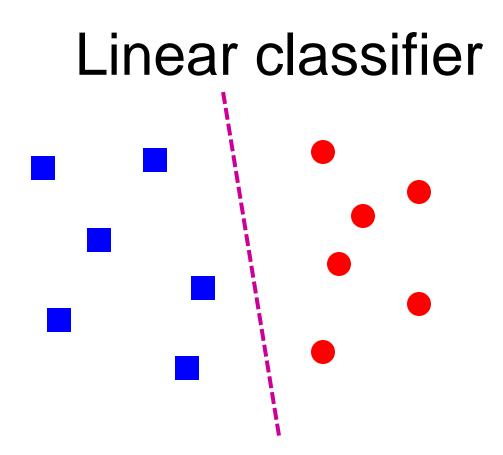


Nearest Neighbors according to bag of SIFT + color histogram + a few others

Slide credit: James Hays

The Importance of Data



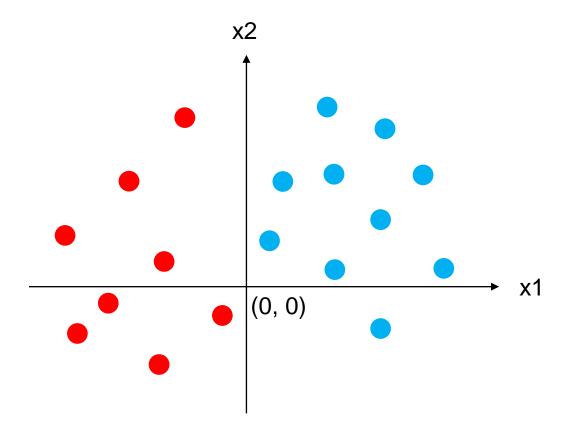


• Find a *linear function* to separate the classes

 $f(\mathbf{x}) = sgn(w_1x_1 + w_2x_2 + \dots + w_Dx_D) = sgn(\mathbf{w} \cdot \mathbf{x})$

Linear classifier

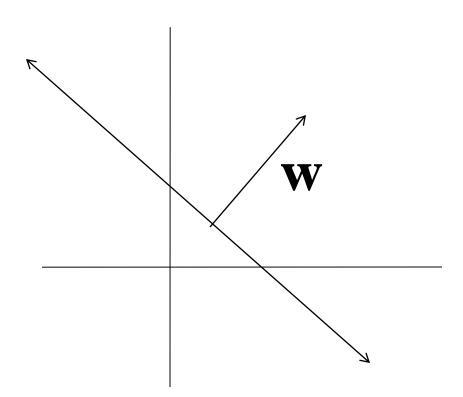
• Decision = sign($w^T x$) = sign($w^1 x 1 + w^2 x^2$)



• What should the weights be?

Lines in R² Let $\mathbf{W} = \begin{vmatrix} a \\ c \end{vmatrix} \quad \mathbf{X} = \begin{vmatrix} x \\ y \end{vmatrix}$ ax + cy + b = 0

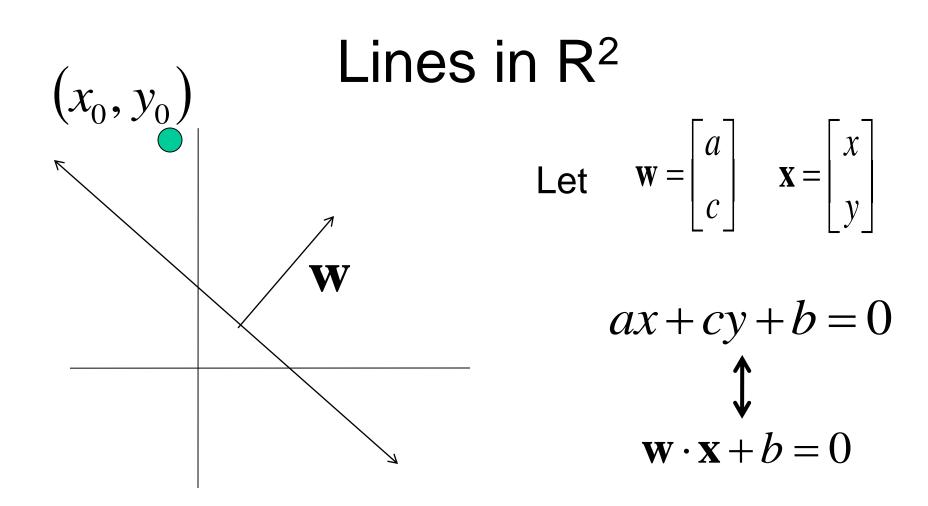
Lines in R²

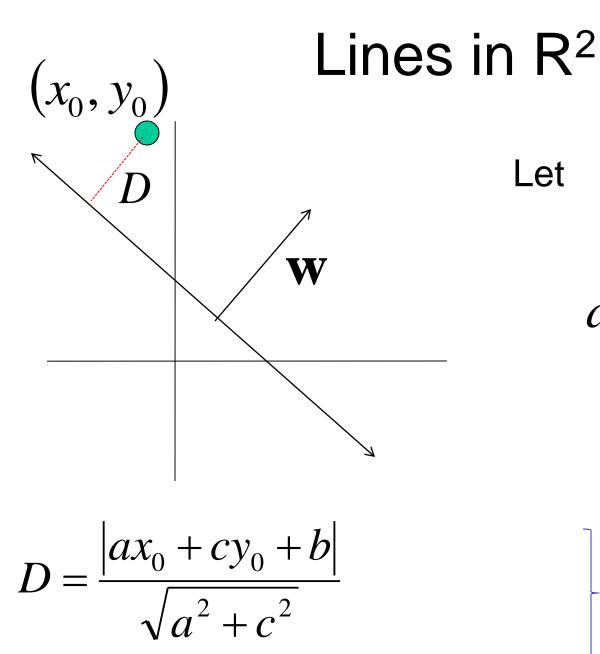


Let $\mathbf{W} = \begin{vmatrix} a \\ c \end{vmatrix} \quad \mathbf{X} = \begin{vmatrix} x \\ v \end{vmatrix}$

ax + cy + b = 0 $\mathbf{1}$ $\mathbf{w} \cdot \mathbf{x} + b = 0$

Kristen Grauman





Let
$$\mathbf{W} = \begin{bmatrix} a \\ c \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}$$

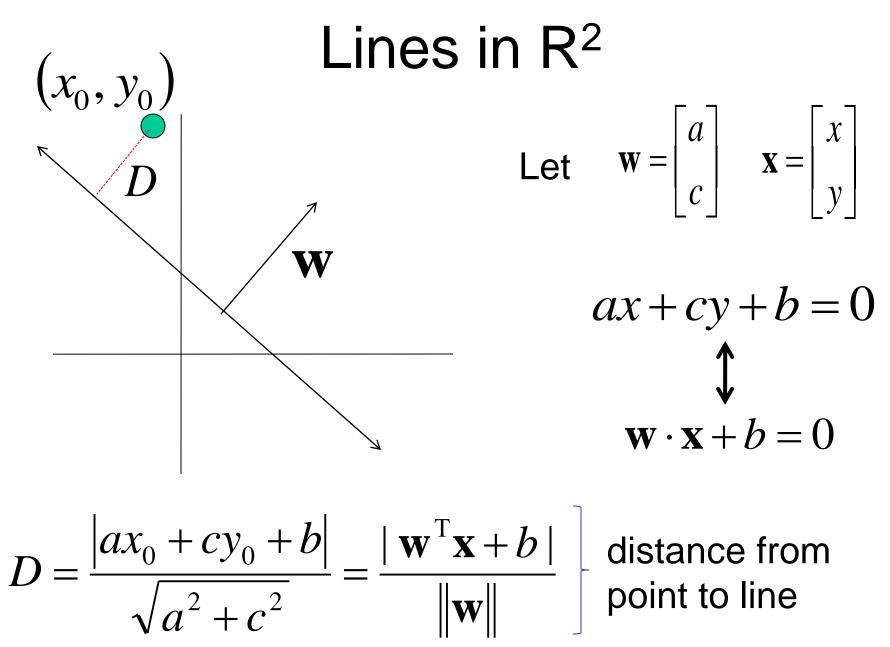
$$ax + cy + b = 0$$

$$\mathbf{1}$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

distance from point to line

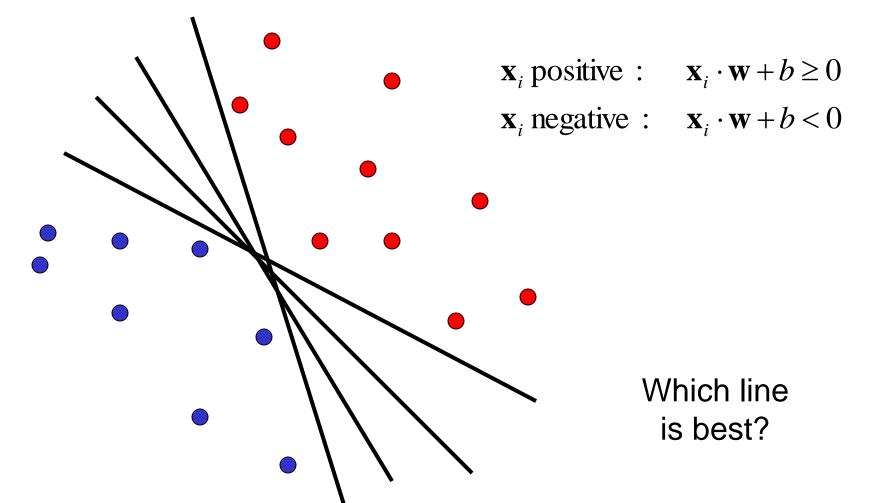
Kristen Grauman

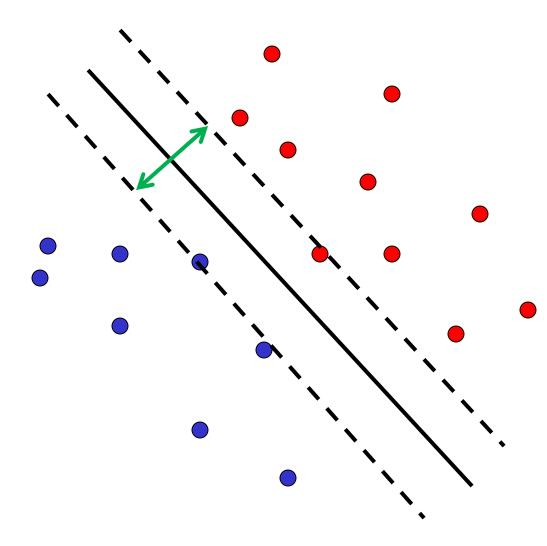


Kristen Grauman

Linear classifiers

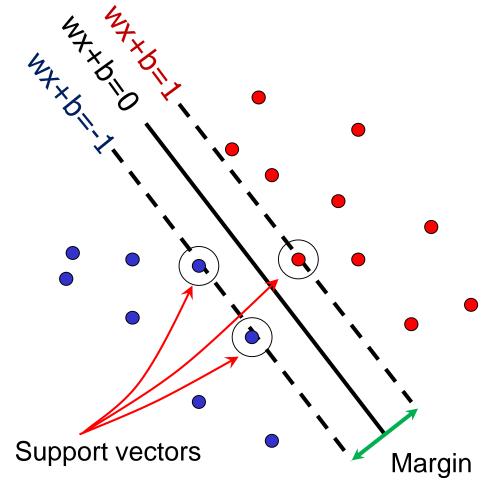
• Find linear function to separate positive and negative examples





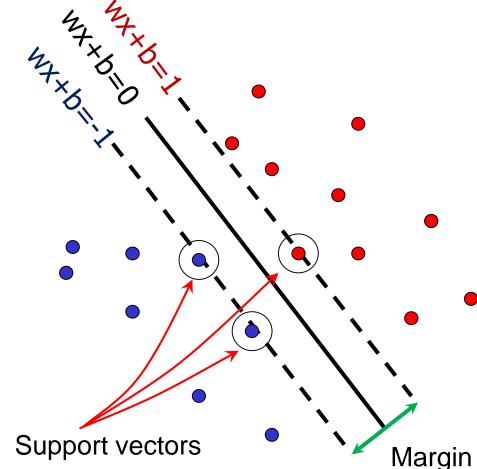
- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples

• Want line that maximizes the margin.



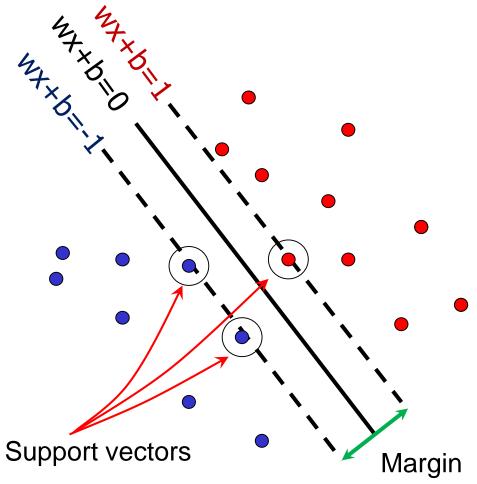
 $\begin{aligned} \mathbf{x}_i \text{ positive } & (y_i = 1): & \mathbf{x}_i \cdot \mathbf{w} + b \ge 1 \\ \mathbf{x}_i \text{ negative } & (y_i = -1): & \mathbf{x}_i \cdot \mathbf{w} + b \le -1 \\ \end{aligned}$ For support, vectors, $& \mathbf{x}_i \cdot \mathbf{w} + b = \pm 1 \end{aligned}$

• Want line that maximizes the margin.



 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \leq -1$ For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ $|\mathbf{x}_i \cdot \mathbf{w} + b|$ Distance between point and line: $\|\mathbf{w}\|$ For support vectors: $\frac{\mathbf{w}^{T}\mathbf{x}+b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \qquad M = \left|\frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|}\right| = \frac{2}{\|\mathbf{w}\|}$

• Want line that maximizes the margin.



 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$ \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$ For support, vectors, $\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$ Distance between point
and line: $||\mathbf{x}_i \cdot \mathbf{w} + b||$
 $|||\mathbf{w}||$ Therefore, the margin is $2 / ||\mathbf{w}||$

Finding the maximum margin line

- 1. Maximize margin $2/||\mathbf{w}||$
- 2. Correctly classify all training data points:

 \mathbf{x}_i positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

 \mathbf{x}_i negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \leq -1$

Quadratic optimization problem:

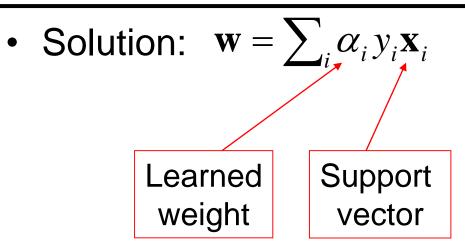
Minimize
$$\frac{1}{2} \mathbf{w}^T \mathbf{w}$$

Subject to $y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$ for \mathbf{w}

One constraint for each training point.

Note sign trick.

Finding the maximum margin line



Finding the maximum margin line

- Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i}$ (for any support vector)
- Classification function:

$$f(x) = \operatorname{sign} (\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$
$$= \operatorname{sign} \left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b \right)$$

If f(x) < 0, classify as negative, otherwise classify as positive.

- Notice that it relies on an *inner product* between the test point *x* and the support vectors *x_i*
- (Solving the optimization problem also involves computing the inner products *x_i* · *x_j* between all pairs of training points)

Inner product

• The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):

 $\left(\mathbf{x}_{i}^{T}\mathbf{x}_{j}\right)$

 $f(x) = \operatorname{sign} (\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$ $= \operatorname{sign} \left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b \right)$

The inner product is equal

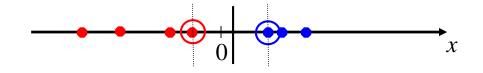
$$(\mathbf{x}_i^T \mathbf{x}) = \|\mathbf{x}_i\| * \|\mathbf{x}_i\| \cos \theta$$

If the angle in between them is 0 then: If the angle between them is 90 then: $(\mathbf{x}_i^T \mathbf{x}) = \|\mathbf{x}_i\|^* \|\mathbf{x}_i\|$ $(\mathbf{x}_i^T \mathbf{x}) = 0$

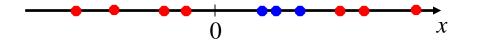
The inner product measures how similar the two vectors are

Nonlinear SVMs

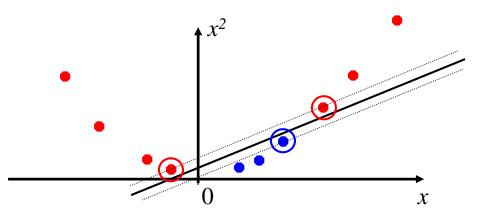
• Datasets that are linearly separable work out great:



• But what if the dataset is just too hard?



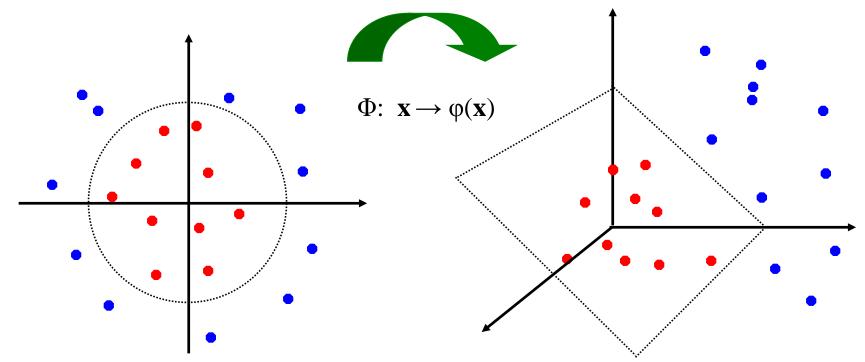
• We can map it to a higher-dimensional space:



Andrew Moore

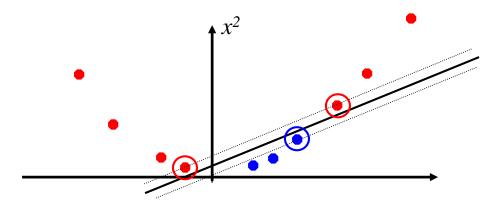
Nonlinear SVMs

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:



Nonlinear kernel: Example

• Consider the mapping $\varphi(x) = (x, x^2)$



$$\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2$$
$$K(x, y) = xy + x^2 y^2$$

The "Kernel Trick"

- The linear classifier relies on dot product between vectors K(x_i, x_j) = x_i · x_j
- If every data point is mapped into high-dimensional space via some transformation Φ : $\mathbf{x}_i \rightarrow \varphi(\mathbf{x}_i)$, the dot product becomes: $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$
- A *kernel function* is similarity function that corresponds to an inner product in some expanded feature space
- The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that: $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$

Examples of kernel functions

• Linear:
$$K(x_i, x_j) = x_i^T x_j$$

Polynomials of degree up to d:

$$K(x_i, x_j) = (x_i^T x_j + 1)^d$$

Ш

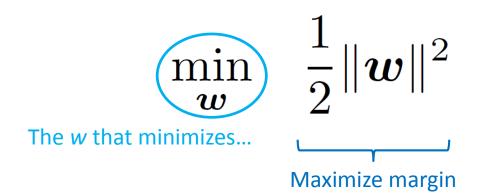
112

Gaussian RBF:

$$K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|}{2\sigma^2})$$

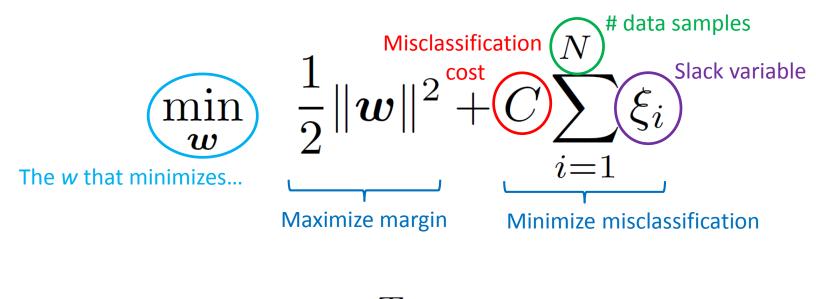
Histogram intersection:

$$K(x_i, x_j) = \sum_k \min(x_i(k), x_j(k))$$



subject to
$$y_i \boldsymbol{w}^T \boldsymbol{x}_i \geq 1$$
 ,
 $\forall i = 1, \dots, N$

Soft-margin SVMs



subject to $y_i \boldsymbol{w}^T \boldsymbol{x}_i \ge 1 - \xi_i,$ $\xi_i \ge 0, \quad \forall i = 1, \dots, N$

What about multi-class SVMs?

- Unfortunately, there is no "definitive" multiclass SVM formulation
- In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs
- One vs. others
 - Training: learn an SVM for each class vs. the others
 - Testing: apply each SVM to the test example, and assign it to the class of the SVM that returns the highest decision value
- One vs. one
 - Training: learn an SVM for each pair of classes
 - Testing: each learned SVM "votes" for a class to assign to the test example

Multi-class problems

One-vs-all (a.k.a. one-vs-others)

- Train K classifiers
- In each, pos = data from class *i*, neg = data from classes other than *i*
- The class with the most confident prediction wins
- Example:
 - You have 4 classes, train 4 classifiers
 - 1 vs others: score 3.5
 - 2 vs others: score 6.2
 - 3 vs others: score 1.4
 - 4 vs other: score 5.5
 - Final prediction: class 2

Multi-class problems

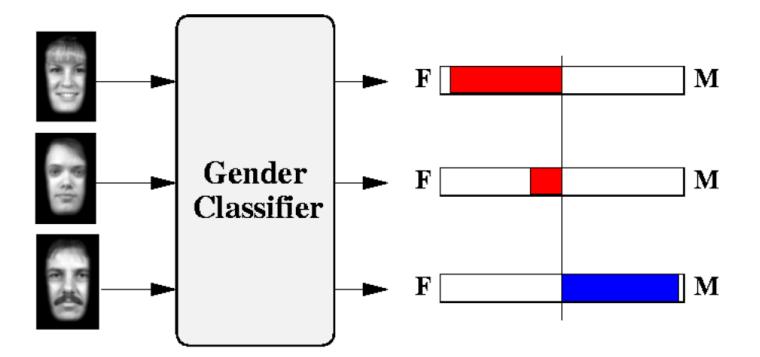
One-vs-one (a.k.a. all-vs-all)

- Train K(K-1)/2 binary classifiers (all pairs of classes)
- They all vote for the label
- Example:
 - You have 4 classes, then train 6 classifiers
 - 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4
 - Votes: 1, 1, 4, 2, 4, 4
 - Final prediction is class 4

Using SVMs

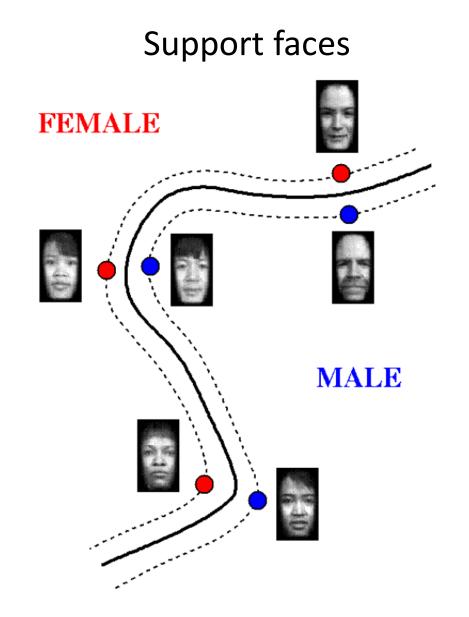
- 1. Select a kernel function.
- 2. Compute pairwise kernel values between labeled examples.
- 3. Use this "kernel matrix" to solve for SVM support vectors & alpha weights.
- 4. To classify a new example: compute kernel values between new input and support vectors, apply alpha weights, check sign of output.

Example: Learning gender w/ SVMs



Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002 Moghaddam and Yang, Face & Gesture 2000

Example: Learning gender w/ SVMs



Kristen Grauman

Example: Learning gender w/ SVMs

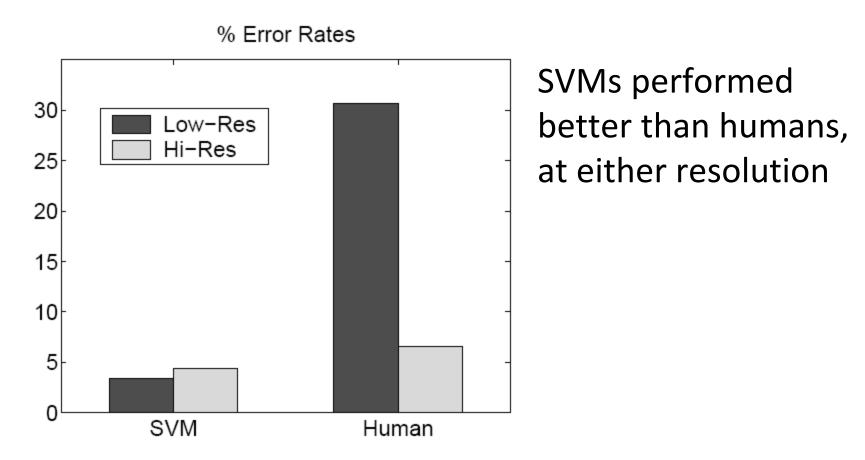


Figure 6. SVM vs. Human performance

Some SVM packages

- LIBSVM <u>http://www.csie.ntu.edu.tw/~cjlin/libsvm/</u>
- LIBLINEAR <u>https://www.csie.ntu.edu.tw/~cjlin/liblinear/</u>
- SVM Light http://svmlight.joachims.org/

Linear classifiers vs nearest neighbors

• Linear pros:

- + Low-dimensional *parametric* representation
- + Very fast at test time
- Linear cons:
 - Can be tricky to select best kernel function for a problem
 - Learning can take a very long time for large-scale problem
- NN pros:
 - + Works for any number of classes
 - + Decision boundaries not necessarily linear
 - + Nonparametric method
 - + Simple to implement
- NN cons:
 - Slow at test time (large search problem to find neighbors)
 - Storage of data
 - Especially need good distance function (but true for all classifiers)

Training vs Testing

- What do we want?
 - High accuracy on training data?
 - No, high accuracy on unseen/new/test data!
 - Why is this tricky?
- Training data
 - Features (x) and labels (y) used to learn mapping f
- Test data
 - Features (x) used to make a prediction
 - Labels (y) only used to see how well we've learned f!!!
- Validation data
 - Held-out set of the *training data*
 - Can use both features (x) and labels (y) to tune parameters of the model we're learning

Generalization



Training set (labels known)

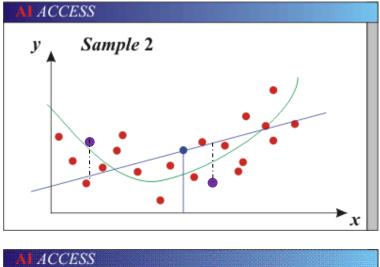
Test set (labels unknown)

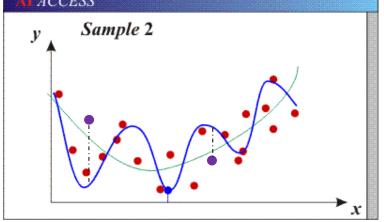
• How well does a learned model generalize from the data it was trained on to a new test set?

Generalization

- Components of generalization error
 - Noise in our observations: unavoidable
 - Bias: due to inaccurate assumptions/simplifications made by the model
 - Variance: models estimated from different training sets differ greatly rom each other
- **Underfitting:** model is too "simple" to represent all the relevant class characteristics
 - High bias and low variance
 - High training error and high test error
- **Overfitting:** model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low bias and high variance
 - Low training error and high test error

Generalization





Models with too few parameters are inaccurate because of a large bias (not enough flexibility).

Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample).

Purple dots = possible test points

Red dots = training data (all that we see before we ship off our model!)

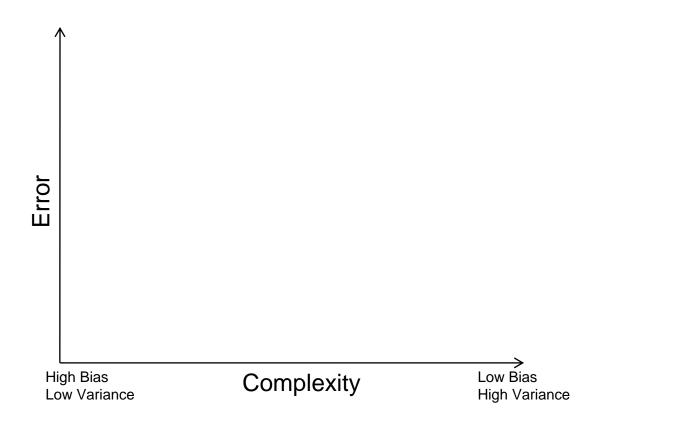
Green curve = true underlying model

Blue curve = our predicted model/fit

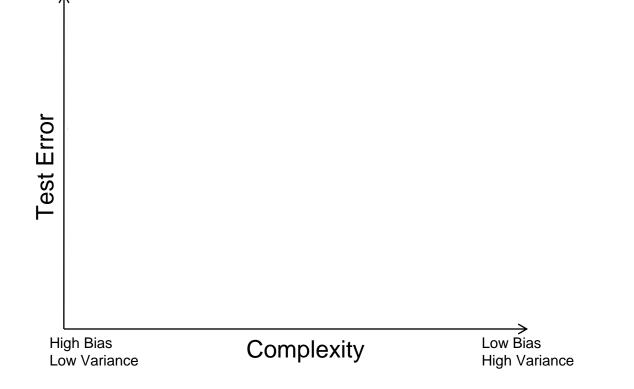
Training vs test error

Underfitting

Overfitting

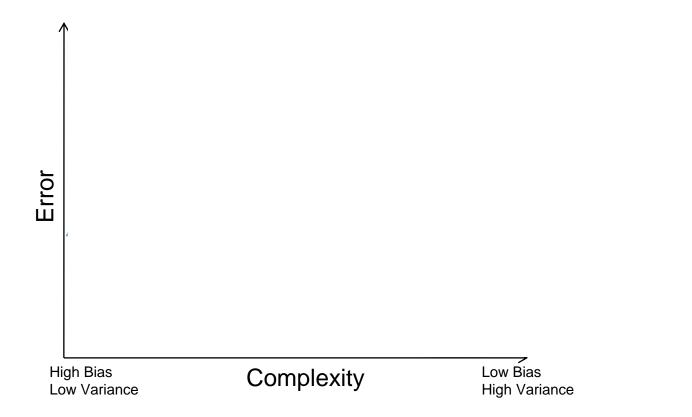


The effect of training set size



Choosing the trade-off between bias and variance

• Need validation set (separate from the test set)



Generalization tips

- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data
- As an additional technique for reducing variance, try *regularizing* the parameters (penalize high magnitude weights)

Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories

CVPR 2006

Winner of 2016 Longuet-Higgins Prize

Svetlana Lazebnik (slazebni@uiuc.edu) Beckman Institute, University of Illinois at Urbana-Champaign

Cordelia Schmid (cordelia.schmid@inrialpes.fr) INRIA Rhône-Alpes, France

> Jean Ponce (ponce@di.ens.fr) Ecole Normale Supérieure, France

Scene category dataset

Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce grp/data

coast

mountain

forest

suburb

Slide credit: L. Lazebnik

Bag-of-words representation

- 1. Extract local features
- 2. Learn "visual vocabulary" using clustering
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

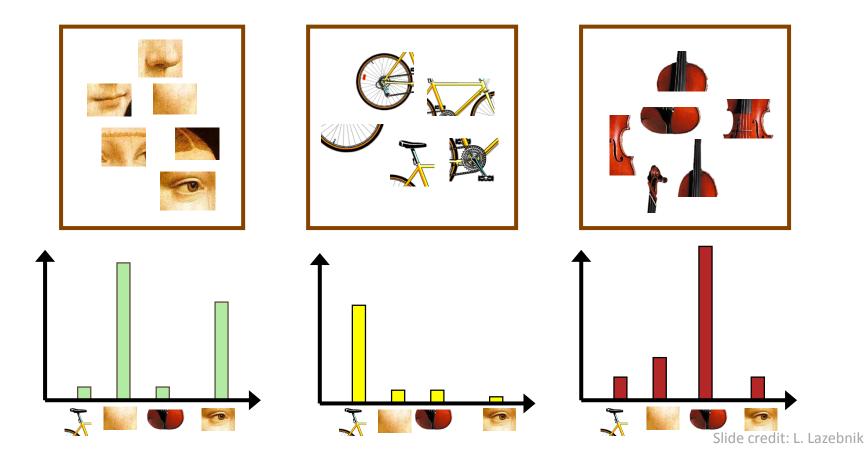


Image categorization with bag of words

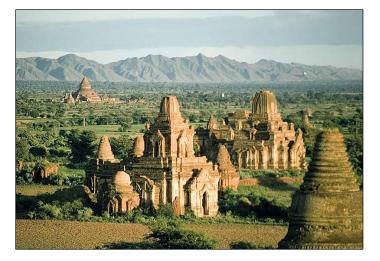
Training

- 1. Compute bag-of-words representation for training images
- 2. Train classifier on labeled examples using histogram values as features
- 3. Labels are the scene types (e.g. mountain vs field)

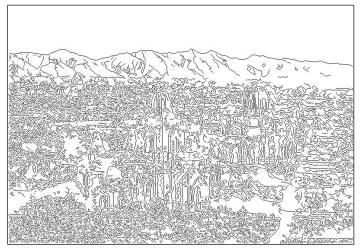
Testing

- 1. Extract keypoints/descriptors for test images
- 2. Quantize into visual words using the clusters computed at training time
- 3. Compute visual word histogram for test images
- 4. Compute labels on test images using classifier obtained at training time
- 5. Measure accuracy of test predictions by comparing them to groundtruth test labels (obtained from humans)

Feature extraction (on which BOW is based)

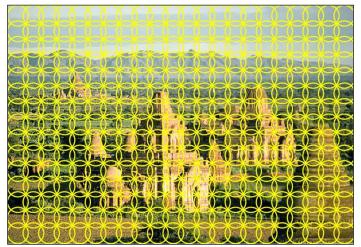


Weak features



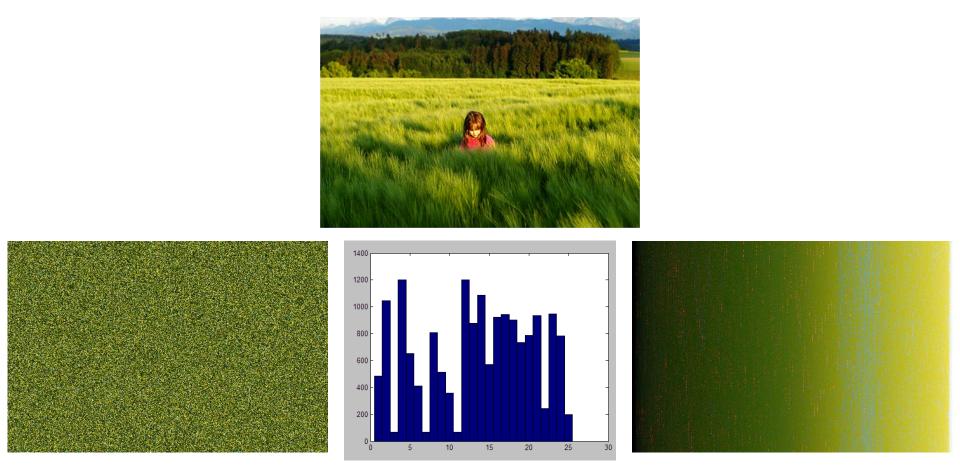
Edge points at 2 scales and 8 orientations (vocabulary size 16)

Strong features



SIFT descriptors of 16x16 patches sampled on a regular grid, quantized to form visual vocabulary (size 200, 400)

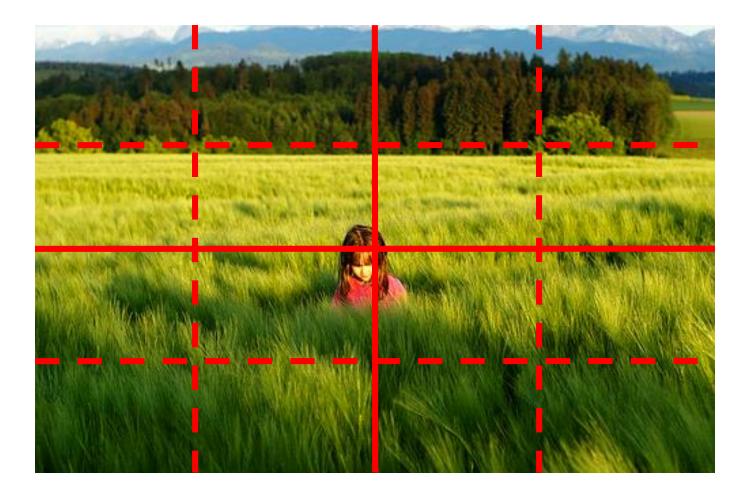
What about spatial layout?



All of these images have the same color histogram

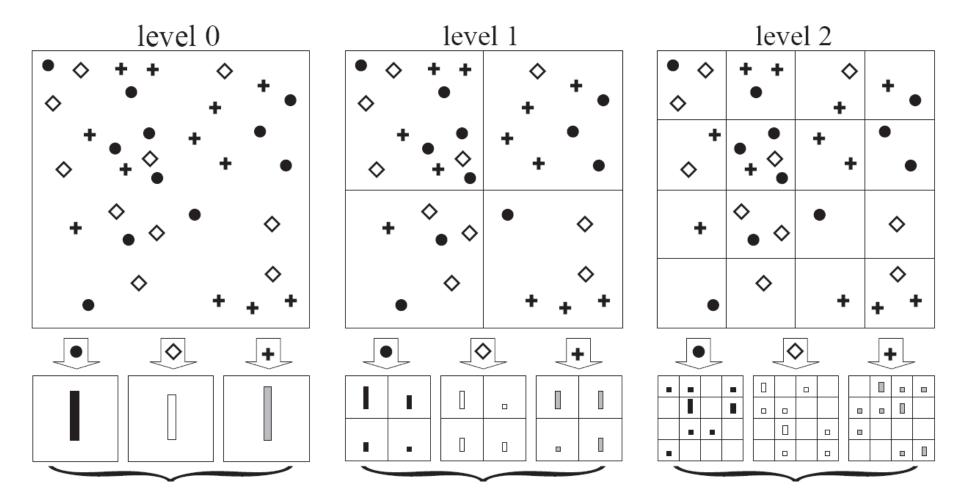
Slide credit: D. Hoiem

Spatial pyramid



Compute histogram in each spatial bin

Spatial pyramid

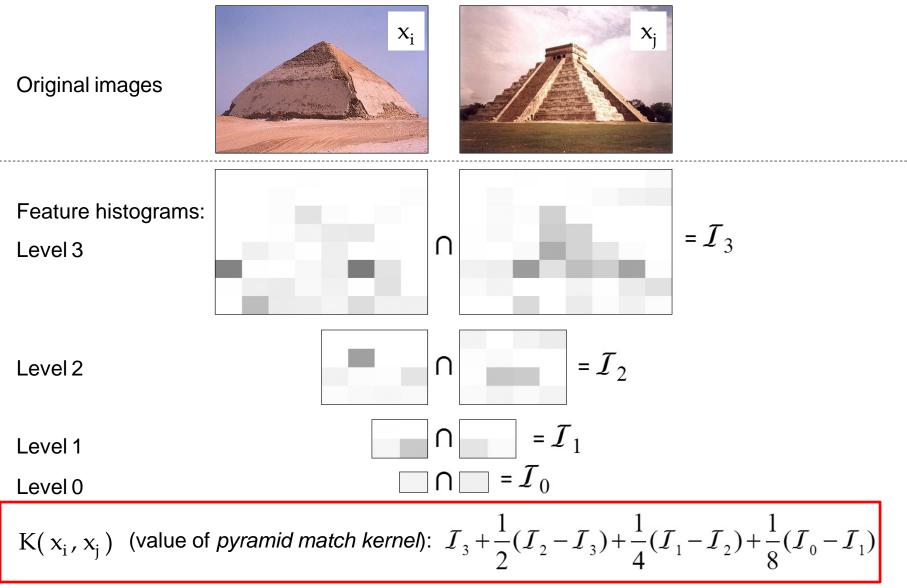


Lazebnik et al. CVPR 2006

Pyramid matching

Indyk & Thaper (2003), Grauman & Darrell (2005)

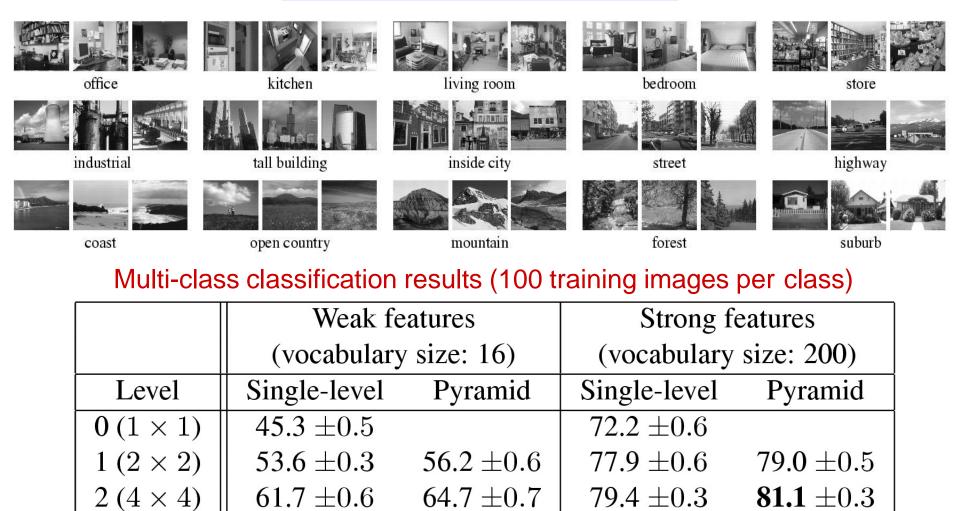
Matching using pyramid and histogram intersection for some particular visual word:



Scene category dataset

Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce_grp/data



Fei-Fei & Perona: 65.2%

 77.2 ± 0.4

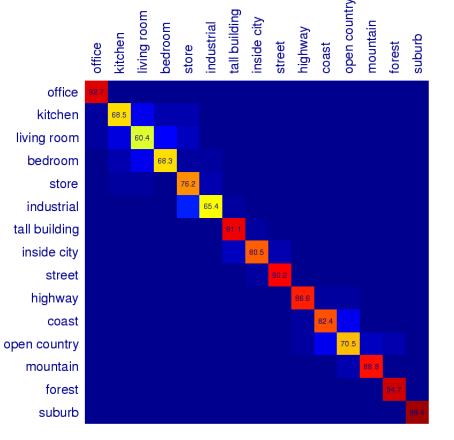
66.8 ±0.6

 $3(8 \times 8)$

 63.3 ± 0.8

 80.7 ± 0.3

Scene category confusions



Difficult indoor images

kitchen

living room

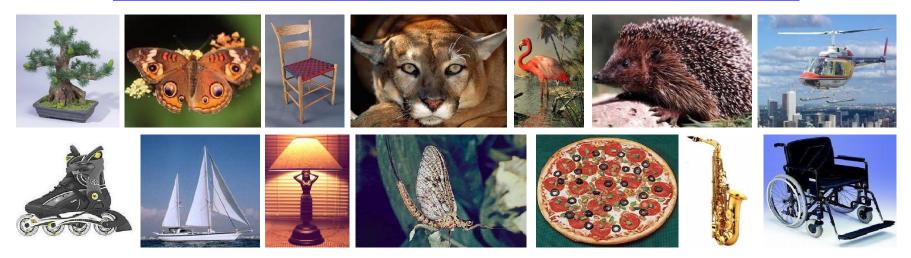
bedroom

Slide credit: L. Lazebnik

Caltech101 dataset

Fei-Fei et al. (2004)

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html



Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	$57.0\pm\!\!0.8$
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ±0.8
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	$64.6\pm\!0.7$

Slide credit: L. Lazebnik