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Why multiple views?

• Structure and depth are inherently ambiguous from 

single views.

• Multiple views help us to perceive 3d shape and 

depth.

Kristen Grauman, images from Svetlana Lazebnik



Alignment problem

• We previously discussed how to match features 

across images, of the same or different objects

• Now let’s focus on the case of “two images of the 

same object”(e.g. xi and xi’) 

• What transformation relates xi and xi’?

• In alignment, we will fit the parameters of some 

transformation according to a set of matching 

feature pairs (“correspondences”).
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Adapted from Kristen Grauman and Derek Hoiem



Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/Kristen Grauman

Motivation: Image mosaics



?

• Compare content in local patches, find best matches.

• Scan xi’ with template formed from a point in xi, and compute 

e.g. Euclidean distance between pixel intensities in the patch

• Or compare SIFT features

Adapted from Kristen Grauman

Min dist = match

First, what are the correspondences?



Second, what are the transformations?

Examples of transformations:

translate rotate change aspect ratio

squish change perspective

Adapted from Alyosha Efros



Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?

• It is the same for any point p

• It can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Scaling

Scaling a coordinate means multiplying each of its components by 
a scalar

Uniform scaling means this scalar is the same for all components:

 2

Adapted from Alyosha Efros

(2, 1)

(4, 2)



Scaling

Non-uniform scaling: different scalars per component

X  2,

Y  0.5

Adapted from Alyosha Efros

(2, 1)
(4, 0.5)



Scaling

Scaling operation:

Or, in matrix form:
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Adapted from Alyosha Efros
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2D Linear transformations

Only linear 2D transformations can be represented with 

a 2x2 matrix.

Linear transformations are combinations of …

• Scale,

• Rotation,

• Shear, and

• Mirror
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2D Rotate around (0,0)? (see hidden slide)
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2D Shear?
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2D Scaling?
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Modified from Alyosha Efros Fig. from https://www.siggraph.org/education/materials/HyperGraph/modeling/mod_tran/2dshear.htm

What transforms can we write w/ 2x2 matrix?



2D Mirror about Y axis?
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2D Mirror over (0,0)?
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Alyosha Efros

What transforms can we write w/ 2x2 matrix?



homogeneous image 

coordinates

Converting from homogeneous coordinates

To convert to homogeneous coordinates:

Kristen Grauman

Homogeneous coordinates
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Adapted from Alyosha Efros

(2, 1)

(4, 2)



2D affine transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Maps lines to lines, parallel lines remain parallel
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Fitting an affine transformation

• Assuming we know the correspondences, how do we 

get the transformation?
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Fitting an affine transformation

• How many matches (correspondence pairs) do we 

need to solve for the transformation parameters?

• Once we have solved for the parameters, how do we 

compute                       given                   ? 
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Adapted from Kristen Grauman
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Detour: Keypoint matching for search

Adapted from K. Grauman, B. Leibe

Af
Bf

A1

A2 A3

Tffd BA ),(

1. Find a set of   

distinctive key-

points 

2. Define a region 

around each 

keypoint (window)

3. Compute a local 

descriptor from the 

region

4. Match descriptors   

Query
In database



Detour: solving for translation with outliers

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Detour: solving for translation with outliers

A1

A2 A3
B1

B2 B3

(tx, ty)

Problem: outliers

A4

A5

B5

B4

Adapted from Derek Hoiem

Hough transform solution
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2. Each matched pair casts a vote for 

consistent values

3. Find the parameters with the most votes



Detour: solving for translation with outliers

A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values

2. Each matched pair casts a vote for 

consistent values

3. Find the parameters with the most votes
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Problem: multiple objects

Adapted from Derek Hoiem



2D projective transformations

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel




























=















w

y
x

ihg

fed
cba

w

y
x

'

'
'

Kristen Grauman



Projective transformations

A projective transformation is a mapping between any two 

projective planes with the same center of projection

Also called Homography

PP2

PP1
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Obtain a wider angle view by combining multiple images.
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Kristen Grauman

Image mosaics: Goals



Image mosaics: Camera setup

Two images with camera rotation but no translation

Camera CenterAdapted from Derek Hoiem

(0, 0) (0, 0)

(50, 70) (50, 20)



mosaic plane 

Image mosaics: Many 2D views, one 3D object

The mosaic has a natural interpretation in 3D
• The images are reprojected onto a common plane

• The mosaic is formed on this plane

• Mosaic is a synthetic wide-angle camera
Steve Seitz



How to stitch together panorama (mosaic)?

Basic Procedure

• Take a sequence of images from the same position

– Rotate the camera about its optical center

• Compute the homography (transformation) 

between first and second image

• Transform the second image to overlap with 

the first

• Blend the two together to create a mosaic

• (If there are more images, repeat)

Adapted from Steve Seitz



( )11, yx ( )11, yx 

To compute the homography given pairs of corresponding 

points in the images, we need to set up an equation where 

the parameters of H are the unknowns…

( )22 , yx ( )22 , yx

…

…

( )nn yx , ( )nn yx  ,

Kristen Grauman

Computing the homography



Computing the homography

• Assume we have four matched points:                     

How do we compute homography H?
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Adapted from Derek Hoiem, Kristen Grauman
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Derivation: http://www.cse.psu.edu/~rtc12/CSE486/lecture16.pdf

Can set scale factor h9 = 1. 

So, there are 8 unknowns.

Need at least 8 eqs, but the more the better…
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How to stitch together panorama (mosaic)?

Basic Procedure

• Take a sequence of images from the same position

– Rotate the camera about its optical center

• Compute the homography (transformation) 

between first and second image

• Transform the second image to overlap with 

the first

• Blend the two together to create a mosaic

• (If there are more images, repeat)

Adapted from Steve Seitz
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To apply a given homography H

• Compute p’ = Hp (regular matrix multiply)

• Convert p’ from homogeneous to image 

coordinates

Modified from Kristen Grauman

Transforming the second image
Image 2 canvasImage 1



f(x,y) g(x’,y’)

Transforming the second image

Forward warping: 

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = H(x,y) in the right image

x x’

H(x,y)

y y’

Modified from Alyosha Efros

Image 2 canvasImage 1



f(x,y) g(x’,y’)

Transforming the second image

x x’

H(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)

Alyosha Efros

Forward warping: 

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = H(x,y) in the right image



f(x,y) g(x’,y’)
x

y

Transforming the second image

Inverse warping: 

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = H-1(x’,y’) in the left image

x x’

y’
H-1(x,y)

Modified from Alyosha Efros

Image 2 canvasImage 1



f(x,y) g(x’,y’)
x

y

Transforming the second image

x x’

H-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  interpolate color value from neighbors

Alyosha Efros

Inverse warping: 

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = H-1(x’,y’) in the left image



Homography example: Image rectification

To unwarp (rectify) an image solve for homography H

given p and p’:  p’=Hp

p
p’

Derek Hoiem



• Write 2d transformations as matrix-vector multiplication 

(including translation when we use homogeneous 

coordinates)

• Fitting transformations: solve for unknown parameters 

given corresponding points from two views – linear, 

affine, projective (homography)

• Mosaics: uses homography and image warping to 

merge views taken from same center of projection

• Perform image warping (forward, inverse)

Adapted from Kristen Grauman

Summary of affine/projective transforms 



Next: Stereo vision

• Homography: Same camera center, but camera 
rotates

• Stereo vision: Camera center is not the same (we 
have multiple cameras)

• Epipolar geometry
– Relates cameras from two positions/cameras

• Stereo depth estimation
– Recover depth from disparities between two images

Adapted from Derek Hoiem



Stereo photography and stereo viewers

Image from fisher-price.com

Take two pictures of the same subject from two slightly different 

viewpoints and display so that each eye sees only one of the images.

Kristen Grauman

Invented by Sir Charles Wheatstone, 1838



Two cameras, simultaneous 

views

Single moving camera and 

static scene

Kristen Grauman

Depth from stereo for computers
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Derek Hoiem

Depth from stereo
• Goal: recover depth by finding image coordinate x’ 

that corresponds to x



• Goal: recover depth by finding image coordinate x’ 
that corresponds to x

• Sub-Problems
1. Calibration: How do we recover the relation of the 

cameras (if not already known)?

2. Correspondence: How do we search for the matching 
point x’?

3. Estimate depth from matches
X

x

x'

Derek Hoiem

Depth from stereo



• Assume parallel optical axes, known camera parameters 

(i.e., calibrated cameras).  What is expression for Z?

Similar triangles (pl, P, pr) and 

(Ol, P, Or):

Geometry for a simple stereo system
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disparity

Adapted from Kristen Grauman

depth

Depth is inversely proportional to disparity.



Depth from disparity

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

Kristen Grauman

• We have two images from different cameras.

• If we could find the corresponding points in two images, 

we could estimate relative depth…

• How do we match a point in the first image to a point in the 

second efficiently?  



• Given p in left image, where can corresponding 

point p’ be?

Stereo correspondence constraints

Kristen Grauman



• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
P

p p’

• Epipolar Plane – plane containing baseline

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers

Adapted from Derek Hoiem



Epipolar constraint

Geometry of two views constrains where the corresponding pixel for 

some image point in the first view must occur in the second view.

• It must be on the line where (1) the plane connecting the world 

point and optical centers, and (2) the image plane, intersect. 

• Potential matches for p have to lie on the corresponding line l’.

• Potential matches for p’ have to lie on the corresponding line l.

Adapted from Kristen Grauman, Derek Hoiem

world point



Epipolar constraint

The epipolar constraint is useful because 

it reduces the correspondence problem 

to a 1D search along an epipolar line.

Kristen Grauman, image from Andrew Zisserman



Stereo geometry, with calibrated cameras

• If the stereo rig is calibrated, we know how to rotate and translate

camera reference frame 1 to get to camera reference frame 2
• Rotation: 3x3 matrix R; translation: 3x1 vector T.

TRXX +='

Adapted from Kristen Grauman

(See hidden slides for how we get to the next slide.)



Essential matrix

( ) 0= RXTX

( ) 0][T = RXX x

E is called the essential matrix, and it relates corresponding image 

points between both cameras, given the rotation and translation.

Before we said: If we observe a point in one image, its position in other 

image is constrained to lie on line defined by above. It turns out that:
• ETx is the epipolar line l’ through x’ in the second image, corresponding to x.

• Ex’ is the epipolar line l through x in the first image, corresponding to x’. 

Let RE ][T x=

0== EXXEXX
T

Adapted from Kristen Grauman, Derek Hoiem
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Essential matrix example: parallel cameras

For the parallel cameras, 

image of any point must lie 

on same horizontal line in 

each image plane.
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Kristen Grauman



image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y),y)

Adapted from Kristen Grauman



Basic stereo matching algorithm

• For each pixel in the first image
– Find corresponding epipolar scanline in the right image
– Search along epipolar line and pick the best match x’: slide a window along the 

right scanline and compute Euclidean distance between contents of that 
window with the reference window in the left image; take the window 
corresponding to the minimum as the match

– Compute disparity x-x’ and set depth(x) = f*T/(x-x’)

Adapted from Derek Hoiem



Results with window search
Data

Window-based matching Ground truth

Left image Right image

Predicted depth Ground truth

Derek Hoiem



Summary of stereo vision

• Epipolar geometry
– Epipoles are intersection of baseline with image planes
– Matching point in second image is on a line passing 

through its epipole
– Epipolar constraint limits where points from one view will 

be imaged in the other, which makes search for 
correspondences quicker

– Essential matrix E maps from a point in one image to a line 
(its epipolar line) in the other

• Stereo depth estimation
– Find corresponding points along epipolar scanline
– Estimate disparity (depth is inverse to disparity)

Adapted from Kristen Grauman and Derek Hoiem



Projective structure from motion

• Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D points 
Xj from the mn corresponding 2D points xij

x1j

x2j

x3j

Xj

P1

P2

P3

Svetlana Lazebnik



Photo tourism

Noah Snavely, Steven M. Seitz, Richard Szeliski, "Photo tourism: Exploring 

photo collections in 3D," SIGGRAPH 2006

http://phototour.cs.washington.edu/

http://phototour.cs.washington.edu/Photo_Tourism.pdf
http://phototour.cs.washington.edu/


Sameer Agarwala, Noah Snavely, Ian Simon, Steven M. Seitz, Richard 

Szeliski, "Building Rome in a Day," ICCV 2009

3D from multiple images

http://www.iansimon.org/papers/rome_paper.pdf

