
CS 1674: Intro to Computer Vision

Grouping: Edges, Lines,
Circles, Segments

Prof. Adriana Kovashka
University of Pittsburgh

October 2, 2018

Plan for this lecture

• Edges

– Extract gradients and threshold

• Lines and circles

– Find which edge points are collinear or belong to
another shape e.g. circle

– Automatically detect and ignore outliers

• Segments

– Find which pixels form a consistent region

– Clustering (e.g. K-means)

Edge detection

• Goal: map image from 2d array of pixels to a set of curves
or line segments or contours.

• Why?

• Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

Source: K. Grauman

Designing an edge detector

• Criteria for a good edge detector
– Good detection: find all real edges, ignoring noise or

other artifacts
– Good localization

• detect edges as close as possible to the true edges
• return one point only for each true edge point

(true edges = the edges humans drew on an image)

• Cues of edge detection
– Bottom-up: Differences in color, intensity, or texture

across the boundary
– Top-down: Continuity and closure, high-level knowledge

Source: L. Fei-Fei

What causes an edge?

Depth discontinuity:
object boundary

Cast shadows

Reflectance change:
appearance
information, texture

Adapted from K. Grauman

Characterizing edges

• An edge is a place of rapid change in the
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative
Source: L. Lazebnik

Intensity profile Intensity

Gradient

Source: D. Hoiem

With a little Gaussian noise

Gradient

Source: D. Hoiem

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very
different from their neighbors

– Generally, the larger the noise the stronger the
response

• What can we do about it?

Source: D. Forsyth

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d

f

g

f * g

)(gf
dx

d

Source: S. Seitz

Derivative theorem of convolution
• Differentiation is convolution, and convolution is

associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
=)(

g
dx

d
f

f

g
dx

d

Source: S. Seitz

Image
with edge

Derivative
of Gaussian

Edge = max
of derivative

Canny edge detector

• Filter image with derivative of Gaussian

• Find magnitude and orientation of gradient

• Threshold: Determine which local maxima from filter
output are actually edges

• Non-maximum suppression:

– Thin wide “ridges” down to single pixel width

• Linking and thresholding (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and the
low threshold to continue them

Adapted from K. Grauman, D. Lowe, L. Fei-Fei

BREADTH

input image (“Lena”)

Example

Derivative of Gaussian filter

x-direction y-direction

Source: L. Lazebnik

Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Source: D. Hoiem

Thresholding

• Choose a threshold value t

• Set any pixels less than t to 0 (off)

• Set any pixels greater than or equal to t to 1 (on)

Source: K. Grauman

The Canny edge detector

norm of the gradient (magnitude)

Source: K. Grauman

The Canny edge detector

thresholding

Source: K. Grauman

Another example: Gradient magnitudes

Source: K. Grauman

Thresholding gradient with a lower threshold

Source: K. Grauman

Thresholding gradient with a higher threshold

Source: K. Grauman

Effect of of Gaussian kernel

Canny with Canny with original

The choice of depends on desired behavior
• large detects large scale edges

• small detects fine edges

Source: S. Seitz

State-of-the-art edge detection: HED

Xie and Tu, “Holistically-Nested Edge Detection”, ICCV 2015

BREADTH

https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Xie_Holistically-Nested_Edge_Detection_ICCV_2015_paper.pdf

Plan for this lecture

• Edges

– Extract gradients and threshold

• Lines and circles

– Find which edge points are collinear or belong to
another shape e.g. circle

– Automatically detect and ignore outliers

• Segments

– Find which pixels form a consistent region

– Clustering (e.g. K-means)

Line detection (fitting)

• Why fit lines?

Many objects characterized by presence of straight lines

• Why aren’t we done just by running edge detection?

Kristen Grauman

• Noise in measured edge points,

orientations:

– e.g. edges not collinear where they

should be

– how to detect true underlying

parameters?

• Extra edge points (clutter):

– which points go with which line, if

any?

• Only some parts of each line

detected, and some parts are

missing:

– how to find a line that bridges

missing evidence?

Difficulty of line fitting

Adapted from Kristen Grauman

•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize

 2

2

11

1

2

1

1

1 yAp −=

−

=

−

= =

nn

n

i ii

y

y

b

m

x

x

y
b

m
xE

 =
−+=

n

i ii ybxmE
1

2)(

(xi, yi)

y=mx+b

Matlab: p = A \ y; or p = pinv(A)*y;
Adapted from Svetlana Lazebnik

Least squares line fitting

where line you found tells

you point is along y axis

where point really is

along y axis
You want to find a single line that

“explains” all of the points in your data,

but data may be noisy!

Kristen Grauman

Outliers affect least squares fit

Kristen Grauman

Outliers affect least squares fit

Dealing with outliers: Voting

• Voting is a general technique where we let the features

vote for all models that are compatible with it.

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

• Noise & clutter features?

– They will cast votes too, but typically their votes should be

inconsistent with the majority of “good” features.

• Common techniques

– Hough transform

– RANSAC

Adapted from Kristen Grauman

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

x

y

m

b

m0

b0

image space Hough (parameter) space

Steve Seitz

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces

• A line in the image corresponds to a point in Hough space

• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer: the solutions of b = -x0m + y0

– This is a line in Hough space

– Given a pair of points (x,y), find all (m,b) such that y = mx + b

x0

y0

Adapted from Steve Seitz

Finding lines in an image: Hough space

What are the line parameters for the line that contains both

(x0, y0) and (x1, y1)?

• It is the intersection of the lines b = –x0m + y0 and

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space

x0

b = –x1m + y1

(x0, y0)

(x1, y1)

Steve Seitz

y0

Finding lines in an image: Hough space

How can we use this to find the most likely parameters (m,b)

for the most prominent line in the image space?

• Let each edge point in image space vote for a set of

possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with

the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space

Steve Seitz

0 5 10 15 20

m = 17.5

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2

2 1 0 1 3 3

b
Adapted from Silvio Savarese

Finding lines in an image: Hough space

• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

 = + sincos yx

Each point (x,y) will add a sinusoid in the (,) parameter space
Svetlana Lazebnik

• Problems with the (m,b) space:
• Unbounded parameter domains

• Vertical lines require infinite m

• Alternative: polar representation

Parameter space representation

Each point (x,y) will add a sinusoid in the (,) parameter space
Svetlana Lazebnik

x

y

Hough space

Algorithm outline: Hough transform

• Initialize accumulator H
to all zeros

• For each edge point (x,y)
in the image

For θ = 0 to 180
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end
end

• Find the value(s) of (θ*, ρ*) where H(θ, ρ) is
a local maximum

• The detected line in the image is given by
ρ* = x cos θ* + y sin θ*

ρ

θ

Svetlana Lazebnik

Incorporating image gradients

• Recall: when we detect an

edge point, we also know its

gradient direction

• But this means that the line

is uniquely determined!

• Modified Hough transform:

For each edge point (x,y) in the image

θ = gradient orientation at (x,y)

ρ = x cos θ + y sin θ

H(θ, ρ) = H(θ, ρ) + 1

end

Svetlana Lazebnik

Derek Hoiem

Hough transform example

Impact of noise on Hough

Image space

edge coordinates

Votes

x

dy

Kristen Grauman

Impact of noise on Hough

Image space

edge coordinates

Votes

x

y d

What difficulty does this present for an implementation?
Kristen Grauman

Voting: practical tips

• Minimize irrelevant tokens first (reduce noise)

• Choose a good grid / discretization

– Too coarse: large votes obtained when too many different lines correspond to a single bucket

– Too fine: miss lines because points that are not exactly collinear cast votes for different buckets

• Vote for neighbors (smoothing in accumulator array)

• Use direction of edge to reduce parameters by 1

• To read back which points voted for “winning” peaks,

keep tags on the votes

Too coarseToo fine ?

Kristen Grauman

Hough transform for circles

• A circle with radius r and center (a, b) can be

described as:

x = a + r cos(θ)

y = b + r sin(θ)

(a, b)

(x, y)

ϴ

ϴ

ϴ

• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r
222)()(rbyax ii =−+−

Image space Hough space a

b

Kristen Grauman

Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a, b) and radius r
222)()(rbyax ii =−+−

Image space Hough space

Intersection:

most votes

for center

occur here.

Kristen Grauman

Hough transform for circles

Hough transform for circles

For every edge pixel (x,y) :

For each possible radius value r:

For each possible gradient direction θ:

// or use estimated gradient at (x,y)

a = x – r cos(θ) // column

b = y – r sin(θ) // row

H[a,b,r] += 1

end

end

end
Modified from Kristen Grauman

θ

x

x = a + r cos(θ)

y = b + r sin(θ)

Your homework!

Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).

Kristen Grauman, images from Vivek Kwatra

Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Kristen Grauman, images from Vivek Kwatra

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).

Hough transform: pros and cons

Pros

• All points are processed independently, so can cope with

occlusion, gaps

• Some robustness to noise: noise points unlikely to

contribute consistently to any single bin

• Can detect multiple instances of a model in a single pass

Cons

• Complexity of search time for maxima increases

exponentially with the number of model parameters

– If 3 parameters and 10 choices for each, search is O(103)

• Quantization: can be tricky to pick a good grid size

Adapted from Kristen Grauman

(Optional) Check hidden slides for:

• Generalized Hough transform algorithm

• RANSAC (another voting algorithm)

BREADTH

Plan for today

• Edges

– Extract gradients and threshold

• Lines and circles

– Find which edge points are collinear or belong to
another shape e.g. circle

– Automatically detect and ignore outliers

• Segments

– Find which pixels form a consistent region

– Clustering (e.g. K-means)

Edges vs Segments

Figure adapted from J. Hays

• Edges: More low-level; don’t need to be closed

• Segments: Ideally one segment for each semantic
group/object; should include closed contours

The goals of segmentation

• Separate image into coherent “objects”

image human segmentation

Source: L. Lazebnik

The goals of segmentation

• Separate image into coherent “objects”

• Group together similar-looking pixels for
efficiency of further processing

X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

“superpixels”

Source: L. Lazebnik

http://ttic.uchicago.edu/~xren/research/iccv2003/

The Muller-Lyer illusion

Adapted from K. Grauman, D. Hoiem

We perceive the interpretation

Similarity

Slide: K. Grauman

Proximity

Slide: K. Grauman

Common fate

Slide: K. Grauman

intensity

p
ix

e
l

c
o

u
n

t

input image

black pixels
gray

pixels

white

pixels

• These intensities define the three groups.

• We could label every pixel in the image according to

which of these primary intensities it is.

• i.e., segment the image based on the intensity feature.

• What if the image isn’t quite so simple?

1 2
3

Image segmentation: toy example

Source: K. Grauman

input image
intensity

p
ix

e
l

c
o

u
n

t

• Now how to determine the three main intensities that

define our groups?

• We need to cluster.

Source: K. Grauman

0 190 255

• Goal: choose three “centers” as the representative

intensities, and label every pixel according to which of

these centers it is nearest to.

• Best cluster centers are those that minimize sum of

squared differences (SSD) between all points and their

nearest cluster center ci:

1 2
3

intensity

Source: K. Grauman

Clustering

• With this objective, it is a “chicken and egg” problem:

– If we knew the cluster centers, we could allocate

points to groups by assigning each to its closest center.

– If we knew the group memberships, we could get the

centers by computing the mean per group.

Source: K. Grauman

K-means clustering

• Basic idea: randomly initialize the k cluster centers, and

iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster

• For each point p, find the closest ci. Put p into cluster i

3. Given points in each cluster, solve for ci

• Set ci to be the mean of points in cluster i

4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution

• Can be a “local minimum” of objective:

Slide: Steve Seitz, image: Wikipedia

Source: A. Moore

Source: A. Moore

Source: A. Moore

Source: A. Moore

Source: A. Moore

K-means converges to a local minimum

Adapted from James Hays

How can I try to fix this problem?

K-means: pros and cons

Pros
• Simple, fast to compute

• Converges to local minimum of
within-cluster squared error

Cons/issues
• Setting k?

– One way: silhouette coefficient

• Sensitive to initial centers
– Use heuristics or output of another method

• Sensitive to outliers

• Detects spherical clusters

Adapted from K. Grauman

An aside: Smoothing out cluster

assignments
• Assigning a cluster label per pixel may yield outliers:

1 2

3

?

original labeled by cluster center’s

intensity

• How to ensure they are

spatially smooth?

Source: K. Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we

can group pixels in different ways.

Grouping pixels based

on intensity similarity

Feature space: intensity value (1-d)

Source: K. Grauman

K=2

K=3

Adapted from K. Grauman

Segmentation as clustering

Depending on what we choose as the feature space, we

can group pixels in different ways.

Grouping pixels based

on intensity similarity

Clusters based on intensity

similarity don’t have to be spatially

coherent.

Source: K. Grauman

Segmentation as clustering

X

Y

Intensity

Both regions are black, but if we

also include position (x,y), then

we could group the two into

distinct segments; way to encode

both similarity & proximity.Source: K. Grauman

Grouping pixels based

on intensity+position similarity

Depending on what we choose as the feature space, we

can group pixels in different ways.

Segmentation as clustering

R=255

G=200

B=250

R=245

G=220

B=248

R=15

G=189

B=2

R=3

G=12

B=2
R

G

B

Feature space: color value (3-d)
Source: K. Grauman

Depending on what we choose as the feature space, we

can group pixels in different ways.

Grouping pixels based

on color similarity

• Color, brightness, position alone are not

enough to distinguish all regions…

Source: L. Lazebnik

Segmentation as clustering

Segmentation as clustering

Depending on what we choose as the feature space, we

can group pixels in different ways.

F24

Grouping pixels based

on texture similarity

F2

Feature space: filter bank responses (e.g., 24-d)

F1

…

Filter bank

of 24 filters

Source: K. Grauman

Segmentation w/ texture features
• Find “textons” by clustering filter bank response vectors

• Describe texture in a window as bag of words over textures

Malik, Belongie, Leung and Shi, IJCV 2001

Texton mapImage

Texton index Texton index

C
o
u

n
t

C
o
u

n
t

Adapted from L. Lazebnik

C
o
u

n
t

Texton index

Fei-Fei Li & Justin Johnson &

SerenaYeung
Lecture 11 -

RoI Align
Conv

Classification Scores: C

Box coordinates (per class): 4 * C

CNN Conv

May 10, 2017

Predict a mask for

each of C classes

State-of-the-art
(instance) segmentation: Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017; slide adapted from Justin Johnson

http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

Summary: classic approaches

• Edges: threshold gradient magnitude

• Lines: edge points vote for parameters of

line, circle, etc. (works for general objects)

• Segments: use clustering (e.g. K-means)

to group pixels by intensity, texture, etc.

