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Abstract

We give a randomized algorithm for the well known caking ingitproblem that achieves approx-
imate fairness, and has complexi®{n). The heart of this this result involves extending the stamda
offline multiple-choice balls and bins analysis to the cabens the underlying resources/bins/machines
have different utilities to different players/balls/jobs
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1 Introduction

The protocol’s goal in the well known cake cutting problemddairly apportion some resources among
n players. Here we consider a continuous resource, modelgthwt great loss of generality, by the unit
interval. We assume that each playdras an initially unknown value functior, that specifies how player
p values each subinterval of the unit interval. A portion isrgom of disjoint subintervals, and the value
function is additive, so that the value of a portion is the safrthe values of the underlying subintervals. A
player believes that a portiondsfair if that portion has value at Ieacs% of the total value of cake according
to his value function. In the standard model, the protocallliewed to make two types of queries to the
players. In an evaluation query, the protocol asks a plageruch he values a particular subinterval of
the cake. In a cut query, the protocol asks the player to iifyaihie shortest subinterval with a fixed value
and a fixed left endpoint. We are interested in the query cexilyl of a protocol, which is the worst-case
number of queries required to achieve a fair allocation &mheplayer that follows the protocol.

The cake cutting problem originated in 1940’s Polish matiiea community. Since then the problem
has blossomed and been widely popularized. The motivationding cake as a resource is the well known
phenomenon that some people prefer frosting, while otherstl Cake cutting, and related fair allocation
problems, are of wide interest in both social sciences arttien@atical sciences. Sgall and Woeginger [11]
provide a nice brief overview. There are several books &mitin fair allocation problems, such as cake
cutting, that give more extensive overviews, see for exarf$yl10]. Some quick Googling reveals that cake
cutting algorithms, and their analysis, are commonly ceddry computer scientists in their algorithms and
discrete mathematics courses.

A deterministic 1-fair protocol with complexit(n?) was described in 1948 by Steinhaus in [12].
In 1984, Evan and Paz [5] gave a deterministic divide and gaend-fair protocol that has complexity
©(nlogn). Recently, there has been several lower bound results kera@atting. In particular, we showed
that the Even-Paz algorithm is optimal for deterministifait-protocols [4]. That is, every deterministic
1-fair protocol for cake cutting has complexi@®(n logn). This lower bound also applies to deterministic
protocols that need only only guaranteél )-fairness.

A natural open question is then whether there exisgmdomizegbrotocol with linear query complexity.
Some lower bound results for randomized algorithms are kno8gall and Woeginger [11] showed that
every randomized 1-fair protocol has complexityn log n) if every portion is restricted to be a contiguous
subinterval of the cake. We showed that every randomi2gd-fair protocol has complexit§2(n logn) if
there is a small relative error in the response to the quitles

In this paper we give a randomized protocol widlin) query complexity. Our protocol requires exact
answers to the queries, guarantees @n(y)-fairness, and does not in general assign a contiguous-subin
terval to each player. That is, we show that linear compjeisitobtainable in the variant that is most in
the protocol’s favor. Note that by the results in [4], thes@0 deterministic protocol that guarantégd )-
fairness. So this result separates deterministic and raizéol query complexity for approximate fairness.

Our protocol also requires that all of the players are hortdéghesty is not a real issue in deterministic
protocols, but is a significant issue in most conceivabléoamized protocols. For example, a randomized
protocol might ask a player to generate a subinterval/ecerding to a particular probability distribution.
To handle a dishonest player, a protocol would seem to nebd #able to determine if the player actually
generated a piece according to this distribution. This sdéwm a daunting task for the protocol.

Additionally, we show tha©(n)-complexity is still achievable even if there is a small tetaerror in
the response to the queries, as long as the error that résutsa cut query is independent of value in the
guery. We call this a weak adversary.

The heart of our cake cutting algorithm is the following Badad Allocation Lemma in the cake model
that generalizes the standard multiple-choice balls ansl imiodel [8].



Deterministic Exact Standard Exact Contiguous

VS. VS. VS. VS. VS. Complexity | Reference
Randomized| Approximate| Weak | Approximate| Non-contiguousg

Protocol Queries | Adversary| Fairness Portions

* Exact * * * O(nlogn) [5]

* * Standard Exact Contiguous | Q(nlogn) [11]
Deterministic * Standard * * Q(nlogn) [4]

* Approximate| Standard * * Q(nlogn) [4]
Randomized Exact * Approximate| Non-contiguoug  O(n) This paper
Randomized * Weak | Approximate| Non-contiguousg  O(n) This paper

Table 1: Summary of known results. An asterisk means thaethdat holds for both choices.

Lemma 1 (Balanced Allocation). Let o be some sufficiently large constant. Eachnoplayers has a
partition of the unit intervall0, 1], or cake, intoan disjoint candidate subintervals/pieces. Each player
independent pickd’ = 2d = 4 of his pieces uniformly at random, with replacement. Thereths an
efficient method that, with probabilify(1), picks one of th@’ pieces for each player, so that every point on
the unit interval is covered b§ (1) pieces.

In the analogous multiple-choice balls and bins model, gdaper independently seleafsof an dis-
crete bins uniformly at random. This balls and bins modelqggiealent to the special case of the cake
model in which each player has the same collectiommotandidate pieces. It is a folklore result that in the
balls and bins model, the maximum Ioamlog’ign) if d = 1; And if &’ > 1, then with one can with
probability (1) pick one of thed’ pieces for each player in such a way that each bin only hasl 1aval
one can with high probability pick one of th# pieces for each player in such a way that each bin only at
most 2 balls. One can even get maximum le¥dog log n) if the assignment has to be made online player
by player [2].

We now briefly discuss how our Balanced Allocation Lemma carubed to solve the cake cutting
problem (See Appendix Section A for more details). THecandidate piece is th&" subinterval of value
al—n, which can be found by two cut queries. After the applicatibthe Balanced Allocation Lemma, any
standard fair allocation algorithm can be used to divide pmrgion of the cake desired by more than one
player.

1.1 Redated Results

The first step towards obtaining &(n logn) lower bound on the complexity of cake cutting was taken
by Magdon-Ismail, Busch, and Krishnamoothy [7], who wer&eadb show that any protocol must make
Q(nlogn) comparisons to compute the assignment. So this result duteaddress query complexity.
Approximately fair protocols were introduced by Robertsord Webb [9]. Traditionally, much of the
research has focused on minimizing the number of cuts, prasly out of concern that too many cuts
would lead to crumbling of a literal cake. There is a deteistiaprotocol that achieve9(1)-fairness with
©(n) cuts andO(n?) evaluations [9, 6, 13]. There are several other objectiugdied in the cake cutting
setting, most notably, max-min fairness, and envy-freméss.

The literature on balanced allocations is also rather lakggice survey is given in [8].



2 Intuition

In this section we try to give some intuition and a road mayitierproof of our Balanced Allocation Lemma.
We start with an example instance, see Figure 1 that denadestseveral interesting features of the cake
model and our analysis. Each of the rows consists ofitheubintervals of the players. The:/2 A players
havean candidate pieces of identical length. Then#oe [1, /%], there is a group of /3 B; players.
Half of a B;’s candidate pieces overlap with tB&" piece of thed players, and half with the; +15¢ piece

of the A players.

>
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I

Figure 1: An example in which player’s intervals overlap innmcomplex ways.

One immediate observation is that maximum load equal to dltréem the standard multiple-choice
balls and bins model will not carry over to the cake model. de this, note that with high probability, one
of the A players chooses all of hi& pieces from his firsﬂ\/g candidate pieces. Call this playaf. Also
with high probability, for eachi’ pieces ofA’, there is aB; player that has all of’ pieces overlapping with
it. This explains the need to relax the maximum load bounahficto O(1).

The Implication Graph: To gain intuition, let us assume for the moment tilat= 2. Let c(p,iy denote
theit" ¢ [1, an] candidate piece for playex Leta, 0 anday, ;) be the two semifinal pieces selected for
playerp. We now define what we call the implication graph. The vegiogthe implication graph are the
2n piece3a<p7r>, 1<p<nand0 <r <1.If pieceamw intersects piece<q7s>, then there is an directed
edge from piece,, ,, to piecea, 1 and similarly froma, ) to a(, 1. The intuition is that if playep
getsa, .y as his final piece, then playgmust get piece, ;) if p andg’s pieces are not going to overlap.
Similarly if ¢ getsa, ), thenp must geta, ;). As an example, Figure 2 gives a subset of the semifinal
pieces selected from the candidate pieces in Figure 1. Treetdd edges arising from this example are

given.

a) b)

Figure 2: Two excerpts from an implication graph.

Pair Path: We define goair path in the implication graph to be a directed path between thepgiwoes for
one player, i.e. from some,, .y to a, ;. In Figure 2.a, there are two such paths of length four froen th
A player’s left semifinal piece to his right and in Figure 2.otpaths of length two. We will show that if
the implication graplG does not contain any such pair paths, then the followingralgo selects a final
piece for each player in such a way that these final piecesigj@rd. (See Section 3.1.)

Final Piece Selection Algorithm Description: We repeatedly pick an arbitrary playethat has not selected
a final piece. We pick the pieeg,  as the final piece fgs. Further, we pick as final pieces all those pieces
in G that are reachable from,, oy in G.

Independent Edges. To gain intuition, we now sketch a proof that the implicatgraph does not contain a
pair path for the balls and bins model (each player’s cdbeadf an candidate pieces are identical). Note
that in the balls and bins model, every pair path has to beraftteat least 3. Consider a possible pair
Patha ) ro)s Alprr1)s - - - Clpr 1 1)» Wpo,1—ro) WIth k& €dges in the implication graph. The probability that

a particular pair of node8u,, ), @, ) has an edge between them, i.e. the probability that the daterli



piece chosen to be@mm intersects with that chosen to b@phl_m, is al—n The presence or absence of
thesek edges in the implication graph are statistically indepandEhus the probability that this particular
pair path appears in the implication graph is at n(oaég)k Since there are at moé?k")k! possible pair
paths withk edges, the probability that there is pair path is at njogt , (Qk")k'm If o is sufficiently
large, then this probability is say at mdst2.

We now return to the general cake model. One difficulty is thatedges in the implication graph are
no longer independent. To see this, recall Figure 1. Theahidiby that any two semifinal pieces over lap is
still O(al—n). However, if one of am player’s semifinal pieces overlaps with oBeplayer’s semifinal piece,
then we know that thisl player must have selected either Bi&* or 2i+1°¢ candidate piece and hence it
very likely to also overlap with anothds; player’s semifinal piece.

Pair Paths of Length > Three and Vees. Such dependencies can occur when there is what we call a vee
among the candidate pieces. We defineato consist of a triple of pieces, omenterpiece and twdase
pieces, with the property that the center piece interseautts &f the base two pieces. For example, see the
three left most pieces in Figure 2.a.

Note that in the balls and bins model, the expected numbeeekvamong the semifinal pieces is
o((%) (aiL)Q) = O(n). And in the cake model, we will show that if the expected nunifevee’s among
the semifinal pieces i©(n), then with probability€2(1) there will be no pair path with three of more
edges in the implication graph of the semifinal pieces. (S=di@ 3.3). Unfortunately, in the example
in Figure 1, it is the case that, with high probability, themher of vees among the semifinal pieces is
Q(yv/n - (y/n)?) = Q(n3/?). The consequence of this is that, with high probabilityréheill be pair paths
like those in Figure 2.a. One can also construct instancesathe number of vees§yn?) with probability
Q(1).

Getting the expected number of vee’s in the semifinal piec#ndo O(n) necessitates thal > 4.

Let us now explain how we accomplish this. The selection dlffrieces will occur in three instead of
two phases. First, each player independently at randonmidps#sd’ = 2d quarterfinalpieces. These
are partitioned into twdracketsA, oy and A, 1y containingd pieces each. From each such bracket, we
choose one interval, denoted, ., to be asemifinalpiece. The semifinal piece is chosen to be the one
that intersects the smallest number of other candidatesgieg ;,. Note that this processes is independent
for the different playerg and for each bracket. We will show then that the expected rurmbvees in
the resulting2n semifinal pieces i®)(n) (see Section 3.2). We show that as a consequence of this, with
probability (1), the implication graph of the semifinal pieces does not dorggair path of length 3 or
longer.

Pair Paths of Length Two and Same-Player-Vees: Another difficulty is that the implication graph of the
semifinal pieces may, with high probability, have pair pathkngth two. See Figure 2.b. A pair path of
length two occurs if and only if the implication graph comsiwhat we call a same-player-vee.sAme-
player-veds a vee where both of the base pieces belong to the same.pldyadris, there is a center piece
ap,r and two bases, gy anda, ;). In the instance in Figure 1, it is the case that with high ptolity
there will be many same-player-vees.

To get around the problem of same-player-vees, we introthesame-player-vee graphith directed
edge(p, q) when these players are involved in a same-player-vee. We et with probability2(1) there
are no paths in this graph containing= 2 edges. Hence the same-player-vee graph can be colored with
colors. (See Section 3.4). Therefore, with probabillty ), we can partition the players infopartitions in
such a way there is no same-player-vee involving two plaiyettse same partition.

Summary of Balanced Allocation Algorithm: We summarize our Balanced Allocation Algorithm.

¢ Independently, for each player< [1,n] and each- € [0, 1], randomly choosé of the candidate
piecesc, ;) to be in the quarterfinal bracket,,, ...




e In each quarterfinal bracket, ,y, pick as the semifinal piece, ,), the piece that intersects the
fewest other candidate pieces ;. If we are unlucky and the Implication Graph contains a pathp
of length greater than 3, then start over. See Sections 8.3.8n

e Construct and vertex color the same-player-vee graph ubimgreedy coloring algorithm using at
mostw = 2 colors. See Section 3.4. L8}, be the subgraph of the implication graph containing only
those players coloreld This ensures that Implication Graph restrictedtacontains no pair paths of
length 2.

e For eachsSy, pick the final piece for each player involved$h by applying the Final Piece Selection
Algorithmto Si,. See Section 3.1. Because the Implication Grap&poontains no pair paths of any
length, this algorithm ensures that these final pieces fon ptayer are disjoint, i.e. for any point in
the cake, the final piece of at most one player fi§pcovers this point.

e Conclude that for any point in the cake, the final piece of astmo= 2 players cover this point. The
total probability of success is computed in Section 3.5.

In section 3.6 we extend this Balanced Allocation Algoritttthe case of approximate queries against
a weak adversary.

3 TheProofs

In this section we prove the various claims that we made inptieeious section. Each subsection can
essentially be read independently of the others. Due toesliitations, some proofs are moved to the
appendix, and some of the easier proofs are omitted.

3.1 Final Piece Selection Algorithm

We show some structural properties of the implication gliamdly the correctness of the Final Piece Selec-
tion Algorithm.

Lemma 2. If there is a path inG' froma,, ;) to a(, 5y then there must be a path fromy, ;) to a(, 1 in
G.

Lemma 3. If both the pieces, oy anda,, ;) are reachable from a pieceg,, ,, in the implication grapltG,
thenG has a pair path.

Lemma 4. If an implication graphG of the semifinal pieces does not contain a pair path, then thal F
Piece Selection Algorithm selects a final piece for eachgylaynd these final pieces are disjoint.

Proof. Consider an iteration that starts by assigning to playerp. This iteration will force the assign-
ment of at most one piece to any one player because by LemneeSdhn not be a playersuch that both
a(q,0y @nda, 1y are reachable fromy, o). Similarly, if this same iteration forces playgto be assigned say
to a(q.0y, then we need to prove that he has not already been assigpgdduring an earlier iteration. If
assigningz,, o) forcesaq oy, then there is a path from the one to the other. Hence, by Lefrtfeere is
a path froma, 1y to a(, 1y. Hence, ifa, ;y had been previously assigned, then play@rould have been
forced toa, 1y and in this casg would not be involved in this current iteration. The disjmiess of the final
pieces follows from the definition of the implication graph. O

3.2 TheNumber of Vees

In this subsection we show that the number of ve&3(is) with probability(2(1). Recall that aveeconsists
of a triple of semifinal pieces, orenterpiecea, ,, and twobasepiecesu, , anda g 4, With the property
that the center piece intersects both of the base two pieces.



Lemma5. Assume that: players have partitioned their cake into pieces each. Lét, ; be the number of
pieces of the other players that overlap with piecd playerp. Then for any playep, > 7", £, < 2anm.

Lemma 6. The probability that semifinal pieeg,, ,, overlaps with semifinal pieeg, , is at most%.

Lemma 7. The expected number of vee'stis at most%gl:’n

Proof. Consider a particular player Again let/, ;, denote the total number of candidate pieces overlap-
ping the:*" candidate piece, ; of the playerp. Without loss of generality, let us renumbes candidate
pieces in non-increasing order By, ;, thatis,ly, ;y > £, i1 1y

Forp € [n],i € [an], andr € [0, 1], let R, ; .y be the event that the candidatg;, is selected to be the
semifinal pieceu,, ,y. To understand this, let us review how this is chosen. Ftagerp randomly chooses
d candidate pieces to be in his quarterfinal brackets.,. Then the semifinal pieag,, , is chosen to be the
one with the smallest,, ;, value or, by our ordering, the one with the largest index. d¢¢ethe probability
of Ry, Is the probability thatl indexes are randomly selected fram indexes and the largest selected
index isi. This givesProb[R,; 4] = d - (&) - (51)471.

Letz,,, be the number of vee’s with,, ., as the center. There a(@g“) pairs of candidate pieces
that might be the two base pieagsg ) anda, o with the center piece,, .y = ¢, ;). The probability that

both of this pair are semifinal pieces is at mp&¢)*. Hence,E [z, ,y | Ryip) is at most(“) (24)% <

; =
2€% ) (%) :

an an d i—1 d—1 ) d 2
Elzpn] = ZPTOb[R@,i,m] Bz | Bpin < Z (a—n> ( o > - 2604 (a—n>

243 .
(o) 274

Lemma 5 boundsthafy", £, < 2an® = M. Thenextlemmathenbound§”, ¢~ . < m?2M>.

2d3 _ > _ 8d?
Blogpn] < (e ) () 2an?) < 5.
8d3

By linearity of expectation, the expected number of vees ailds 22:1 271«:0 Elzgpy <2n-25. O

a2
Lemmas8. If d >2,Vi € [1,m — 1] ¢; > {;41 > 0,and)_ " ¢; = M, then> ", i47102 < md=2)2.
Proof. Let/,,.1 =0, ands; = ¢; — ¢;,1 for 1 < i < m. Note that our constraint gives thﬁt> 0. Further
more, ¢; = 1%, sy andM = 377 ¢ = 371 is;. Then lett; = is; so thatM = >, ¢;. Now using

basic algebra we conclude that
2
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3.3 TheExistence of Pair Paths

In this subsection, we show that with probability1), the implication graph doesn’t contain a pair path of
length three of more. Recall that if the semifinal pieegs.) anda, ) intersect, then there is an directed
edge in the implication grap& from a,, .y t0 a(4 1, and froma, . to a(, 1, and that gair path is a
directed path between the two semifinal pieces for the samyepli.e. from some,, ;) to a(, 1_,y. The
next lemma is best understood by studying Figure 3.

Ap\-Bp 1-Bp, 1-Bp, 1-5p, 1-

0'\o0 1’1 T2 27t

Figure 3: The dotted edges are between semi-final pieceotldbp. The solid directed edges are the
resulting edges in the implication graph.

Lemma 9. Consider a simple pair patl = (a,, o) @pyr1)s - - - Clppe_1.r51)s Clpo,1—r0) ) OF lengthk > 3.
LetV be the vee with center,,, ,., and bases,, ;_,,y anda,, ., ). Fori € [1,k—-2], letl; € G be

the event that semifinal pieceg,, ,,, anday,, ., 1—,, ) intersect. Then

Prob[P € G] < Prob[V € G] - TI*2Probl[I; € G]

0,70

Proof. The edges from, .y toa,, .y andfroma,, . ytoag ;.. meanthat, .. intersectwith
botha,, 1_,) anday, .. .- Hence, the ve& occurs. The edge from,, ., toa,, ., .. ) Means that
Apy,ry @NDag,, | 1-p, ) iNtersect, i.el;. It follows thatProb[P € G] < Prob[V & eachl; € G]. What
remains is to prove that the evefsand eacli; are independent. Whether a semifinal piece of playarsd

g intersect is independent of whether a semifinal piece oéuifit playerg’ andq’ intersect because these
event have nothing to do with each other. This remains truervthe playerg andy’ are the same, but the
we are talking about different semifinal pieces of this ptagamely evenf; and; ., are independent. This

is because the selection of the quarterfinal pieces for thekbtA , 5, and the selection gf's semifinal

0,70

piecea,, oy Within this bracket is independent of this process for hieosemifinal piece, ). O
Lemma 10. The probability that the implication grap& contains a pair path of length at least three is at
most#ﬁcp).

Proof. Let V be the set of all 3-tuples representing all possible vees and forV € V let P (V') be the
set of all possible pair paths of lengttthat include the ve& . The probability thatz contains a pair path
of length at least three is at most

Z Z Z Prob[P € G] 1)

k=3 VEV PePy(V)

Zn: Z Z Prob[V € G] - TI¥=2Probl[I; € G] 2)

k=3 VEV PPy (V)

n o\ k—2
Z Z Prob[V € G] Z (i%) 3)

k=3Vey PePL(V)
(4)

IN

IN



n k—2
< 3% Problv €@ ((;fg) (k — 3)!) (%) (5)
k=3VeV
< Zn:@n)k_g (2—d2>k_2 > Prob[V €G] (6)
- an
k=3 vey
n 2\ k—2 3
< Z(2n)k_3 (i%) (12(21 n) (7)
k=3
8d3 <~ [4d2\ "2 8d3 [4d? 1 32d5
P (7) < T (7) <1 —4d2/a> = o i) ®)

The inequality in line 2 follows from Lemma 9 and line 3 fromrhma 6. The inequality in line 5 holds
since there aré — 3 pieces inP that are not part of the véé. The inequality in line 7 follows from Lemma
7. O

3.4 Coloring Same-Player-Vee Graphs

In this subsection we show that with probability1), we can color the same-player-vee graph ®ittolors
since this graph will have no paths of length= 2.

Lemma 11. The probability that the same-player-vee graph is®@oct 2 colorable is at mosiﬁ— + 8d2

Recall that we put the directed edge ¢) in the same-player-vee graph if one of playsrtwo semifinal
pieces, namely,, o) Or a, 1y, overlap with both of playey’s two semifinal pieces, namely, oy anda,, 1)-
Hence, a path of length 3 consists of semi-final PIQCES,, ), A(py.ra)r Aps,1—ra)s py,0), ANDayy, 1y for
three playerg;, p2, andps, where botha,,, ..,y anda,, ;_,,, overlap witha, .., and botha,, 5, and

a(p,,1) OVErlap withay,, ..,y We will consider the probability of such paths startinghweards.

Lemma 12. Suppose we are considering a set/otandidate pieces for the semi-final pieces,
and @ (ps 1)+ The probability that some player gets both of his semi finetgs from this set is at most

min((£= de )2, 1).

an

Consider some candidate piecg, ; that potentially might be., , ). LetZ,, ; denote the number
of other candidate pieces of overlapping it. Consider sofagepps. Let c,, ji), Cpo ji41)s -
be the candidate pieces of playerthat overlap with piece,, ;. Let/,
candidate pieces of overlapping, ;. Consider some playes. Definel,
p3’'s candidate pieces that overlap,, ;). Note that if/,
playerps’'s semi-final pieces over lap with far,, ;. Hence, we can ignore playgs when considering

(m j) as belng%[,2 )+ Hence, definé\<m7j7p3> to bely,, jps) If Lips sy = 2 and zero otherwise. Define

Copndy = Doq E (pa.j.ps)- NOtE this is the number of pieces that overlgp) ; excluding those pieces whose
player only has one piece overlapping, ;-

Ep2,jr)
o) denote the number of other

po.j.ps) 10 D€ the number of player
porips) = L, then it is impossible to have both of

Lemma13. Theny 7Y | 74, 5 < 2¢,

1 ]l"l‘l p27.7> p17i>'

Lemma 14. Consider a candidate pieeg,, ; such that there aré@,1 ;) other candidate pieces overlapping
it and some other player,. The probability that there are semi-final pieegs, ,.,), a(p, 0y, anday,, 1 for
some playeps, wherea, overlaps withe, ;y, and botha,, o, anday,, 1) overlap witha, is at

most4< . |:d£<z71’i) + 1}
an an )

p2,72) p2,72)



Proof. Consider a candidate pieesg,, ; that overlaps witre, ;. The probability that candidate piece

C(py,j) 1S @ s€mi-final piece for player is at most2d By Lemma 12, the probability that there are semi-final

is at mostmin((££22)2 1),

an

piecesa,, o), anda,, 1, for some playeps which both overlap with,
It follows that the required probability is at most

Jr d? . 2 Jr—1 2
ZQd.mm<<<md>> 71) { {Z min ﬂ a1l
— an an

1= i=ji+1

By Lemma 1357 Jl1+1 Am 5) < 204, 5. Hence, because of the quadratics in the sum, our sum is maxi-

mized by having a fev:ﬂ@,2 j) as big as possible. But because of thie,, there is no reason to makd@2 5

P2,)

bigger than<*. Hence, the sum is maximized by settnqﬁl> of the valuei<
zero. This gives the result

;) 10 < and the rest to

2 [1+ [Qd%,w ,

an an

min(1, 1)] + 1] .
O

We will now add the requirement that players other candidate piece,,, ; _,,, also overlaps wite,
and sum the resulting probability over all possible playets

P1,7)

Lemma 15. Consider a candidate piem%n1 ;) such that there aré,
it. The probability that there are semi-final pieces, .,
and p3, where botha< y anda

»1,i) Other candidate pieces overlapping

A(po1—12)s Ups, 0 anda< P31 >fortwo playersps

overlaps Wlthc< i), and botha,, oy andag,, ;, overlap with

p2,r2 p2,1—"2)

d2¢?

Z
(p1,%) | an
) is at most an)? |:1 + @iy i) } .

Proof. The probability that a particular candidate piegg ;, is playerp,’s semi-final piece,
mosti Denote the number of playps’s candidate pieces,, j;;y; Cps,ji+1)» - - -» Cips,j,) that overlap with
piece%g1 ;) to begy, = jr — ji + 1. Because these all overlap with, ;, we have thaEp2 Iy = Lipyi)-
Using Lemma 15, we get that the required probability is attmos

d 4d dﬁ(mﬂ _ d 4d dﬁ(m@ 4d2€%ﬁ17> an
S o [T ] = o [ [Tt )| = '[”W |

P2 P1,%)

Apg,ro

pa,1—72) IS at

O

We will now add the requirement tha,, ;, is one of playep,;’s semi-final pieces and sum up over gl
candidate pieces and over all playgss

Lemma 16. The probability that there are semi-final piecgs, ),
for three playerg, p2, and p3, where botha,, ,.,, anda,

. . 3 2
anday,, 1y overlap witha,, ..., is at mosti®¢- + 8%,

G (ps,0) anda(m,U
) and bOtha<pB70>

Alpo,ra)r Apy,1—ra)>

overlap witha,

p2,1—7r2) P1,T1

P2,72)

Proof. As in the proof of Lemma 7, leR, ; ., be the event that the candidatg ;, is selected to be the
semifinal piecex, ,,. Recall thatProb[R,; ] = d - (L) - (£2)4-1. There aren ch0|ces for playep;.

an



Thus by Lemma 15, our desired probability is at most

a1\ 14d2€%p1> an
n(Za—n(an) (any? '[”d& .

i=1 P1,%)

Ad? d-1 Ad? . d—1
(an) d+3 ZE (p1,8) (i-1) (om)d+2 ZECIH@(Z - 1)
i=1

4d3 d—2 2\2 4d2 — . d—1
S n W(an) (20m ) + W Z€<p17i> (’L — 1)
=1

43 42 99 4d? 4 [ 2an? 16d®  8d?
(Gt "o+ oo (7)) = + S

IN

The second inequality follows by Lemma 8. The third ineayedbllows from noting that, given that the
Cipy, Z> 's are nonincreasing, the sum is obviously maximized if eaghy is equal. Thatis, eacl,, ;) =

2an? O

an

3.5 Computingthe Probability of Failure

The probability that the total same-player-vee graph i2rzdlorable is at mos%%‘f + %2. The probability
that the implication graph contains a pair path of lengtkérwr more is at mosa%. Thus we get that

the probability that the maximum overlap of the final piecemibre thar2 is at mostl64® 4 84 | 32d°

a?(a—d?)"
By settingd = 2, and then setting to be sufficiently large, one can make this probability aetnily small.
Hence, the probability that our caking cutting algorithmas at leasRa-fair is at mostlﬁd +34 +%

3.6 Approximate Cutswith a Weak Adversary.

In this section, we show that even if the cut operations ahg approximate, then approximate fairness is
still achievable inD(n) complexity against a weak adversary, which must specifyetaive error without
knowing the value of the cake specified in the cut. For thefpsme appendix section B.

Theorem 17. If a protocol can only make + e approximate queries against a weak adversary, then there
is a randomized protocol for cake cutting that achiegkg )-fairness inO(n) time.

4 Conclusion

The results in this paper suggest several interesting opestigns. As in the balls and bins case, can we get
a high probability result, perhaps at the cost of increabiyn@ constant factor the maximum load bound?
Is linear query complexity achievable by randomized alfpons for exact fairness? But perhaps most in-
teresting is to see how other balanced allocation resultisdriterature extend to the unrelated machines
case. Analysis of balls and bins models have found wide egiipdin in areas such as load balancing [8]. In
these situations, a ball represents a job that can be asgsignvarious bins/machines. Roughly speaking,
load balancing of identical machines is to balls and bindpad balancing on unrelated machines is to
cake cutting. Unrelated machines is one of the standard Imadéhe load balancing literature [1]. In the
unrelated machines model there is a spggdhat a machiné can work on a joly. Assume that jobs can
use more than one machine, and that machines can be shamgdthEtotal value of the machines to jpb

is Y, s:,5, and ac-fair allocation for jobj would be a collection of machines, or portions of machinest t

10



can together procegsat a speed o} _, Smg So it seems to us reasonable to presume the the cake model,

and balanced allocation lemmas, should have interestiplications in settings involving load balancing
on unrelated machines.
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A Our Cake Cutting Algorithm

Before turning to our Balanced Allocation Lemma, let us akphow our cake cutting protocol uses our
Balanced Allocation Algorithm. Each playghas an initially unknown value functidn, that specifies how
much that player values each subinterval of the unit intetie imagine the player partitioning the cake
into an pieces each of valug-. Theith such candidate piece of cakg, ;, can be obtained using the two
queries(Cut, (0, =1), Cut, (0, -=-)). Our cake cutting protocol uses our Balanced Allocatiorohithm to
obtain a final piece for each player such that every point efddike is covered by at mosk(1) of these
final pieces. Because each player chooses only a constabenafcandidate pieces, the query complexity
is ©(n). Because the probability of succes®il ), they expect to repeat@(1) times until they succeed.
Once each player has one final piece, we need to divide thesegdiurther so that the players have disjoint
collections of cake intervals. This is done as follows. Ewedinal pieces hav@n endpoints and these
endpoints partition the cake inftm pieces. Denote these kfy. For each piecg; and each playep, the
player either wants all of; or none of it. For eacli, let.S; be the set of players wanting cake pigfe
Some playerp may appear in more than o, but we have thats;| < k = O(1), because every point of
the cake is covered by at mast1) of player’s final pieces. For each piefg the players irf; use any fair
algorithm to partitionf; between them. Each such application has compléity) since it only involves
©(1) players. This protocol guaranteks-fairness. Consider player For eachj for which p e S;, let

v(p,;y denote the amount he values piggeNote " v, = V,(U; f;) = V,(his final piecg = ;. When
fairly dividing fi he receives a piece ¢f with value at IeasM The total cake that he receives has total
valuez ”) = Note that unlike all previous cake cutting algorithmssthne does not guarantee

kom

contiguous portions since a player’s final interval may belived many different such subintervals

B Proof of Weak Adversary Result

We start by defining an approximate cut.

ACuty(e, x1,03): This1 + € approximate cut query returns an > z; such that the interval of cake
[3:1, x9] has value approximately according to playep’s value functionV,,. More preciselyy, satisfies
T Vo(z1,22) < B < (1+ €) V(a1 z2).

Non-AdaptiveError: We say thatACut, (e, 1, 3) has anonadaptive erroif each operation the algorithm
first providesr; but nots. The weak adversary, knowing the complete history buth@hooses a random
variableF for the error with some distributionin the ranbi%, 1+ €]. When the algorithm provides, the
operationACut, (e, 1, 3) returns the random variable = Cut,(z1, E - ) such thatV,(z1, z2) = E - 5.

Theorem 18. If a protocol can only make + e approximate queries against a weak adversary, then there
is a randomized protocol for cake cutting that achiegkg )-fairness inO(n) time.

Proof. The algorithm as defined above chooses a random integé, an — 1] and cuts out a piece starting
atz; = Cut,(0, =) and ending at, = Cut, (0, 21) or equivalently atry = Cut, (1, -). If the second
cut is replaced with the cut, = ACut, (e, x1, m) even with adaptive error, then the algorithm does
not change significantly. The piece returned is no wider slaps with other player’s intervals are no more
likely and the associated value, though perhaps a factgr ©fe¢)2 more unfair, is still constant fair.

For the first cutr; = Cut,, (0, ---), if the algorithm instead chooses a random teal[0, an —1] instead
of a random integer, the algorithm does not change signtficaihis then become a cut at a uniformly
chosen random valug = a’—n € [0, 1]. If we replace this cut with an approximate cut with an noasztove
adversary, it becomes a cut at valtle= E 3. But because erraf is a random variable is independent of
3, 3 is basically also a uniformly chosen random valties [0, 1]. To see, this consider some fixed value
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b € [e, 1 — €] not too close to the endpoints. We have

Pr [ € [b,b+ 60]] :/ Pr [56[9,”—‘%]] Pr[E = o] de
ee[ﬁ,l—i-e] €
Pr|E =
:/ %-Pr[E:e]ée:(Sb' / Mée .
€l 1+¢ € €z 144 €

This is a strange integration, but it is withih + ¢) of one and it is constant with respect#o Hence,
Pr (3 € [b,b+ db]] ~ db, meaning thaty is uniformly chosen withire, 1 — €. O
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