Equitable Cost Allocation Via Primal–Dual-Type Algorithms

By K. Jain, V. Vazarani

Lin Wang

CS3150 Presentation

Presentation Outline

Problem Statement

Submodularity and Cross-monotonicity

Egalitarian Method

Bill Gates Vs. Lin Wang and Equalizing Functions

Algorithm

Proof of Cross-monotonicity

Proof of max-min fairness

Conclusion

Problem Statement

Background

Examples

Definition

 Input:

 Let U =
[image: image1.wmf]{

}

n

,...,

2

,

1

 denote the set of users. Each user reports his private utility
[image: image2.wmf]i

m

.

 Let cost:
[image: image3.wmf]+

®

R

U

2

, the function gives the cost of serving any subset of the users.

 Output:

 A cost sharing method
[image: image4.wmf]x

.

[image: image5.wmf](

)

i

S

,

x

= Shared price for the
[image: image6.wmf]th

i

user if a set of S users are served.

It should satisfy:

[image: image7.wmf]0

)

,

(

,

,

)

(

)

,

(

,

0

)

,

(

,

,

=

Ï

Í

"

=

Í

"

³

Î

Í

"

å

Î

i

S

S

i

U

S

S

Cost

i

S

U

S

i

S

S

i

U

S

S

i

x

x

x

 Objective

 Group strategy-proof: Each user will report his true utility

 “Fairness”
Group Strategy-proofness

Definition

 Strategy-proofness ---- User’s dominant strategy is to reveal his true utility even if he may lie, or to say under current pricing policy, the user has no incentive to lie about his utility.

 Group strategy-proofness ---- User’s dominant strategy is to reveal his true utility even if collusions are allowed because misreporting is NOT profitable.

Implication

 Each user will report his own true utility no matter whether he knows other user’s utility. Thus, under strategy-proofness condition, each user’s private utility is not sensitive information.
Fairness

Matters are not so clear-cut on fairness

Max-min & Min-max

 One intuitive way to think about fairness is that based on the current cost sharing solution, no one underpays, no one overpays.

Service provider is not inherently “fair”, but in the long run, it is his best interest to provide a fair cost allocation.

Submodularity and Cross-monotonicity

Submodularity
 Marginal cost of including a new user can only be smaller if a superset is being served.

 Definition

[image: image8.wmf])

(

)

(

)

(

)

(

,

,

T

S

Cost

T

S

Cost

T

Cost

S

Cost

U

T

S

I

U

+

³

+

Í

"

This definition is equivalent to

[image: image9.wmf])

(

)

(

)

(

)

(

,

,

T

Cost

i

T

Cost

S

Cost

i

S

Cost

T

i

U

T

S

-

+

³

-

+

Ï

Ì

Ì

"

 We will assume that the cost function is submodular.

 Submodularity is a natural economy of scale condition.

Submodularity and Cross-monotonicity (Cont.)

[image: image10.wmf]Submodularity

0

20

40

60

80

100

120

140

0

5

10

15

20

Cardinality of set of Users

Cost of the set

Series1

 Examples:

U= {a, b, c}

	S: Set of users
	Cost of Set S

	{a}
	Cost ({a}) = 4

	{b}
	Cost ({b}) = 4

	{c}
	Cost ({c}) = 4

	{a, b}
	Cost ({a, b}) = 7

	{a, c}
	Cost ({a, c}) = 7

	{b, c}
	Cost ({b, c}) = 7

	{a, b, c}
	Cost ({a, b, c}) = 9

Question: Is the cost function Cost (S) submodular?

Answer: Yes.

Ex: Cost ({a, b}) - Cost ({a}) > Cost ({a, b, c}) - Cost ({a, c})
Submodularity and Cross-monotonicity (Cont.)
Cross-monotonicity
 Informally, a cost sharing method is cross-monotone, or to say population monotone if the cost share of any user can only reduce if a superset is being served.

 Definition

[image: image11.wmf])

,

(

)

,

(

,

,

i

T

i

S

S

i

U

T

S

x

x

³

Î

"

Í

Ì

"

 Theorem (By Moulin 1999)

If
[image: image12.wmf]x

 is a cross-monotonic cost sharing method, then the mechanism is group strategy-proof.

 Cross-monotonicity
[image: image13.wmf]Þ

 group strategy-proof

Cross-monotonicity is crucial to provide incentives for cooperation.

Egalitarian method

Two well know cross-monotone cost sharing methods for submodular cost functions are

 Shapley value method
 Users who are more expensive to serve will be charged more.

 Egalitarian method

 Charge each user equal amount

 Both cost sharing methods are group strategy-proof and both satisfy different fairness criteria.

Egalitarian method (Cont.)

Primal-dual schema

 It is natural to view the dual program as “paying” for the primal, and the algorithm as progressive bidding to get access to a shared resource.

 Analog to facility layout problem

 One facility

 No connect cost

 Each subset of cities (users) will have a different solution

 In some sense, Egalitarian method is derived from special case facility layout algorithms as each city grows the “ball” uniformly at the same speed.

Bill Gates Vs. Lin Wang example

Input:

 Set of users U = {Bill Gates, Lin Wang}

 They are both equally expensive to serve.

  Cost (U)= 2000$

Output:

[image: image14.wmf]?

)

},

,

({

=

Wang

Lin

Wang

Lin

Gates

Bill

x

[image: image15.wmf]?

)

},

,

({

=

Gates

Bill

Wang

Lin

Gates

Bill

x

Result:

Both Shapley method and egalitarian method will split the cost.

Question:

Is the cost sharing method fair?

Analysis:

 If relative paying powers of the two users are taken into consideration, then a Pareto may dominates the previous outcome.

[image: image16.wmf]100

)

},

,

({

=

Wang

Lin

Wang

Lin

Gates

Bill

x

[image: image17.wmf]1900

)

},

,

({

=

Gates

Bill

Wang

Lin

Gates

Bill

x

Price discrimination

Price discrimination is widely resorted to, and is in fact crucial to the survival of many industries.

Question: Can the service provider resort to differential pricing and still ensure that mechanism is group strategy-proof?

	% of monthly income ($)
	100%
	1%
	2%
	5%
	10%

	Bill Gates
	19,000
	190
	380
	950
	1900

	Lin Wang
	1,000
	10
	20
	50
	100

If we use Lin Wang as a reference, then a 100$ quote for Lin Wang is equitable to a 1900$ one for Bill Gates.

[image: image18.wmf]x

x

f

Lin

=

)

(

[image: image19.wmf]x

x

f

Bill

*

19

)

(

=

Equalizing functions

Equalizing functions

 Each of n users has an equalizing function, which equalizes the relative paying power of individual user.
 An equitable cost sharing method is parameterized by n monotonically increasing, continuous and unbounded functions from R+ to R+, f1,…,fn satisfying fi(0)=0
Price discrimination & equalizing functions

Service provider’s strategy
[image: image66.wmf]i

m

Price discrimination & equalizing functions

Example
U= {a, b, c}

	S: Set of users
	Cost of Set S

	{a}
	Cost ({a}) = 4

	{b}
	Cost ({b}) = 4

	{c}
	Cost ({c}) = 4

	{a, b}
	Cost ({a, b}) = 7

	{a, c}
	Cost ({a, c}) = 7

	{b, c}
	Cost ({b, c}) = 7

	{a, b, c}
	Cost ({a, b, c}) = 9

	t
	fa(t)
	fb(t)
	fc(t)

	0
	0
	0
	0

	1
	0
	0
	4

	2
	0
	3
	4

	3
	1
	3
	4

	4
	1
	4
	4

	5
	2
	4
	5

[image: image20.wmf]Equilizing functions

0

1

2

3

4

5

6

0

2

4

6

a,b,c

f(t)

Series1

Series2

Series3

Algorithm

Key ideas

 “Duals ” increase “uniformly” according to the equalizing functions.
 We have to run algorithm for each set of users.
Definition
 Assume we want to allocate the cost among the set S of users.
 Let x: S
[image: image21.wmf]®

R+ be a function assigning costs to users in S.

 Set A
[image: image22.wmf]Í

EMBED Equation.3[image: image23.wmf]S is tight if
[image: image24.wmf])

(

A

Cost

X

A

i

i

=

å

Î

 Set A
[image: image25.wmf]Í

EMBED Equation.3[image: image26.wmf]S is overtight if
[image: image27.wmf])

(

A

Cost

X

A

i

i

>

å

Î

 x is feasible if no subset of S is overtight.
[image: image67.wmf]U

Algorithm
 Note: If each fi is identical, we will get the same result as egalitarian method.

 Note: we always keep the solution feasible.
Algorithm (Cont.)

Run the algorithm to allocate the cost among {a,b,c}
	
	Set A
[image: image28.wmf]Í

S

	
	{a}
	{b}
	{c}
	{a, b}
	{a, c}
	{b, c}
	{a, b, c}

	Cost (A)
	4
	4
	4
	7
	7
	7
	9

	t
	fa(t)
	fb(t)
	fc(t)
	
[image: image29.wmf]å

Î

A

i

i

x

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	0
	0
	4
	0
	0
	4Tight
	0
	4
	4
	4

	2
	0
	3
	4
	0
	3
	
	3
	4
	7Tight
	7

	3
	1
	3
	4
	1
	3
	
	4
	5
	
	8

	4
	1
	4
[image: image30.wmf]®

3
	4
	1
	3
	
	4
	5
	
	8

	5
	2
	4
[image: image31.wmf]®

3
	5
[image: image32.wmf]®

4
	2
	3
	
	6
	7Tight
	
	9 Tight

So we have

[image: image33.wmf]2

)

},

,

,

({

=

a

c

b

a

x

,
[image: image34.wmf]3

)

},

,

,

({

=

b

c

b

a

x

,
[image: image35.wmf]4

)

},

,

,

({

=

c

c

b

a

x

Proof

Direction of Proof

 Cross-monotonic:
[image: image36.wmf])

,

(

)

,

(

,

,

i

T

i

S

S

i

U

T

S

x

x

³

Î

"

Í

Ì

"

 Fairness:

 max-min & min-max

Lemma: Let x be feasible for S. If A, B
[image: image37.wmf]Í

S are both tight, then A
[image: image38.wmf]U

B is also tight.
 Observation
[image: image68.wmf]£

At any time, there is a unique maximal tight set.

Proof of cross Monotonicity

[image: image69.wmf]I

Theorem: The cost sharing method derived from the algorithm is cross-monotonic.
Proof of fairness

Fairness can be expressed mathematically by max-min characterization.
Example
	% of monthly income ($)
	100%
	10%
	20%
	30%
	50%

	Bill Gates
	19,000
	1900
	3800
	5700
	9500

	Lin Wang
	1,000
	100
	200
	300
	400

[image: image39.wmf]x

x

f

Lin

=

)

(

[image: image40.wmf]x

x

f

Bill

*

19

)

(

=

[image: image41.wmf]100

)

},

,

({

=

Wang

Lin

Wang

Lin

Gates

Bill

x

[image: image42.wmf]1900

)

},

,

({

=

Gates

Bill

Wang

Lin

Gates

Bill

x

Informal proof
 In terms of equalizing functions, fairness means every user pays the share cost based on his paying power. Or we can say we are max-min
[image: image43.wmf]))

,

(

(

1

i

S

f

S

i

i

Î

-

x

 for each set S of users.

Proof of fairness (Cont.)

Max-min domination
 Let t(
[image: image44.wmf]S

x

) to be the vector of time at which each user in S goes frozen.

Let q and r be n-dimensional vectors with nonnegative coordinates.
[image: image45.wmf]INC

q

is the sorted vector in increasing order. Then q max-min dominates r if
[image: image46.wmf]INC

q

is lexicographically larger than
[image: image47.wmf]INC

r

.
Theorem
 For any set S
[image: image48.wmf]Í

U, the cost allocation found by algorithm is such that t(
[image: image49.wmf]S

x

) max-min dominates t(
[image: image50.wmf]a

) for all other cost allocation,
[image: image51.wmf]a

 for S in the core.

Proof of fairness (Cont.)
[image: image70.wmf]å

Î

£

)

(

)

(

cos

B

A

i

i

B

A

t

x

I

I

Conclusion

No approximation vs. approximation
 Key properties of cost shares

 Cross-monotonicity
 Competitiveness:
[image: image52.wmf]The sum of the cost shares cannot be more than the true cost

[image: image53.wmf])

(

)

,

(

S

Cost

i

S

S

i

£

å

Î

x

 Cost Recovery: The sum of the cost shares must pay for the true cost

[image: image54.wmf])

(

)

,

(

S

Cost

i

S

S

i

³

å

Î

x

Conclusion (Cont.)

 For any cost allocation method
[image: image55.wmf]a

 for set S
[image: image56.wmf]Í

U, now we think of the following two constraints (called coalition participation constraint)
 If we combine the competitiveness and cost recovery constraints, we have a budget balance constraint

[image: image57.wmf])

(

)

,

(

S

Cost

i

S

S

i

=

å

Î

a

 Stand-alone constraint: No subset S’
[image: image58.wmf]Ì

S is charged more than the stand-alone cost of serving S’

[image: image59.wmf])

'

(

)

(

,

'

'

S

Cost

I

S

S

S

i

£

Ì

"

å

Î

a

 All of the cost allocation methods which satisfy the two constraints are called in the core, which is a well-studied concept in game theory.
 Unfortunately, for many games of interest, cross-monotonic, budget balanced cost sharing methods DO NOT exist, or to say, the core is empty.

 When core is empty, we may have an approximate core which means we can recover an 1/
[image: image60.wmf]a

fraction of the cost.
Conclusion (Cont.)

Similarity with Facility Layout Algorithm

 Each user has an equalizing function which quantifies his paying power.

 Each user grows the ball in proportion to the equalizing function.

 The user who has more paying power grows the ball faster, and vice versa.

 Once the cost is shared for a set, each user pays “same” amount of money with respect to his paying power.
Conclusion (Cont.)

Opportunity Egalitarian Method

 Equalizing functions may represent more than users’ paying power.
 Each user i
[image: image61.wmf]Î

U, let Gi: R+
[image: image62.wmf]®

[0, 1] be the cumulative probability density function from which i’s utility is drawn. Assume Gi is monotonically increasing.

 Let
[image: image63.wmf]a

be a cost sharing method. Each user will accept the service only if his utility turns out to be
[image: image64.wmf])

(

i

a

³

, his cost share.

 Probability [user i accept the cost share] = 1 -
[image: image65.wmf](

)

)

(

i

G

i

a

 Define fi to be the inverse of Gi. Then the algorithm is the opportunity egalitarian method

Each user i reports his utility �EMBED Equation.3���

Get a set of n equalizing functions fi

Equitable cost sharing method on submodular cost function

Cross monotonic

Max-min& Min-max fairness

Group Strategy-proof

Proof

 By Submodularity,

Cost (A�EMBED Equation.3���B) � EMBED Equation.3 ���Cost (A) + Cost (B) –Cost (A� EMBED Equation.3 ���B) (*)

 x is feasible

	� EMBED Equation.3 ���

 A&B are both tight

From (*) , we have

	Cost (A�EMBED Equation.3���B) � EMBED Equation.3 ���� EMBED Equation.3 ���

 Also we have

	� EMBED Equation.3 ���

 � EMBED Equation.3 ���, A� EMBED Equation.3 ���B is also tight. (

Proof

 Suppose S� EMBED Equation.3 ���T� EMBED Equation.3 ���U. Let us call the two runs of the algorithm S-run and T-run, respectively.

 If we can show that each time t, the tight set in S-run is a subset of the tight set in T-run, then we are done. Because that means every user i� EMBED Equation.3 ���S can frozen at an earlier time, and equalizing function is monotonic increasing, so user i can have only a smaller cost share under T-run.

 Assume at time t, A and B are the tight sets in S and T run.

 Let � EMBED Equation.3 ���denote the cost share of i � EMBED Equation.3 ���S at time t under the S-run.

 Let � EMBED Equation.3 ���denote the cost share of i � EMBED Equation.3 ���T at time t under the T-run.

 By Submodularity,

� EMBED Equation.3 ���

 x is feasible for s

	� EMBED Equation.3 ���

 A and B are both tight in S and T runs

� EMBED Equation.3 ���

 So

	� EMBED Equation.3 ���

A-B is the users that are frozen in the run time but not in the T run at time T. Hence, for each i� EMBED Equation.3 ���A-B, � EMBED Equation.3 ���� EMBED Equation.3 ���� EMBED Equation.3 ���.

 Therefore,

	� EMBED Equation.3 ���

 Therefore, A� EMBED Equation.3 ���B is also tight at time t in T-run. Since B is the max tight set at time t in T-run. Hence A� EMBED Equation.3 ���B, and the theorem follow. (

Proof by induction & Contradiction

 In Let � EMBED Equation.3 ���be an allocation for set S that lies in the core. Suppose that t(� EMBED Equation.3 ���) does not max-min dominate t(� EMBED Equation.3 ���)

 In Let � EMBED Equation.3 ���be the sequence of sets that go tight when the algorithm is run on set S. We will show by induction on I that all users in A must have the same cost allocation in � EMBED Equation.3 ���and � EMBED Equation.3 ���.

 In Observe that all users in Ai – Ai-1 go tight at the same time, so the components corresponding to them in t(� EMBED Equation.3 ���) are identical.

� EMBED Equation.3 ���

 In If this inequality is strict, � EMBED Equation.3 ���,such that � EMBED Equation.3 ���< � EMBED Equation.3 ���, leading to a contradiction.

 In If for some user � EMBED Equation.3 ���,such that � EMBED Equation.3 ���> � EMBED Equation.3 ���, then there must be some other user j� EMBED Equation.3 ���,

such that � EMBED Equation.3 ���> � EMBED Equation.3 ���, leading to a contradiction.

 In Therefore, � EMBED Equation.3 ���=� EMBED Equation.3 ���,� EMBED Equation.3 ���

 In The idea for the induction step is the same as for the basis. (

Decide cost functions for each subset satisfying submodularity

 Associate a notion of time

 t�EMBED Equation.3���0

 Raise cost shares of each user in proportion to their respective functions fi.. Thus at time t, the cost share of user i is fi(t)

 Whenever a set A�EMBED Equation.3���S goes tight, the cost shares of all users in A are frozen

 The cost shares of the remaining users keep increasing with time as before

 The algorithm terminates when cost shares of all users in S are frozen

PAGE
2

[image: image71.wmf]U

[image: image72.wmf]£

[image: image73.wmf]å

å

å

å

Î

Î

Î

Î

=

-

+

B

A

i

i

B

i

B

A

i

i

i

A

i

i

x

x

x

x

U

I

[image: image74.wmf]å

Î

£

)

(

)

(

cos

B

A

i

i

B

A

t

x

U

U

[image: image75.wmf]å

Î

=

)

(

)

(

cos

B

A

i

i

B

A

t

x

U

U

[image: image76.wmf]U

[image: image77.wmf]Ì

[image: image78.wmf]Í

[image: image79.wmf]Î

[image: image80.wmf]i

x

[image: image81.wmf]Î

[image: image82.wmf]'

i

x

[image: image83.wmf]Î

[image: image84.wmf])

(

)

(

)

(

)

(

B

Cost

A

Cost

B

A

Cost

B

A

Cost

+

£

+

I

U

[image: image85.wmf]å

Î

£

)

(

)

(

cos

B

A

i

i

B

A

t

x

I

I

[image: image86.wmf]å

å

å

Î

Î

Î

+

£

+

B

i

i

A

i

i

B

A

i

i

x

x

x

B

A

Cost

'

(

)

(

I

U

[image: image87.wmf]å

å

Î

-

Î

+

£

B

i

i

B

A

i

i

x

x

B

A

Cost

'

)

(

)

(

U

[image: image88.wmf]Î

[image: image89.wmf]i

x

[image: image90.wmf]£

[image: image91.wmf]'

i

x

[image: image92.wmf]å

Î

£

)

(

'

)

(

B

A

i

i

x

B

A

Cost

U

U

[image: image93.wmf]U

[image: image94.wmf]Í

[image: image95.wmf]a

[image: image96.wmf]S

x

[image: image97.wmf]a

[image: image98.wmf]S

A

A

Ì

Ì

...

2

1

[image: image99.wmf]a

[image: image100.wmf]S

x

[image: image101.wmf]S

x

[image: image102.wmf])

(

cos

)

(

)

(

1

1

1

å

å

Î

Î

=

£

A

i

A

i

S

A

t

i

i

x

a

[image: image103.wmf]1

A

i

Î

$

[image: image104.wmf])

(

i

a

[image: image105.wmf])

(

i

S

x

[image: image106.wmf]1

A

i

Î

$

[image: image107.wmf])

(

i

a

[image: image108.wmf])

(

i

S

x

[image: image109.wmf]1

A

Î

[image: image110.wmf])

(

j

a

[image: image111.wmf])

(

j

S

x

[image: image112.wmf])

(

i

a

[image: image113.wmf])

(

i

S

x

[image: image114.wmf]1

A

i

Î

"

[image: image115.wmf]¬

[image: image116.wmf]Í

_1130165483.unknown

_1130170041.unknown

_1130170098.unknown

_1130172283.unknown

_1130173834.xls
Chart1

		0		0		0

		1		1		1

		2		2		2

		3		3		3

		4		4		4

		5		5		5

a,b,c

f(t)

Equilizing functions

0

0

0

0

0

4

0

3

4

1

3

4

1

4

4

2

4

5

Sheet1

		0		0		0		0

		1		0		0		4

		2		0		3		4

		3		1		3		4

		4		1		4		4

		5		2		4		5

Sheet1

		

a,b,c

f(t)

Equilizing functions

Sheet2

		

Sheet3

		

_1130221791.unknown

_1130222075.unknown

_1130222149.unknown

_1130222175.unknown

_1130221886.unknown

_1130174520.unknown

_1130173423.unknown

_1130173437.unknown

_1130172367.unknown

_1130172378.unknown

_1130171495.unknown

_1130171912.unknown

_1130171958.unknown

_1130172186.unknown

_1130171518.unknown

_1130171614.unknown

_1130171875.unknown

_1130171523.unknown

_1130171502.unknown

_1130171426.unknown

_1130171433.unknown

_1130171388.unknown

_1130171422.unknown

_1130170844.unknown

_1130170081.unknown

_1130166238.unknown

_1130168285.unknown

_1130169922.unknown

_1130169991.unknown

_1130170012.unknown

_1130169439.unknown

_1130169556.unknown

_1130168433.unknown

_1130168555.unknown

_1130168613.unknown

_1130168517.unknown

_1130168294.unknown

_1130167533.unknown

_1130167889.unknown

_1130168095.unknown

_1130168104.unknown

_1130168009.unknown

_1130167680.unknown

_1130166264.unknown

_1130167524.unknown

_1130166251.unknown

_1130165793.unknown

_1130166140.unknown

_1130166204.unknown

_1130165829.unknown

_1130165485.unknown

_1130165751.unknown

_1130165484.unknown

_1130165466.unknown

_1130165473.unknown

_1130165479.unknown

_1130165481.unknown

_1130165482.unknown

_1130165480.unknown

_1130165477.unknown

_1130165478.unknown

_1130165475.unknown

_1130165476.unknown

_1130165474.unknown

_1130165468.unknown

_1130165470.unknown

_1130165471.unknown

_1130165469.unknown

_1130165467.unknown

_1130165452.unknown

_1130165456.unknown

_1130165458.unknown

_1130165461.unknown

_1130165462.unknown

_1130165464.unknown

_1130165459.unknown

_1130165460.unknown

_1130165457.unknown

_1130165454.xls
Chart1

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

		16

		17

		18

Cardinality of set of Users

Cost of the set

Submodularity

11

21

30.5

40

49

58

66

72

79.5

87

94

100

105

110

114

117

119

120

Sheet1

		1		11

		2		21

		3		30.5

		4		40

		5		49

		6		58

		7		66

		8		72

		9		79.5

		10		87

		11		94

		12		100

		13		105

		14		110

		15		114

		16		117

		17		119

		18		120

Sheet1

		

Cardinality of set of Users

Cost of the set

Submodularity

Sheet2

		

Sheet3

		

_1130165455.unknown

_1130165453.unknown

_1130165448.unknown

_1130165450.unknown

_1130165451.unknown

_1130165449.unknown

_1130165446.unknown

_1130165447.unknown

_1130165445.unknown

