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Problem Statement

Background

Examples

Definition


 Input:

 Let U = 
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 denote the set of users. Each user reports his private utility 
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 Let cost: 
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, the function gives the cost of serving any subset of the users.


 Output:

 A cost sharing method 
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= Shared price for the 
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It should satisfy:
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 Objective

 Group strategy-proof: Each user will report his true utility


 “Fairness”
Group Strategy-proofness

Definition

 Strategy-proofness ---- User’s dominant strategy is to reveal his true utility even if he may lie, or to say under current pricing policy, the user has no incentive to lie about his utility.

 Group strategy-proofness ---- User’s dominant strategy is to reveal his true utility even if collusions are allowed because misreporting is NOT profitable.

Implication

 Each user will report his own true utility no matter whether he knows other user’s utility. Thus, under strategy-proofness condition, each user’s private utility is not sensitive information.
Fairness

Matters are not so clear-cut on fairness

Max-min & Min-max 

 One intuitive way to think about fairness is that based on the current cost sharing solution, no one underpays, no one overpays.

Service provider is not inherently “fair”, but in the long run, it is his best interest to provide a fair cost allocation. 

Submodularity and Cross-monotonicity

Submodularity
 Marginal cost of including a new user can only be smaller if a superset is being served. 

 Definition
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This definition is equivalent to 
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 We will assume that the cost function is submodular.

 Submodularity is a natural economy of scale condition.

Submodularity and Cross-monotonicity (Cont.)
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 Examples:

U= {a, b, c}

	S: Set of users
	Cost of Set S

	{a}
	Cost ({a}) = 4

	{b}
	Cost ({b}) = 4

	{c}
	Cost ({c}) = 4

	{a, b}
	Cost ({a, b}) = 7

	{a, c}
	Cost ({a, c}) = 7

	{b, c}
	Cost ({b, c}) = 7

	{a, b, c}
	Cost ({a, b, c}) = 9


Question: Is the cost function Cost (S) submodular?

Answer:   Yes. 

Ex: Cost ({a, b}) - Cost ({a}) > Cost ({a, b, c}) - Cost ({a, c})
Submodularity and Cross-monotonicity (Cont.)
Cross-monotonicity
 Informally, a cost sharing method is cross-monotone, or to say population monotone if the cost share of any user can only reduce if a superset is being served.

 Definition


[image: image11.wmf])

,

(

)

,

(

,

,

i

T

i

S

S

i

U

T

S

x

x

³

Î

"

Í

Ì

"


 Theorem (By Moulin 1999)

If 
[image: image12.wmf]x

 is a cross-monotonic cost sharing method, then the mechanism is group strategy-proof.

 Cross-monotonicity 
[image: image13.wmf]Þ

 group strategy-proof

Cross-monotonicity is crucial to provide incentives for cooperation.

Egalitarian method

Two well know cross-monotone cost sharing methods for submodular cost functions are 

 Shapley value method
 Users who are more expensive to serve will be charged more.

 Egalitarian method 

 Charge each user equal amount

 Both cost sharing methods are group strategy-proof and both satisfy different fairness criteria.

Egalitarian method (Cont.)

Primal-dual schema

 It is natural to view the dual program as “paying” for the primal, and the algorithm as progressive bidding to get access to a shared resource. 

 Analog to facility layout problem

 One facility

 No connect cost

 Each subset of cities (users) will have a different solution

 In some sense, Egalitarian method is derived from special case facility layout algorithms as each city grows the “ball” uniformly at the same speed.

Bill Gates Vs. Lin Wang example

Input:   

 Set of users U = {Bill Gates, Lin Wang}

 They are both equally expensive to serve.

        Cost (U)= 2000$

Output:
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Result:

Both Shapley method and egalitarian method will split the cost.

Question:

Is the cost sharing method fair?

Analysis: 

 If relative paying powers of the two users are taken into consideration, then a Pareto may dominates the previous outcome.
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Price discrimination 

Price discrimination is widely resorted to, and is in fact crucial to the survival of many industries. 

Question: Can the service provider resort to differential pricing and still ensure that mechanism is group strategy-proof?

	% of monthly income ($)
	100%
	1%
	2%
	5%
	10%

	Bill Gates
	19,000
	190
	380
	950
	1900

	Lin Wang
	1,000
	10
	20
	50
	100


If we use Lin Wang as a reference, then a 100$ quote for Lin Wang is equitable to a 1900$ one for Bill Gates.
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Equalizing functions

Equalizing functions 

 Each of n users has an equalizing function, which equalizes the relative paying power of individual user.
 An equitable cost sharing method is parameterized by n monotonically increasing, continuous and unbounded functions from R+ to R+, f1,…,fn satisfying fi(0)=0
Price discrimination & equalizing functions

Service provider’s strategy
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Price discrimination & equalizing functions

Example
U= {a, b, c}

	S: Set of users
	Cost of Set S

	{a}
	Cost ({a}) = 4

	{b}
	Cost ({b}) = 4

	{c}
	Cost ({c}) = 4

	{a, b}
	Cost ({a, b}) = 7

	{a, c}
	Cost ({a, c}) = 7

	{b, c}
	Cost ({b, c}) = 7

	{a, b, c}
	Cost ({a, b, c}) = 9


	t
	fa(t)
	fb(t)
	fc(t)

	0
	0
	0
	0

	1
	0
	0
	4

	2
	0
	3
	4

	3
	1
	3
	4

	4
	1
	4
	4

	5
	2
	4
	5
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Algorithm

Key ideas 

 “Duals ” increase “uniformly” according to the equalizing functions.
 We have to run algorithm for each set of users.
Definition
 Assume we want to allocate the cost among the set S of users.
 Let x: S
[image: image21.wmf]®

R+ be a function assigning costs to users in S. 

 Set A
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EMBED Equation.3[image: image23.wmf]S is tight if 
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 Set A
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EMBED Equation.3[image: image26.wmf]S is overtight if 
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 x is feasible if no subset of S is overtight.
[image: image67.wmf]U

Algorithm
 Note: If each fi is identical, we will get the same result as egalitarian method.

 Note: we always keep the solution feasible.
Algorithm (Cont.)

Run the algorithm to allocate the cost among {a,b,c}
	
	Set A
[image: image28.wmf]Í
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	{a}
	{b}
	{c}
	{a, b}
	{a, c}
	{b, c}
	{a, b, c}

	Cost (A)
	4
	4
	4
	7
	7
	7
	9

	t
	fa(t)
	fb(t)
	fc(t)
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	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	0
	0
	4
	0
	0
	4Tight
	0
	4
	4
	4

	2
	0
	3
	4
	0
	3
	
	3
	4
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	7

	3
	1
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	4
	1
	4
[image: image30.wmf]®

3
	4
	1
	3
	
	4
	5
	
	8

	5
	2
	4
[image: image31.wmf]®

3
	5
[image: image32.wmf]®

4
	2
	3
	
	6
	7Tight
	
	9 Tight


So we have
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Proof

Direction of Proof

 Cross-monotonic: 
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 Fairness:

 max-min & min-max 

Lemma: Let x be feasible for S. If A, B
[image: image37.wmf]Í

S are both tight, then A
[image: image38.wmf]U

B is also tight.
 Observation
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At any time, there is a unique maximal tight set.

Proof of cross Monotonicity

[image: image69.wmf]I

Theorem: The cost sharing method derived from the algorithm is cross-monotonic.
Proof of fairness

Fairness can be expressed mathematically by max-min characterization.
Example
	% of monthly income ($)
	100%
	10%
	20%
	30%
	50%

	Bill Gates
	19,000
	1900
	3800
	5700
	9500

	Lin Wang
	1,000
	100
	200
	300
	400
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Informal proof
 In terms of equalizing functions, fairness means every user pays the share cost based on his paying power. Or we can say we are max-min 
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 for each set S of users.

Proof of fairness (Cont.)

Max-min domination
 Let t(
[image: image44.wmf]S

x

) to be the vector of time at which each user in S goes frozen.

Let q and r be n-dimensional vectors with nonnegative coordinates.  
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is the sorted vector in increasing order. Then q max-min dominates r if 
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is lexicographically larger than 
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Theorem 
 For any set S
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U, the cost allocation found by algorithm is such that t(
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) for all other cost allocation, 
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 for S in the core.

Proof of fairness (Cont.)
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Conclusion 

No approximation vs. approximation
 Key properties of cost shares

 Cross-monotonicity
 Competitiveness: 
[image: image52.wmf]The sum of the cost shares cannot be more than the true cost
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 Cost Recovery:  The sum of the cost shares must pay for the true cost
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Conclusion (Cont.)

 For any cost allocation method 
[image: image55.wmf]a

 for set S 
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U, now we think of the following two constraints (called coalition participation constraint)
 If we combine the competitiveness and cost recovery constraints, we have a budget balance constraint
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 Stand-alone constraint: No subset S’ 
[image: image58.wmf]Ì

S is charged more than the stand-alone cost of serving S’
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 All of the cost allocation methods which satisfy the two constraints are called in the core, which is a well-studied concept in game theory.
 Unfortunately, for many games of interest, cross-monotonic, budget balanced cost sharing methods DO NOT exist, or to say, the core is empty.

 When core is empty, we may have an approximate core which means we can recover an 1/
[image: image60.wmf]a

fraction of the cost.
Conclusion (Cont.)

Similarity with Facility Layout Algorithm

 Each user has an equalizing function which quantifies his paying power. 

 Each user grows the ball in proportion to the equalizing function. 

 The user who has more paying power grows the ball faster, and vice versa. 

 Once the cost is shared for a set, each user pays “same” amount of money with respect to his paying power.
Conclusion (Cont.)

Opportunity Egalitarian Method

 Equalizing functions may represent more than users’ paying power.
 Each user i
[image: image61.wmf]Î

U, let Gi: R+ 
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[0, 1] be the cumulative probability density function from which i’s utility is drawn.  Assume Gi is monotonically increasing.

 Let 
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be a cost sharing method. Each user will accept the service only if his utility turns out to be 
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 Probability [user i accept the cost share] = 1 - 
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 Define fi to be the inverse of Gi. Then the algorithm is the opportunity egalitarian method 

Each user i reports his utility �EMBED Equation.3���





Get a set of n equalizing functions fi





Equitable cost sharing method on submodular cost function





Cross monotonic





Max-min& Min-max fairness





Group Strategy-proof





Proof





 By Submodularity, 


Cost (A�EMBED Equation.3���B) � EMBED Equation.3  ���Cost (A) + Cost (B) –Cost (A� EMBED Equation.3  ���B)   (*)





 x  is feasible


	� EMBED Equation.3  ���





 A&B are both tight


From (*) , we have


	Cost (A�EMBED Equation.3���B) � EMBED Equation.3  ���� EMBED Equation.3  ���


 Also we have 


	� EMBED Equation.3  ���





 � EMBED Equation.3  ���, A� EMBED Equation.3  ���B is also tight. (





Proof





 Suppose S� EMBED Equation.3  ���T� EMBED Equation.3  ���U. Let us call the two runs of the algorithm S-run and T-run, respectively.





 If we can show that each time t, the tight set in S-run is a subset of the tight set in T-run, then we are done. Because that means every user i� EMBED Equation.3  ���S can frozen at an earlier time, and equalizing function is monotonic increasing, so user i can have only a smaller cost share under T-run.





 Assume at time t, A and B are the tight sets in S and T run.


 Let � EMBED Equation.3  ���denote the cost share of i � EMBED Equation.3  ���S at time t under the S-run.


 Let � EMBED Equation.3  ���denote the cost share of i � EMBED Equation.3  ���T at time t under the T-run.





 By Submodularity,


� EMBED Equation.3  ���


 x is feasible for s


	� EMBED Equation.3  ���


 A and B are both tight in S and T runs


� EMBED Equation.3  ���


  So


	� EMBED Equation.3  ���


A-B is the users that are frozen in the run time but not in the T run at time T. Hence, for each i� EMBED Equation.3  ���A-B, � EMBED Equation.3  ���� EMBED Equation.3  ���� EMBED Equation.3  ���. 


 Therefore,


	� EMBED Equation.3  ���


 Therefore, A� EMBED Equation.3  ���B is also tight at time t in T-run. Since B is the max tight set at time t in T-run. Hence A� EMBED Equation.3  ���B, and the theorem follow. (





Proof by induction & Contradiction





 In Let � EMBED Equation.3  ���be an allocation for set S that lies in the core. Suppose that t(� EMBED Equation.3  ���) does not max-min dominate t(� EMBED Equation.3  ���)





 In Let � EMBED Equation.3  ���be the sequence of sets that go tight when the algorithm is run on set S. We will show by induction on I that all users in A must have the same cost allocation in � EMBED Equation.3  ���and � EMBED Equation.3  ���.





 In Observe that all users in Ai – Ai-1 go tight at the same time, so the components corresponding to them in t(� EMBED Equation.3  ���) are identical.





� EMBED Equation.3  ���





 In If this inequality is strict, � EMBED Equation.3  ���,such that � EMBED Equation.3  ���< � EMBED Equation.3  ���, leading to a contradiction.





 In If for some user � EMBED Equation.3  ���,such that � EMBED Equation.3  ���> � EMBED Equation.3  ���, then there must be some other user j� EMBED Equation.3  ���,


such that � EMBED Equation.3  ���> � EMBED Equation.3  ���, leading to a contradiction. 





 In Therefore, � EMBED Equation.3  ���=� EMBED Equation.3  ���,� EMBED Equation.3  ���





 In The idea for the induction step is the same as for the basis. (





Decide cost functions for each subset satisfying submodularity





 Associate a notion of time


 t�EMBED Equation.3���0


 Raise cost shares of each user in proportion to their respective functions fi.. Thus at time t, the cost share of user i is fi(t)


 Whenever a set A�EMBED Equation.3���S goes tight, the cost shares of all users in A are frozen


 The cost shares of the remaining users keep increasing with time as before


 The algorithm terminates when cost shares of all users in S are frozen
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