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Lower bounds
So far we have seen positive results: basic algorithmic techniques
for fixed-parameter tractability.

What kind of negative results we have?
Can we show that a problem (e.g., Clique) is not FPT?
Can we show that a problem (e.g., Vertex Cover) has no

algorithm with running time, say, 2o(k) · nO(1)?

This would require showing that P 6= NP: if P = NP, then, e.g.,
k-Clique is polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?
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Goals of this talk
Two goals:

1 Explain the theory behind parameterized intractability.
2 Show examples of parameterized reductions.
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Classical complexity
Nondeterministic Turing Machine (NTM): single tape, finite
alphabet, finite state, head can move left/right only one cell. In
each step, the machine can branch into an arbitrary number of
directions. Run is successful if at least one branch is successful.

NP: The class of all languages that can be recognized by a
polynomial-time NTM.

Polynomial-time reduction from problem P to problem Q: a
function � with the following properties:

�(x) is a yes-instance of Q () x is a yes-instance of P ,
�(x) can be computed in time |x |O(1).

Definition: Problem Q is NP-hard if any problem in NP can be
reduced to Q.

If an NP-hard problem can be solved in polynomial time, then every
problem in NP can be solved in polynomial time (i.e., P = NP).
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Parameterized complexity
To build a complexity theory for parameterized problems, we need
two concepts:

An appropriate notion of reduction.
An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a
vertex cover of size n � k .

) Transforming an Independent Set instance (G , k) into a
Vertex Cover instance (G , n � k) is a correct polynomial-time
reduction.

However, Vertex Cover is FPT, but Independent Set is not
known to be FPT.
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Parameterized reduction

Definition

Parameterized reduction from problem P to problem Q: a
function � with the following properties:

�(x) is a yes-instance of Q () x is a yes-instance of P ,
�(x) can be computed in time f (k) · |x |O(1), where k is the
parameter of x ,
If k is the parameter of x and k 0 is the parameter of �(x),
then k 0  g(k) for some function g .

Fact: If there is a parameterized reduction from problem P to
problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance
(G , k) into a Vertex Cover instance (G , n � k) is not a
parameterized reduction.

Example: Transforming an Independent Set instance (G , k)
into a Clique instance (G , k) is a parameterized reduction.

6



Parameterized reduction

Definition

Parameterized reduction from problem P to problem Q: a
function � with the following properties:

�(x) is a yes-instance of Q () x is a yes-instance of P ,
�(x) can be computed in time f (k) · |x |O(1), where k is the
parameter of x ,
If k is the parameter of x and k 0 is the parameter of �(x),
then k 0  g(k) for some function g .

Fact: If there is a parameterized reduction from problem P to
problem Q and Q is FPT, then P is also FPT.

Non-example: Transforming an Independent Set instance
(G , k) into a Vertex Cover instance (G , n � k) is not a
parameterized reduction.

Example: Transforming an Independent Set instance (G , k)
into a Clique instance (G , k) is a parameterized reduction.

6



Multicolored Clique

A useful variant of Clique:

Multicolored Clique: The vertices of the input graph G are
colored with k colors and we have to find a clique containing one
vertex from each color.

(or Partitioned Clique)

V1 V2 . . . Vk

Theorem

There is a parameterized reduction from Clique to
Multicolored Clique.

Create G 0 by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v .

G G 0

V1 V2 . . . Vk

v
u u1, . . . , uk

v1, . . . , vk

k-clique in G () multicolored k-clique in G 0.

Similarly: reduction to Multicolored Independent Set.
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Dominating Set

Theorem

There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof: Let G be a graph with color classes V1, . . . , Vk . We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k .

V1

x1 y1 x2 y2 xk yk

u
v

V2 Vk

The dominating set has to contain one vertex from each of the
k cliques V1, . . . , Vk to dominate every xi and yi .

For every edge e = uv , an additional vertex we ensures that
these selections describe an independent set.
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Variants of Dominating Set

Dominating Set: Given a graph, find k vertices that
dominate every vertex.
Red-Blue Dominating Set: Given a bipartite graph, find
k vertices on the red side that dominate the blue side.
Set Cover: Given a set system, find k sets whose union
covers the universe.
Hitting Set: Given a set system, find k elements that
intersect every set in the system.

All of these problems are equivalent under parameterized
reductions, hence at least as hard as Clique.
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Basic hypotheses
It seems that parameterized complexity theory cannot be built on
assuming P 6= NP – we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-Clique cannot be solved in time f (k) · nO(1).

Theorists’ Hypothesis

k-Step Halting Problem (is there a path of the given NTM
that stops in k steps?) cannot be solved in time f (k) · nO(1).

Exponential Time Hypothesis (ETH)

n-variable 3SAT cannot be solved in time 2o(n).

Which hypothesis is the most plausible?
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Summary

Independent Set and k-Step Halting Problem can be
reduced to each other ) Engineers’ Hypothesis and Theorists’
Hypothesis are equivalent!
Independent Set and k-Step Halting Problem can be
reduced to Dominating Set.

Is there a parameterized reduction from Dominating Set to
Independent Set?
Probably not. Unlike in NP-completeness, where most
problems are equivalent, here we have a hierarchy of hard
problems.

Independent Set is W[1]-complete.
Dominating Set is W[2]-complete.

Does not matter if we only care about whether a problem is
FPT or not!
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Boolean circuit
A Boolean circuit consists of input gates, negation gates, AND
gates, OR gates, and a single output gate.

x1 x7x6x4x3x2

Circuit Satisfiability: Given a Boolean circuit C , decide if
there is an assignment on the inputs of C making the output true.

Weight of an assignment: number of true values.

Weighted Circuit Satisfiability: Given a Boolean circuit
C and an integer k , decide if there is an assignment of weight k
making the output true.
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