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L ower bounds

So far we have seen positive results: basic algorithmic techniques
for fixed-parameter tractability.
What kind of negative results we have?

@ Can we show that a problem (e.g., CLIQUE) is not FPT?

@ Can we show that a problem (e.g., VERTEX COVER) has no
algorithm with running time, say, po(k) . nO(1)7?
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What kind of negative results we have?
@ Can we show that a problem (e.g., CLIQUE) is not FPT?
@ Can we show that a problem (e.g., VERTEX COVER) has no
algorithm with running time, say, po(k) . nO(1)7?

This would require showing that P 4 NP: if P = NP, then, e.g.,
k-CLIQUE is polynomial-time solvable, hence FPT.

Can we give some evidence for negative results?



Goals of this talk

Two goals:
@ Explain the theory behind parameterized intractability.

@ Show examples of parameterized reductions.



Classical complexity

Nondeterministic Turing Machine (NTM): single tape, finite
alphabet, finite state, head can move left/right only one cell. In
each step, the machine can branch into an arbitrary number of
directions. Run is successful if at least one branch is successful.

NP: The class of all languages that can be recognized by a
polynomial-time NTM.

Polynomial-time reduction from problem P to problem Q: a
function ¢ with the following properties:
@ ¢(x) is a yes-instance of <= x is a yes-instance of P,
@ ¢(x) can be computed in time |x|9(1).
Definition: Problem Q is NP-hard if any problem in NP can be
reduced to Q.

If an NP-hard problem can be solved in polynomial time, then every
problem in NP can be solved in polynomial time (i.e., P = NP).



Parameterized complexity

To build a complexity theory for parameterized problems, we need
two concepts:

@ An appropriate notion of reduction.

@ An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.
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To build a complexity theory for parameterized problems, we need
two concepts:

@ An appropriate notion of reduction.

@ An appropriate hypothesis.

Polynomial-time reductions are not good for our purposes.

Example: Graph G has an independent set k if and only if it has a
vertex cover of size n — k.

= Transforming an INDEPENDENT SET instance (G, k) into a
VERTEX COVER instance (G, n — k) is a correct polynomial-time
reduction.

However, VERTEX COVER is FPT, but INDEPENDENT SET is not
known to be FPT.



Parameterized reduction

Definition
Parameterized reduction from problem P to problem Q: a
function ¢ with the following properties:

@ ¢(x) is a yes-instance of Q <= x is a yes-instance of P,

@ ¢(x) can be computed in time (k) - |x|°(1), where k is the
parameter of x,

@ If k is the parameter of x and k’ is the parameter of ¢(x),
then k’ < g(k) for some function g.

Fact: If there is a parameterized reduction from problem P to
problem @ and Q is FPT, then P is also FPT.



Parameterized reduction

Definition
Parameterized reduction from problem P to problem Q: a
function ¢ with the following properties:
@ ¢(x) is a yes-instance of Q <= x is a yes-instance of P,
@ ¢(x) can be computed in time f(k) - [x|°(), where k is the
parameter of x,

@ If k is the parameter of x and k’ is the parameter of ¢(x),
then k’ < g(k) for some function g.

Fact: If there is a parameterized reduction from problem P to
problem @ and Q is FPT, then P is also FPT.

Non-example: Transforming an INDEPENDENT SET instance
(G, k) into a VERTEX COVER instance (G, n — k) is not a
parameterized reduction.

Example: Transforming an INDEPENDENT SET instance (G, k)
into a CLIQUE instance (G, k) is a parameterized reduction.



MULTICOLORED CLIQUE

A useful variant of CLIQUE:

MULTICOLORED CLIQUE: The vertices of the input graph G are
colored with k colors and we have to find a clique containing one
vertex from each color.

(or PARTITIONED CLIQUE)
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Theorem

There is a parameterized reduction from CLIQUE to
MULTICOLORED CLIQUE.



MULTICOLORED CLIQUE

Theorem

There is a parameterized reduction from CLIQUE to
MULTICOLORED CLIQUE.

Create G’ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v.
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k-clique in G <= multicolored k-clique in G’.
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Theorem

There is a parameterized reduction from CLIQUE to
MULTICOLORED CLIQUE.

Create G’ by replacing each vertex v with k vertices, one in each
color class. If u and v are adjacent in the original graph, connect
all copies of u with all copies of v.
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G G’
k-clique in G <= multicolored k-clique in G’.

Similarly: reduction to MULTICOLORED INDEPENDENT SET.



DOMINATING SET

Theorem

There is a parameterized reduction from MULTICOLORED
INDEPENDENT SET to DOMINATING SET.

Proof: Let G be a graph with color classes Vi, ..., Vi. We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k.
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@ The dominating set has to contain one vertex from each of the
k cliques Vi, ..., V) to dominate every x; and y;.



DOMINATING SET

Theorem

There is a parameterized reduction from MULTICOLORED
INDEPENDENT SET to DOMINATING SET.

Proof: Let G be a graph with color classes Vi, ..., Vi. We
construct a graph H such that G has a multicolored k-clique iff H
has a dominating set of size k.
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@ The dominating set has to contain one vertex from each of the
k cliques Vi, ..., V) to dominate every x; and y;.

@ For every edge e = uv, an additional vertex w, ensures that
these selections describe an independent set.



Variants of DOMINATING SET

@ DOMINATING SET: Given a graph, find k vertices that
dominate every vertex.

@ RED-BLUE DOMINATING SET: Given a bipartite graph, find
k vertices on the red side that dominate the blue side.

e SET COVER: Given a set system, find k sets whose union
covers the universe.

@ HITTING SET: Given a set system, find k elements that
intersect every set in the system.

All of these problems are equivalent under parameterized
reductions, hence at least as hard as CLIQUE.



Basic hypotheses

It seems that parameterized complexity theory cannot be built on
assuming P %= NP — we have to assume something stronger.

Let us choose a basic hypothesis:

Engineers’ Hypothesis

k-CLIQUE cannot be solved in time f(k) - n®),
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Summary

@ INDEPENDENT SET and k-STEP HALTING PROBLEM can be
reduced to each other = Engineers’ Hypothesis and Theorists’
Hypothesis are equivalent!

@ INDEPENDENT SET and k-STEP HALTING PROBLEM can be
reduced to DOMINATING SET.
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Summary

INDEPENDENT SET and k-STEP HALTING PROBLEM can be
reduced to each other = Engineers’ Hypothesis and Theorists’
Hypothesis are equivalent!

INDEPENDENT SET and k-STEP HALTING PROBLEM can be
reduced to DOMINATING SET.

Is there a parameterized reduction from DOMINATING SET to
INDEPENDENT SET?
Probably not. Unlike in NP-completeness, where most

problems are equivalent, here we have a hierarchy of hard
problems.

o INDEPENDENT SET is W[1]-complete.
o DOMINATING SET is W[2]-complete.

Does not matter if we only care about whether a problem is
FPT or not!
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Boolean circuit

A Boolean circuit consists of input gates, negation gates, AND
gates, OR gates, and a single output gate.

CIRCUIT SATISFIABILITY: Given a Boolean circuit C, decide if
there is an assignment on the inputs of C making the output true.
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Boolean circuit

A Boolean circuit consists of input gates, negation gates, AND
gates, OR gates, and a single output gate.

CIRCUIT SATISFIABILITY: Given a Boolean circuit C, decide if
there is an assignment on the inputs of C making the output true.

Weight of an assignment: number of true values.

WEIGHTED CIRCUIT SATISFIABILITY: Given a Boolean circuit
C and an integer k, decide if there is an assignment of weight k
making the output true.
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