1. (20 points)
 (a) Explain how to find the maximum of \(n \) numbers in time \(O(\log n) \) on a EREW PRAM with \(p = n \) processors.
 (b) What is the efficiency of this algorithm? Start with a definition of efficiency.
 (c) State the folding principle in terms of the time \(T(n, p) \) used by a parallel algorithm on an input of size \(n \) with \(p \) processors. What does this version of the folding principle say about the time for this algorithm with only \(p = n/\log n \) processors?
 (d) State the folding principle in terms of the efficiency \(E(n, p) \) of a parallel algorithm on an input of size \(n \) with \(p \) processors. What does this version of the folding principle say about the efficiency of this algorithm with only \(p = n/\log n \) processors?

2. (20 points) We consider the problem of merging two sorted arrays \(A \) and \(B \), each containing \(n \) integers, into one sorted array \(C \) of size \(2n \).
 (a) Give an algorithm that runs in time \(O(\log n) \) on an EREW PRAM with \(p = n \) processors.
 (b) Give an algorithm that runs in time \(O(1) \) on a CRCW-common PRAM with \(p = n^2 \) processors.

3. (20 points)
 (a) Give a parallel algorithm to add two \(n \) bit integers \(A \) and \(B \) (stored in bit arrays) that runs in time \(O(\log n) \) on an CREW PRAM with \(n \) processors.
 (b) Give a parallel algorithm to add two \(n \) bit integers \(A \) and \(B \) (stored in bit arrays) that runs in time \(O(\log^2 n) \) on an EREW PRAM with \(n \) processors.