Assignment 1 (Boggle) Report
Implemented Optimizations
Most of the optimizations in my program focused on the dictionary implemented as a PATRICIA tree. Obviously, these trees are highly optimized and efficient; however it was some of the minute details that I used to generate slightly better runtimes than other methods. These were primarily in the “GetBitAtPosition” and “GetFirstDifferentBit” functions. In my function to get the bit at a particular position I create a bit mask of 0x08 (10000000 in binary), and logical shift right x times (where x is the position of the bit you're requesting). For example, the mask is 10000000 but if you want the 3rd left bit, (position 2, since it's zero based) it would be shifted 2 times, resulting in 00100000. Then you "bitwise and" the number passed in with the created mask which will zero out any numbers in the result where there was a zero in the mask. This leaves you with just the bit at the given position set to on (1). This is then put in an integer so it will be either 0 (if off) or the number represented by a 1 at that position in the binary string (i.e. if the result was equal to 4, then the “and” result had a 1 in the fours place (00000100). Compare the result to 0, and return false if equal (since 0 is off), or true otherwise.
To do the “GetBitAtPosition” for a string, I simply divided the position by 8, set the position equal to itself modulus 8 (to get the position for the individual character), and then called the function as normal.

For my “GetFirstDifferent” bit function, I had to do another interesting trick. First I just check if they're equal. Here’s a copy of that code.

if(number == number2)

return -1;

int result = number ^ number2;

for(int i = 0;; i++, result <<= 1)

if(result >= 0x80)

return i;
If they are, there’s no point in doing anything, so I return -1 to show they're the same (although this generally shouldn’t happen, it could cause a nasty infinite loop below). Then, I take the exclusive or (or XOR) of the two numbers. This will make sure the first different bit is a 1 in the result (since XORing two different bits results in a 1, but if they're the same it will be a 0). Then, I put \ in a no-condition loop, so I had to guarantee it will exit (that is taken care of by the comparison above for equality). Also notice it has a double update instruction. It increments i (i++) and also left shifts the result by one (doubles it). Then you check if the result is >= 0x80 (128). If it is, the there is definitely a one in the first bit position (the 128 position), and possibly other positions have a 1 as well. So the count of i it took to get there by shifting left is the first different bit.
To do a full string in the same manner, I simply had to iterate checking if each character was the same, and as soon as it differed, I called the character (or integer if you’d like) version of the function (“GetFirstDifferent”). Then I shifted the number of characters that were the same to the left by 3 (same as multiplying by 2^3 or 8 since each character I represented using 8 bits.), and added the different bit position that differed in the characters.

Bit shifting is very efficient to other methods, such as using modulus to create the bit strings, and also avoids using extensive searching involving loops that other methods would require.
In addition to these methods, I also made sure that the dictionary did not contain any words shorter than 3 (the minimum word length) and none longer than the maximum word length (which is the square of the size either horizontally or vertically of the board). For example, the largest string permutation in a 3x3 board is 3^2 or 9. Eliminating any words shorter than 3 or longer than 9 (or whatever the maximum word size is) from the dictionary avoids unneeded branching and lookup time is greatly reduced.
Perhaps the one thing that really increased my speed noticeably was prefix checking on the permutations in the board. By doing this and skipping unnecessary permutations, my program could do increasingly more complex boards very quickly. I check the prefix flag in my recursive walk, and once false, the recursive call will back out until the last time it was set to true (within the stack walk), and continue down each successive path. This saves vast amounts of time, especially in large boards. Originally without the prefix checks, even a 6 by 6 board took quite a long time to solve. However prefix checking on the recursive call walk sped it up to the point where even a 50 by 50 board ran within seconds.
Also, I was having issues with the strings due to their varying lengths. So rather than adding further branching and logic to the insert algorithm, I simply made all keys the maximum word length long (see above) long. The word was followed by the character 0xFF to guarantee all bits after the string were 1s and make it simpler for me to understand and debug. This insertion logic was greatly simplified due to this, and may slightly help improve insert times. Lookup times should not be affected due to the fact it checks the first different bits, and the ones at the end are ignored. This helped to make sure upward pointing nodes did not try to check bits in positions that didn’t exist in smaller strings.
Worst Case Complexity Analysis
The worst case possible for this program (as a whole), is if every single combination of the board was a valid word in the dictionary. As you can imagine, this would require a lot of time, since it would require not only a full traversal of the highest combination of permutations possible (even with prefix checking), but it would require n squared (where n is the board size) traversals for EACH permutation (or n^2 times permutations possible) since each character position (and every permutation below it) would be checked. Clearly, as the board size increases, the time to do an exhaustive search would increase exponentially (especially if it must search all the paths, which is if we’re talking about absolute worst case time, and not including time saved by prefix checking). This is apparent by the following graph of board size (n where it is an n x n board, vs the total possible permutations). Notice the scale is logarithmic (hence showing an exponential increase by the linear looking line.)
[image: image1.emf]Board Size vs Total Permutations

1

28

653

28512

3060417

1

10

100

1000

10000

100000

1000000

10000000

0123456

Board Size (n in a n by n board)

Permutations Possible (Maximum)

Series1

Adding a trend line gives the following: y = 0.0177e3.6794x
Hypothesis of Average Case Complexity Analysis
My hypothesis for the average case run time of this program, is when the program only encounters a word (and therefore also the prefix for any word) half of the time. Based on this, I would estimate that running times for the boggle problem would be relatively slow in exponential growth. Note that it is still exponential; however the growth is not extreme. This seems to hold true as my board size increased using the MakeBoggleBoard.java using say 1, 5, 20, 50, and 100 size boards. It definitely was not linear, and also definitely not logarithmic. All of my experimentation seemed to hold that it was a slow exponential growth, helped by the prefix checking and other methods, which resulted in the average case.
Output on Sample Input Space
10

elrsecsnls

atrcnaesyn

osemlaniqe

oecsyeidlo

nbisrcfase

nirrnuottc

senolagida

iaoaelegny

rihhoroadi

nliyaantti
Results in the following output file:

e l r s e c s n l s

a t r c n a e s y n

o s e m l a n i q e

o e c s y e i d l o

n b i s r c f a s e

n i r r n u o t t c

s e n o l a g i d a

i a o a e l e g n y

r i h h o r o a d i

n l i y a a n t t i

aaron

ace

act

acts

age

agita

ago

ail

air

ale

alms

alone

anise

ant

best

bin

birr

cad

caen

can

cane

cay

ceo

crest

crt

cry

dace

day

die

dig

din

dina

dine

dis

dts

eat

eats

ecu

egad

ego

enid

eon

err

fad

fast

fat

fie

fin

final

fine

finis

fog

gad

gal

gale

gel

gig

gigo

got

haole

hoe

hone

honor

honors

hora

ibices

ibis

ice

ida

ilia

ina

inn

iris

lag

lan

lane

lea

leah

leg

legal

legit

lela

leo

leon

leona

liaise

lon

lone

lorn

lye

lyses

lysin

mss

nae

nib

noah

noel

noes

noh

noose

nor

nora

norris

oat

oats

old

oldie

ole

oleo

one

oneiric

oran

orrin

orris

ran

rant

rec

rem

rest

rib

rice

ricer

rinse

rise

risen

road

roe

role

ron

rona

rye

sad

sadie

sat

sati

scan

sea

sean

sec

sect

sen

senor

sic

sid

sin

sine

sir

sloe

sly

soon

sro

stael

std

tad

tag

tao

tog

toga

tres

yea

Number of words found: 160
