Assignment 1 – Write Up

Analysis of Optimizations Used:

The two most time consuming operations in this project were building the Patricia tree from the dictionary file, and searching every valid boggle combination for a word match. In order to speed up the program it was obvious that these operations needed to be scrutinized first.

Building the Patricia tree from the dictionary file was relatively straightforward, consisting of a read from file and insert method. Reading from the file is strictly linear using the built-in java.io.* library functions, but the insertion method was greatly configurable. My implementation closely resembles the algorithm described in lecture, but it adds handling for additional cases such as a blank tree or a null child node. All in all, optimizations were minimal for this phase of the boggle project.

Conversely, the search phase has a very useful optimization which speeds up all cases of runtime considerably. The backbone of the speed-up was a change in the standard method for progressing through all combinations of words formulated by the boggle rules. A standard implementation would check all cases for each and every letter, for example if you had a 2x2 cube
A
B

C
D

It would check A, AC, ACD, ACDB, AB, ABD, ABDC, B, BA, BAC, BACD, BD, BDC, BDCA, C, CD, CDB, CDBA, CA, CAB, CABD, D, DC, DCA, DCAB, DB, DBA, DBAC DBAC—using the Patricia “search” function 28 times. A glance at the words shows that probably only one word would have matched a dictionary entry (CAB), and it is reasonable to say this method is inefficient.

An improved method uses the structure of the Patricia tree to our advantage and continues down paths only when a valid word is possible. Also, because the rules state that words need to be at least three letters, we don’t need to call the Patricia search if the length of our formed word is less then three. Our new implementation would check ACD, ABD, ABDC, BAC, BACD, BDC, CDB, CAB, CABD, DCA, and DBA— calling the Patricia search function only 11 times. This improvement is even more remarkable when increasing the size of the cube, because as the size of the boggle word increases- the chance of being a prefix for any existing word in the dictionary decreases.

Initially I used the “check everything” method for finding words in the boggle cube, and it worked fine with really small cubes (3x3). Then I tested my program with a 6x6 cube. I waited for about a minute, went to the kitchen and made a sandwich, made a phone call to the DMV, did a load of laundry—and it still was progressing through the word possibilities. After switching to the improved method, the 6x6 cube took less then 50ms according to my system clock(I tested a 100x100 cube just to see what would happen and the search phase took just barely over 6 seconds).
Analysis of the Worst Case Complexity for the Algorithm:
The absolute worst case for my algorithm would be a cube where every combination of letters produced a valid word or valid prefix. I cannot possibly imagine a cube that would fit the worst case in our situation (bigger then a 2x2 cube), but nevertheless it may exist in some other situation. The search method for a square of k size would be very complex due to the rules of boggle, but is between k^k and k^2k.
Hypothesis for the average case complexity:

I hypothesize that the average runtime of my program will resemble a function f(k) = 8*k² where k is the size of a side of the boggle cube.

This is why:

There are 17576 combinations of three letters in the English alphabet however most three letter combinations are not a word or prefix of any word. I did a quick sample word prefixes and found that in the first 269 words of our dictionary there were only 15 unique prefixes of three letters, if this trend were to continue in our dictionary we would have only about 3500 unique prefixes of three letters, thereby ending the thread of boggle combinations of three letters in about 80% of the cases (assuming every letter has a equal likelihood of being on the boggle board for simplicity).

As a boggle string gets longer, even less prefix possibilities exist; for guessing purposes Ill say that only 20% of the strings that matched or were a prefix with three letters will match or be a prefix with four letters. At this point the drop off becomes even more extreme as the number of possible words in the dictionary shrinks to about 10% of those that survived the last cut. Therefore only 1 in 5 combos will go beyond 3, 1 in 25 will go beyond 4 letters, and 1 in 250 will go beyond 5 letters.

Additionally, there are 8 maximum possibilities for 3 letters in our boggle board. This roughly makes the average number of times search is called in our program 8*k². The total runtime= (constant time to build Patricia tree) + (time to build Boggle board) + (time to find Boggle words) + (time to sort and remove duplicates of found words) + (time to print out words).
Results of Experimentations:

Next page(Times in ms).

Patricia tree build time average: 1547 ms
Sort/Delete/Output to file average: 16 ms

[image: image1.emf]# of times

search() was

called

Test 1Test 2Test 3Average

Size = 101563157216101581.667

1581

Size = 3971578159415781583.333

441563156216091578

591610156215631578.333

Average66.66666671579

Predicted72

Size = 57331625170316401656

4301625159415941604.333

6441640162515781614.333

Average602.3333331625

Predicted200

Size = 712071656162516091630

12531625167216561651

9971625162516561635.333

Average1152.333331639

Predicted392

Size = 922301687168716411671.667

18781656165616411651

24251703168716561682

Average2177.666671668

Predicted576

 SUM()
Discussion of Experiment Procedure:

I added counters to my driver file to measure the results of different sized boards. I generated three different boards for each size and ran the program three times for each to average out the figures.

The experiment attempted to show the relationship of the size of the boggle board with the total runtime, and number of times the Patricia search (String) function was called. The results show that there is a constant runtime of around 1581ms that is not related to the search (String) function. I singled out the Patricia tree building section of the program and found that it took on average 1540ms. Additionally I’d like to add that measuring time in this program is largely dependent on outside factors(such as CPU speed, load, ect) and oddly favors some times over others.

I believe the number of times search () was called is more important because it shows how good my optimization improved the standard implementation.

Explanation of Experimental Results:

As you can see, my hypothesis was not very close to my results. There was no way for me to guess what the run-time would be, but I do believe that I proved that as the size of the boggle board gets larger, the runtime increases. I was also right in assuming that the runtime for building the Patricia tree was more or less a constant time, as was the runtime for the other parts of the program.

My predictions were too low for a couple reasons: they did not take into account the distribution of letters increasing the chances for valid prefixes; the formula was based on assumptions from small samples; the formula did not take into account the number of found words impacting the number of times search was run. The first problem was known before the results, I simply did not go sufficiently in depth to calculate distribution of letters into my predictions. The second problem was a limited time problem; if the accuracy of the hypothesis and the project was really important, I would not have settled on a small sample. The third problem was an oversight, it makes sense that with the greater number of found words, the more times search(String) would have been called. I should of made a guess at the average number of words found and formulated it into my hypothesis.

Conclusion:

The results of the experiment were somewhat startling but not shocking or puzzling. I think the most educational part of the process was the optimization of the code, it really made a difference when I changed the searching procedure and perhaps I should have compared before and after optimization in my experiment as well. There are still some additional optimizations that I could revisit(sort, recursion minimization) if needed later on in the educational process, and I made sure that my code was very well documented if I do.
_1199557526.xls
Sheet1

				# of times search() was called		Test 1		Test 2		Test 3		Average

		Size = 1		0		1563		1572		1610		1581.6666666667

												1581

		Size = 3		97		1578		1594		1578		1583.3333333333

				44		1563		1562		1609		1578

				59		1610		1562		1563		1578.3333333333

		Average		66.6666666667								1579

		Predicted		72

		Size = 5		733		1625		1703		1640		1656

				430		1625		1594		1594		1604.3333333333

				644		1640		1625		1578		1614.3333333333

		Average		602.3333333333								1625

		Predicted		200

		Size = 7		1207		1656		1625		1609		1630

				1253		1625		1672		1656		1651

				997		1625		1625		1656		1635.3333333333

		Average		1152.3333333333								1639

		Predicted		392

		Size = 9		2230		1687		1687		1641		1671.6666666667

				1878		1656		1656		1641		1651

				2425		1703		1687		1656		1682

		Average		2177.6666666667								1668

		Predicted		576

