
Assignment 1: Boggle

The Game of Boggle

The main goal of this assignment was to find all the words in a boggle board following the rules of boggle. In boggle, a word must be three or more letters long and can be formed by moving around the board of characters horizontally and vertically without retracing a position on the board. The program written in this assignment made a k by k character array from the file “board” to use as the boggle game board. After finding all the words that could be formed, the program wrote the list of words alphabetically to a file named “foundwords”.

This assignment also required a dictionary containing the words to look for in the boggle board. The dictionary was implemented using a Patricia tree. The words in the “5desk.txt” file were extracted and then added to the dictionary. Using a Patricia tree helped optimize the program significantly, because it made searching for a particular word in the dictionary fast. The words in the dictionary were stored as strings of bits following the Patricia tree structure. Therefore, the node containing each string of bits could be easily reached by traversing the path through the Patricia tree corresponding to the 0’s and 1’s in the string being searched for.

To optimize the search for words in the boggle board, the algorithm checked if the current string of characters was a prefix of any words in the dictionary before proceeding to a new position on the board and adding another letter to the string. This allowed the program to stop continuing in a path if no more words in the dictionary could be formed from the string of characters in that path. If a prefix check was not performed, it would take a lot longer for the program to run because the program would have to make all the possible character strings from the board and then check each one of those to see if it was a word from the dictionary. Although this makes the algorithm faster in general cases, it is possible for the prefix-checking algorithm to take as long as the non-prefix checking algorithm at its worst-case scenario.

The worst-case scenario of solving all the words in a boggle board would be if every single possible path of characters was a word. If this were the case, the prefix check would always give the go-ahead to proceed to each of the letters around it that were not yet traversed, because each path would create a new word. To see how bad the worst-case scenario actually is, it was hard-coded into the program that each path was a word. It was also hard-coded that the current path was the prefix of other words, so the program would continue traversing the board until it found all the possible paths. The following table has recorded number of words found when all possible paths within the boggle board are traversed and every path is a word.
	k x k Boggle board size
	Total number of words found in worst case

	3x3
	620

	4x4
	28,448

	5x5
	3,060,312

	6x6
	873,239,616

Table 1 – Worst-case complexity of k x k-sized boggle boards.

Running the worst-case scenario took a really long time to run, so the words found were only counted and not saved. Even just counting the words found and not doing anything with them took a lengthy amount of time, so only up to a 6x6 board size was traversed under worst-case conditions.

On average, the program would traverse the board a significantly lot less times and not find nearly so many words. I’d hypothesize that the program, on average, would only iterate less than one hundredth as many times as the worst case. This is because normally the board is made from randomly generated letters, and so for a board to have every single path be a word would be almost impossible. Normally, a string of characters would be reached often that could not be made into a word. Words need to have consonants with vowels spread among them so pronounceable sounds can be formed. This would limit possible paths if a certain area of the board lacked vowels. Also, a lot of words are short in length (probably ten letters or less). This would limit how far a path of letters could be followed.

Running the boggle solving program under normal conditions with a random board generated, a sampling of runs was performed. The number of paths checked and words found were counted for each run. The results of this experiment are shown in the following table for several k x k-sized boards.

	k x k Boggle board size
	Average number of paths checked
	Average number of words found

	3x3
	118
	10

	4x4
	321
	16

	5x5
	653
	37

	6x6
	1016
	49

	10x10
	3296
	158

Table 2 – Averaged results from sample runs on randomly generated boards.

It took a lot less time to run all of these test runs than the worst-case tests. Even a 10x10-sized board was easily and quickly tested. These results confirm my conjecture that the average case complexity is greatly less significant. Because the run times for the smaller boards (3x3) and larger boards (10x10), it seems that a lot of the time under normal conditions is from creating the dictionary and not from searching the boggle board.

When I was testing the worst-case conditions, I found that the link list I used to store found words was too slow. This is because I inserted the word in alphabetically right away when I found it. In the worst-case scenario when a lot of words are found, it takes too long to enter the new word alphabetically. If the program would normally handle large lists of found words, I would sort the list of words only once after finding all the words. However, because typically the list of found words is small, I was satisfied with using the linked list and sorting the words as I found them.

