
10/10/2012

1

Semantic Analysis

Is Syntax Analysis Enough?
Parsing cannot catch some errors:

• Some language constructs are not context-free

• Example: identifiers are declared before use

Add a semantic analysis phase to find remaining problem as the last phase of
the front end.

Semantic analyzer checks:

• All identifiers are declared before use

• Type consistence

• Inheritance relationship is correct

• A class is defined only once

• A method in a class is defined only once

• Reserved identifiers are not misused

• …

Matching Declarations with Uses
We must do this in most languages (static languages):

void foo() {

char x;

...

{

int x;

...

}

x = x + 1;

}

Which x do we match in the x = x + 1; statement?

Scope
The scope of an identifier is the portion of a program in which that identifier is
accessible

• The same identifier may refer to different things in different parts of the
program

• Different scopes for same name don’t overlap

• An identifier may have restricted scope

Two types: static scope and dynamic scope

Static Scope
Static scope depends on the program text, not run-time behavior

• Most languages have static scope

• Refer to the closest enclosing definition

void foo() {

char x;

...

{

int x;

...

}

x = x + 1;

}

Dynamic Scope
A dynamically-scoped variable refers to the closest enclosed binding in the
execution of the program.

#!/usr/bin/perl
use strict;
use warnings;

&foo;

sub foo {
my $a = 3;
&bar;

}

sub bar {
print $a;

}

#!/usr/bin/perl
use strict;
use warnings;

&foo;

sub foo {
local $a = 3;
&bar;

}

sub bar {
print $a;

}

10/10/2012

2

Dynamic Scope
A dynamically-scoped variable refers to the closest enclosed binding in the
execution of the program.

#!/usr/bin/perl
use strict;
use warnings;

&foo;

sub foo {
my $a = 3;
&bar;

}

sub bar {
print $a;

}

Name "main::a" used only once: possible typo at ex.pl line 13.
Use of uninitialized value $a in print at ex.pl line 13.

Dynamic Scope
A dynamically-scoped variable refers to the closest enclosed binding in the
execution of the program.

#!/usr/bin/perl
use strict;
use warnings;

&foo;

sub foo {
local $a = 3;
&bar;

}

sub bar {
print $a;

}

3

Tracking Static Scope
We finally need to construct our other major data structure: the symbol table.

A symbol table holds a mapping between identifiers (symbols) and their

• Types (size and interpretation)

• Locations (declarations/uses and line numbers)

A use is a non-defining occurrence of the identifier.

Symbol tables reflect environments, which are sets of bindings from an identifier
to its meaning.

We’ll use the notation σ0 = {x ↦ int, s ↦ String} to indicate that there is some
environment, σ0, with the identifiers x and s with types int and String respecitively.

Example
public class Example {

int b;

public int f(int a) {

int b = 4;

int c = a + b;

return c;

}

}

There exists some initial environment, σ0, that
contains information about the things that enclose
class Example.

For instance, we implicitly extend Object and
that must be defined in σ0.

Example then defines a new environment, that is
the combination of σ0 and Example:

σ1 = σ0 + {b ↦ int, f ↦ {int, (int)}}

f defines:

σ2 = σ1 + {a ↦ int, b ↦ int, c ↦ int}

But what is the meaning of the + operator for
environments?

Combining Environments
When we try to combine our environments from Example and f, we get a
problem:

{b ↦ int, f ↦ {int, (int)}} + {a ↦ int, b ↦ int, c ↦ int}

There is a conflict between the identifiers b in both scopes. When we write:

int c = a + b;

which b do we want?

We have already indicated that we want the most recent declaration in the nearest
enclosing scope, and that we say that f’s b shadows the b in Example.

That means that + is not commutative, σX + σY is different than σY + σX

Implementing Environments
Two basic strategies to keep track of the changes that each scope makes.

Functional Style

• Keep σ1 unchanged while we create σ2 and σ3

Imperative Style

• Destructively modify σ1 until it becomes σ2

• While σ2 exists, we cannot look things up in σ1

• When we are done with σ2, undo the modifications to get σ1 back

Either style of environment management can be used regardless of whether the
language being compiled is functional, imperative, or OOP.

10/10/2012

3

Data Structures for Symbol Tables
We have an unknown amount of information that will need to be searched,
inserted, and organized.

The usual data structure suspects:

• Array

• List

• Tree

• Hash table

Consider each for only a single environment. What operations will we need?

• Create a new symbol

• Lookup a symbol

• Delete the structure

Linked List of Symbols

Arrays are not good for insertion and so we may consider instead a linked list.

They have the same search cost (O(n)) but allow for easy insertion and removal.

One possible optimization to do is to move the element you find after a search to
the start of the list.

Then subsequent lookups of the most frequent identifiers will be fast.

a int b int

Binary Search Tree

Could build a binary search tree to quickly find identifier names.

Uses a bit more space for the additional pointers.

May be no better than the linked list if the tree is unbalanced.

a

int

b

int

Hashtable

Use a hash function to index a table whose contents point to a linked list of
elements that hashed there (closed addressing or chaining)

Hash function of input is computable in O(1) time, so search is fast.

Table needs to be much larger than the input to avoid too many collisions making
the chain too large.

a int ab int

x int

Multiple Scopes
We don’t want to delete information out of the symbol tables, but we still must deal
with shadowing.

Can use a stack to manage which scopes are active currently

σ0

σ1

σ3

σ2

Stack

σ0 Symbol
Table

σ1 Symbol
Table

σ2 Symbol
Table

σ3 Symbol
Table

Multiple Scopes
Or we can make a tree of symbol tables.

If we do not find a symbol in one, we can go up to the parent.

σ0

σ1

σ3

σ2

σ0 Symbol
Table

σ1 Symbol
Table

σ2 Symbol
Table

σ3 Symbol
Table

10/10/2012

4

Multiple Scopes
Add nesting level to elements in the hashtable

Link together different entries for the same identifier and associate nesting level
with each occurrence of the same name

• The first one is the latest occurrence of the name

• When exiting level k, remove all symbols with level k

• Inconvenient for dot access (Class.Func)

a int 2 a int 1

x int 2

Type Checking
Type checking will proceed in two passes:

1. Build the symbol table (probably from a stack or tree of hashtables)

2. Perform the semantic analysis

Why can’t we do both at once?

class A {

B b;

}

class B {

A a;

}

In languages like Java, we can have co-defined types, so we must find the types
before we can check them.

Symbol Table Entries
What constitutes a symbol? What information would we need to keep about each
symbol?

This is language dependent. In MiniJava:

• Identifiers come from class names, method names, and variable names

• Methods are bound to their signatures (return type and parameter list)

• Local variables are bound to the methods they’re declared in

• Variable and formal parameter names are bound to their type.

• Class names should be bound to their member variables and methods

Creating a class means creating a new type.

Phase 1: Build the table
We can construct a BuildSymbolTableVisitor which visits each node in the
AST.

For class declarations, we add a new entry to the top-level (what we called σ0)
symbol table. (MiniJava does not support inner classes.)

For method declarations, we add entries to the class with the signature of the
method.

For parameters and variables, we add them to the appropriate symbol table at the
appropriate nesting.

This visitor can detect certain errors, most notably redeclaration

Phase 2: Check the Types
Create a TypeCheckVisitor that walks the AST again. Its visit method
returns a representation of the type of the expression so that we can forward that
information to parent nodes in the tree.

Examine each statement and expression:

• If it is a binary operator, check that the left and right hand side are
compatible

• Could be the same type or one might be coerced to the other

• Could be a subclass relationship

• Method names must exist in the class

• Method actual parameter number and types must be matched

• Method returns a typed-value or void

• Class member variables must exist and yield the proper type

Errors
Report errors and continue on so that more than one message can be displayed
per compilation attempt.

That may mean adding invalid symbols to the symbol table just to be able to
continue.

The output of the semantic analysis phase should be a valid program in some
intermediate representation so that later phases do not need to do as much error
checking.

