
9/12/2012

1

CS 1622:
Syntax Analysis

Jonathan Misurda

jmisurda@cs.pitt.edu

Parsing
Input: Sequence of tokens

Output: Abstract Syntax Tree

Example:

IF (ID(‘x’) > NUM(‘3’)) { ID(‘y’) INCREMENT ; }

if-statement

>

x 3

stmt_list

post-inc

y

cond_expr

Parsing
The lexing phase has left us with a set of tokens.

We now need to determine the role of those tokens in context.

We’ll use a parser to produce a parse tree that represents the structure of the
input.

A tree is used because the rules of a programming language are usually recursive.

For example:
if-statement = if (condition) statement;

statement = if-statement | while-statement | …

Can We Use REs for Parsing?
Quintessential example of the lack of power of REs: Matching parenthesis.

Alphabet: (and)

Language: All strings that contain properly matched and nested parenthesis

Describe strings with pattern: (i)i (i≥1):

Our finite automata would need to have states that represent each number of
currently open parenthesis. (That is, a state for “(”, “((”, “(((”, …)

That number could be infinite. REs are converted into finite state automata. This
is a contradiction.

More Power
If regular expressions and finite state automata are insufficient for parsing, we will
need a more powerful formalism.

To do this, we will use the concept of a Context Free Language.

Now that we have multiple categories of languages, let us generalize this notion
first.

Grammar
Recall the definition of a language:

Language: set of strings over alphabet

Alphabet: finite set of symbols

Null string: 

Sentences: strings in the language

It is possible to describe a language using a grammar

• Define English using English grammar (as we learn in school)

9/12/2012

2

Grammars
A grammar consists of 4 components (T, N, s, ):

T — set of terminal symbols

• Essentially tokens — appear in the input string

N — set of non-terminal symbols

• Categories of strings impose hierarchical language structure

• Useful for analysis. Examples: declaration, statement, loop, ...

s — a special non-terminal start symbol that denotes every sentence is derivable
from it

 — a set of production rules:

“LHS → RHS”: left-hand-side produces right-hand-side

Derivation
“LHS → RHS”

• Replace LHS with RHS

• Specifies how to transform one string to another

ߚ ⇒ string  :ߙ derives 
• ߚ ⇒ ߙ — 1 step

• ߚ
∗
⇒ ߙ — 0 or more steps

• ߚ
ା
⇒ ߙ — 1 or more steps

Example
Language L = { any string with “00” at the end } (/0{2}$/)

Grammar G = (T, N, s, )

T = {0, 1}

N = {A, B}

s = A

 = { A → 0A | 1 A | 0 B,

B → 0

}

Derivation: from grammar to language

• A ⇒ 0A ⇒ 00B ⇒ 000

• A ⇒ 1A ⇒ 10B ⇒ 100

• A ⇒ 0A ⇒ 00A ⇒ 000B ⇒ 0000

• A ⇒ 0A ⇒ 01A ⇒ ...

A CB

1

0

00

Chomsky Hierarchy of Languages
A classification of languages based on the form of grammar rules

• Classify not based on how complex the language is

• Classify based on how complex the grammar (the describe the
language) is

Four types of grammars:

• Type 0 — recursive grammar

• Type 1 — context sensitive grammar

• Type 2 — context free grammar

• Type 3 — regular grammar

Regular Languages
Form of rules:

A → 
or

A → B

where A,B  N,  T

Regular grammars define REs.

Example:

A → 1A

A → 0

Context Free Languages
Form of rules:

A → 

where A  N,   (N  T)+

A can be replaced by  at any time.

Proper CFLs have no “erase rule” where a production is replaced by .
• If there are rules deriving empty string, rewrite to remove empty rule

(Such as in Chomsky Normal Form)

Example:

S → SS

S → (S)

S → 

9/12/2012

3

Context Sensitive Languages
Form of rules:

A → 

where A  N+;    (N  T);  (N  T)+; |A| ≤ ||

Replace A by  only if found in the context of  and 

No erase rule.

Example:

aAB → aCB

Unrestricted/Recursive Languages
Form of rules:

→ 

where  (N  T)+,   (N  T)*

The erase rule is allowed.

No restrictions on form of grammar rules.

Example:

aAB → aCD

aAB → aB

A → 

Are CFGs enough for PLs?
We’ve determined that because of nesting and recursive relationships in
programming languages that REs (type 3 grammars) are insufficient.

What about Context Free (type 2) grammars?

Imagine we want to describe the grammar of valid C or Java programs that have
the declaration of a variable before their use:

S → DU

D → int identifier;

U → identifier ‘=’ expr;

Are CFGs enough for PLs?
The CFG allows for the following derivations:

S ⇒ DU ⇒ int x; x=0;

S ⇒ DU ⇒ int x; y=0;

S ⇒ DU ⇒ int y; x=0;

S ⇒ DU ⇒ int x; y=0;

You would need a Context Sensitive grammar (type 1) to match the definition to
the use.

So why do we seem to want to use CFGs?

• Some PL constructs are context free: If-stmt, declaration

• Many are not: def-before-use, matching formal/actual parameters, etc.

• We’ll like CFGs because they are powerful and easily understood.

• But we’ll need to add the checks that CFGs miss in later phases of the
compiler.

Language Classification Summary
Regular Grammar ⊆ CFG ⊆ CSG ⊆ Recursive Grammar

