CS 1622:
Syntax Analysis

Jonathan Misurda
jmisurda@cs.pitt.edu

9/12/2012

Parsing

Input: Sequence of tokens
Output: Abstract Syntax Tree

Example:

| ID(y) [INCREMENT | |}

if-statement
cond_expr
-stmt_l ist

post-inc

Parsing

The lexing phase has left us with a set of tokens.
We now need to determine the role of those tokens in context.

We'll use a parser to produce a parse tree that represents the structure of the
input.

Atree is used because the rules of a programming language are usually recursive.

For example:
if-statement = if (condition) statement;

statement = if-statement | while-statement |

Can We Use REs for Parsing?

Quintessential example of the lack of power of REs: Matching parenthesis.

Alphabet: (and)
Language: All strings that contain properly matched and nested parenthesis

Describe strings with pattern: (') (i21):

Our finite automata would need to have states that represent each number of
currently open parenthesis. (That is, a state for “(", “((", “((", ...)

That number could be infinite. REs are converted into finite state automata. This
is a contradiction.

More Power

If regular expressions and finite state automata are insufficient for parsing, we will
need a more powerful formalism.

To do this, we will use the concept of a Context Free Language.

Now that we have multiple categories of languages, let us generalize this notion
first.

Grammar

Recall the definition of a language:
Language: set of strings over alphabet
Alphabet: finite set of symbols
Null string: €

Sentences: strings in the language

Itis possible to describe a language using a grammar
« Define English using English grammar (as we learn in school)

9/12/2012

Grammars

Derivation

A grammar consists of 4 components (T, N, s, 8):

T — set of terminal symbols
« Essentially tokens — appear in the input string

N — set of non-terminal symbols
« Categories of strings impose hierarchical language structure
« Useful for analysis. Examples: declaration, statement, loop, ...

s — a special non-terminal start symbol that denotes every sentence is derivable
from it

8 — a set of production rules:
“LHS — RHS": left-hand-side produces right-hand-side

“LHS — RHS”
* Replace LHS with RHS
« Specifies how to transform one string to another

B = a: string B derives a.

c f=>a — 1 step
- B N a — 0 or more steps
< B 3 a — 1 or more steps

Example

Chomsky Hierarchy of Languages

Language L = { any string with “00” at the end } (/0{2}$/)

Grammar G = (T, N, s, 3)
T={0, 1}
N ={A, B}
s=A
5={ A —>0A|1A|0B,
B—-0

Derivation: from grammar to language
« A= 0A=00B = 000
« A= 1A= 10B = 100
« A= 0A= 00A = 000B = 0000
« A= 0A=01A= ..

A classification of languages based on the form of grammar rules
« Classify not based on how complex the language is
« Classify based on how complex the grammar (the describe the
language) is

Four types of grammars:
« Type 0 — recursive grammar
+ Type 1 — context sensitive grammar
« Type 2 — context free grammar
« Type 3 — regular grammar

Regular Languages

Context Free Languages

Form of rules:
A-a
or
A— aB

where ABeN,aeT
Regular grammars define REs.
Example:

A—1A
A—0

Form of rules:
Ay

whereAeN,ye (NUT)*

A can be replaced by y at any time.

Proper CFLs have no “erase rule” where a production is replaced by «.
« If there are rules deriving empty string, rewrite to remove empty rule
(Such as in Chomsky Normal Form)

Example:
S —8S
§—(S)
S—¢

Context Sensitive Languages

9/12/2012

Form of rules:
oAB — ayp

whereAe N* a,Be (NUT)ye (NUT); A<y
Replace A by v only if found in the context of o and f.
No erase rule.

Example:
aAB — aCB

Unrestricted/Recursive Languages

Form of rules:
a— B

wherea e NUT), Be (NUT)
The erase rule is allowed.
No restrictions on form of grammar rules.
Example:
aAB — aCD

aAB — aB
A—e

Are CFGs enough for PLs?

We've determined that because of nesting and recursive relationships in
programming languages that REs (type 3 grammars) are insufficient.

What about Context Free (type 2) grammars?

Imagine we want to describe the grammar of valid C or Java programs that have
the declaration of a variable before their use:

S—DU
D — int identifier;
U — identifier ‘=" expr;

Are CFGs enough for PLs?

The CFG allows for the following derivations:
S = DU = int x; x=0;
S = DU = int x; y=0;
S = DU = inty; x=0;
S = DU = int x; y=0;

You would need a Context Sensitive grammar (type 1) to match the definition to
the use.

So why do we seem to want to use CFGs?

+ Some PL constructs are context free: If-stmt, declaration

+ Many are not: def-before-use, matching formal/actual parameters, etc.
We'll like CFGs because they are powerful and easily understood.

But we’'ll need to add the checks that CFGs miss in later phases of the
compiler.

Language Classification Summary

Regular Grammar € CFG < CSG < Recursive Grammar

recursively enumerable

context-sensitive

context-free

