
9/5/2012

1

CS 1622:
Lexical Analysis

Jonathan Misurda

jmisurda@cs.pitt.edu

Lexical Analysis
Problem: Want to break input into meaningful units of information

Input: a string of characters

Output: a set of partitions of the input string (tokens)

Example:
if(x==y) {

z=1;

} else {

z=0;

}

“if(x==y){\n\tz=1;\n} else {\n\tz=0;\n}”

Tokens
Token: A sequence of characters that can be treated as a single local entity.

Tokens in English:

• noun, verb, adjective, ...

Tokens in a programming language:

• identifier, integer, keyword, whitespace, ...

Tokens correspond to sets of strings:

• Identifier: strings of letters and digits, starting with a letter

• Integer: a non-empty string of digits

• Keyword: “else”, “if”, “while”, ...

• Whitespace: a non-empty sequence of blanks, newlines, and tabs

Why Tokens?
We need to classify substrings of our source according to their role.

Since a parser takes a list of tokens as inputs, the parser relies on token
distinctions:

• For example, a keyword is treated differently than an identifier

Design of a Lexer
1. Define a finite set of tokens

• Describe all items of interest

• Depend on language, design of parser

recall “if(x==y){\n\tz=1;\n} else {\n\tz=0;\n}”

• Keyword, identifier, integer, whitespace

• Should “==” be one token or two tokens?

2. Describe which string belongs to which token

Lexer Implementation
An implementation must do two things:

1. Recognize substrings corresponding to tokens

2. Return the value or lexeme of the token

A token is a tuple (type, lexeme):
“if(x==y){\n\tz=1;\n} else {\n\tz=0;\n}”

• Identifier: (id, ‘x’), (id, ‘y’), (id, ‘z’)

• Keywords: if, else

• Integer: (int, 0), (int, 1)

• Single character of the same name: () = ;

• The lexer usually discards “non-interesting” tokens that don’t contribute
to parsing, e.g., whitespace, comments

Lexical analysis looks easy but there are problems

9/5/2012

2

Lexer Challenges
FORTRAN compilation rule: whitespace is insignificant

• Rule was motivated from the inaccuracy of card punching by operators

Consider:
• DO 5I=1,25

• DO 5I=1.25

• The first: a loop iterates from 1 to 25 with step 5

• The second: an assignment

Reading left-to-right, cannot tell if DO5I is a variable or DO statement until , or . is
reached.

Lexer Challenges
C++ template syntax:

vector<student>

C++ stream syntax:

cin >> var

The problem:

vector<vector<student>>

Lexer Implementation
Two important observations:

• The goal is to partition the string. This is implemented by reading left-to-right,
recognizing one token at a time.

• Lookahead may be required to decide where one token ends and the next one
begins.

To describe tokens, we adopt a formalism based upon Regular Languages:

• Simple and useful theory

• Easy to understand

• Efficient implementations

Languages
Definition:

Let be a set of characters.

A language over is a set of strings of the characters drawn from  .

Examples:

Alphabet = English characters

Language = English sentences

Alphabet = ASCII

Language = C programs

Not every string on English characters is an English sentence

Not all ASCII strings are valid C programs

Notation
Languages are sets of strings.

Need some notation for specifying which set we want to designate a language.

• Regular languages are those with some special properties.

• The standard notation for regular language is using a regular
expression

Regular Expressions
A single character denotes a set containing the single character itself:

‘x’ = { “x” }

Epsilon () denotes an empty string (not the empty set):

= { “” }

Empty set is { } = ∅
size(∅) = 0

size() = 1

length() = 0

9/5/2012

3

Compound REs
Alternation: if A and B are REs, then:

A | B = { s | s  A or s  B }

Concatenation of sets/strings:

AB = { ab | a  A and b  B }

Repetition (Kleene closure):

A* =	⋃ ௜௜ஹ଴ܣ where Ai = A...A (i times)

A* = {} + A + AA + AAA + ... (zero or more As)

Convenient Abbreviations
One or more:

A+ = A + AA + AAA + ... = A A* (one or more As)

Zero or one:

A? = A | 

Character class:

[abcd] = a | b | c | d

Wildcard:
. (dot) matches any character (sometimes excluding newline)

Examples
Regular expressions to determine Java keywords:

if | else | while | for | int | …

A literal string like “if” is shorthand for the concatenation of each letter

Integer literal:
digit = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

digit = [0123456789]

digit = [0-9]

integer = digit digit*

integer = digit+

Is this good enough?

Examples
Whitespace:

whitespace = [\t\n]

C identifiers:

Start with a letter or underscore

Allow letters or underscores or numbers after the first letter

Cannot be a keyword

id = [a-zA-Z_][a-zA-Z_0-9]*

Examples
Valid Email Addresses:

(?:[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\.[a-z0-
9!#$%&'*+/=?^_`{|}~-]+)*|"(?:[\x01-\x08\x0b\x0c\x0e-
\x1f\x21\x23-\x5b\x5d-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-
\x7f])*")@(?:(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\.)+[a-z0-
9](?:[a-z0-9-]*[a-z0-9])?|\[(?:(?:25[0-5]|2[0-4][0-
9]|[01]?[0-9][0-9]?)\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-
9][0-9]?|[a-z0-9-]*[a-z0-9]:(?:[\x01-\x08\x0b\x0c\x0e-
\x1f\x21-\x5a\x53-\x7f]|\\[\x01-\x09\x0b\x0c\x0e-\x7f])+)\])

Java RegEx Support
import java.util.regex.Pattern;

import java.util.regex.Matcher;

Pattern p = Pattern.compile("a*b");

Matcher m = p.matcher("aaaaab");

boolean b = m.matches();

Or:
boolean b = Pattern.matches("a*b", "aaaaab");

String class:
String s = new String(“aaaaab”);

boolean b = s.matches ("a*b");

9/5/2012

4

Predefined Patterns in Java
Pattern Description
[abc] a, b, or c (simple class)
[^abc] Any character except a, b, or c (negation)
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]
^ The beginning of a line
$ The end of a line
\b A word boundary
\B A non-word boundary
X{n} X, exactly n times
X{n,} X, at least n times
X{n,m} X, at least n but not more than m times

