
8/27/2012

1

CS 1622:

Introduction to Compiler Design

Jonathan Misurda

jmisurda@cs.pitt.edu

What is a Compiler?

A compiler translates a source specification into a target specification.

Traditionally, we consider compilers that take a source language and produce

target (machine) code. However, there can be many different types of targets.

 Source Language Target Language

 C/C++ → Machine code

 Java → Java Bytecode

 Perl → Perl Bytecode

 Java Bytecode → Machine code

Compilers vs. Interpreters

Compilation – To translate a source program in one language into an executable

program in another language and produce results while executing the new

program

• Examples: C, C++, FORTRAN

Interpretation – To read a source program and produce the results while

understanding that program

• Examples: BASIC, LISP

Hybrid – Try to use both (such as in Java)

1. Translate source code to bytecode

2. Execute by interpretation on a JVM

or

2. Execute by compilation using a JIT

C Compiler

.c cpp cc1 .o ld

C source

Preprocessor Compiler

Preprocessed

source

Linker

Object

files Executable

gcc

Java Compiler

.java javac .class

JVM

Java source

Compiler

Virtual Machine

Class files

.class

Class files

Compilation

Executable

Data

Output Source Compiler

Pros:

• Fast execution

• Can exploit machine

architecture features

Cons:

• Complexity

• Must be done before

execution

8/27/2012

2

Interpreter

Pros:

• Machine independent

• Easy to debug

• Flexible to modify

Data

Output Source Interpreter

Cons:

• Time overhead

• Space overhead

Phases of Compilation

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Code Optimizer

Code Generator

Source Code

Token Sequence

Syntax Tree

Intermediate Representation

Optimized IR

Assembly/Machine Code

Phases

Lexical Analysis

• Recognize token – smallest stand-alone unit of meaningful information

• Analyze input (strings of characters) from source

• Scan from left to right

• Report errors

Syntax Analysis

• Group tokens into hierarchical groups

• Differentiate if-statement, while-statement, ...

• Report errors

Semantic Analysis

• Determine the meaning using the structure

• Checks are performed to ensure components fit together meaningfully

• Limited analysis to catch inconsistencies, e.g., type checking

• Put semantic meaningful items in the structure

• Produce IR (easier to generate optimized machine code from IRs)

Phases

Code optimization

• Modify program representation so that program:

• Runs faster

• Uses less memory

• Uses less power

• In general, reduce the consumed resources

Code generation

• Produce target code

• Instruction selection

• Memory allocation

• Resource allocation — registers, processors, etc.

Lexing

Input: Source program

Output: Sequence of tokens

Example:

if(x > 3)

{

 y++;

}

IF (ID(‘x’) > NUM(‘3’)) { ID(‘y’) INCREMENT ; }

Parsing

Input: Sequence of tokens

Output: Abstract Syntax Tree

Example:

IF (ID(‘x’) > NUM(‘3’)) { ID(‘y’) INCREMENT ; }

if-statement

>

x 3

stmt_list

post-inc

y

cond_expr

8/27/2012

3

Code Generation

Input: Intermediate representation

Output: Target code

Example:

 slti $t1, 3, $s0

 beq $t1, $zero, L1

 addi $s1, $s1, 1

L1:

if-statement

>

x 3

stmt_list

post-inc

y

cond_expr

Data Structures for Compilation

Abstract Syntax Tree

• Stores the information from the parse and lexing phases

• Walk the tree to produce IR or target code

Symbol Table

• Collect and maintain information about identifiers

• Attributes: type, address, scope, size

• Used by most compiler passes and phases

• Some phases add information:

• lexing, parsing, semantic analysis

• Some phases use information:

• Semantic analysis, code optimization, code generation

• Debuggers also can make use of a symbol table

• gcc -g keeps a version of the symbol table in the object code

Three-pass Compiler

Passes: number of times through a program representation

• 1-pass, 2-pass, multi-pass compilation

• Language becomes more complex → more passes

Phases: conceptual and sometimes physical stages

• Symbol table coordinates information between phases

• Phases are not completely separate

• Semantic phase may do things that syntax phase should do

• Interaction is possible

Front End Middle Back End

Error

Machine Code Source Code IR IR

Compiler Construction

Automatic Generators:

• Lexical Analysis — Lex, Flex, JLex, JFlex

• Syntax Analysis — Yacc, Bison, JavaCUP, JavaCC

• Semantic Analysis

• Code Optimization

• Code Generation

