
 1

SimDispatch Element 
 
The dispatcher’s primary function is to coordinate the timing of events across multiple 
processing elements in the simulation. Its role comprises of two parts: 

1. The EventQueue and related operations 
2. Message (Packet) communication 

 

Event Queue 
 
The event queue is responsible for the execution of tasks in the proper chronological order across 
multiple processing elements. It does so by maintaining a priority queue that is arranged by an 
arbitrary priority metric, most likely a global time. 
 
The queue interface itself is straightforward, supporting enqueue(), dequeue(), and a peek() 
method (that does not dequeue the next element but returns it.) An isEmpty() method also returns 
if there are remaining elements. 
 

Class signature 
class SimEventQueue { 
 public void enqueue(SimEvent argEvent, long priority); 
 public SimEvent dequeue(); 
 public SimEvent peek(); 
 public boolean isEmpty(); 
} 
 
 

Message Communication 
 
In order for the dispatcher to gain control of the simulation at appropriate times, all messages 
generated be processing elements will be sent to the dispatcher, which will then forward the 
message along to the appropriate destination element when all other units in the simulation have 
caught up. 
 
For instance, a PIM may implement send and receive primitives for communication. The send 
primitive should call a method that invokes the dispatcher, passing the message and a priority 
(time). If the PIM is done processing, it will send a message that indicates there is no more 
processing to be performed, which will then allow the dispatcher to pull the next event from the 
queue, and schedule the appropriate processing element to run. The receive primitive would put 
the executing processing element to sleep and request a notification from the dispatcher when the 
anticipated packet arrives. When a processing element has no work to perform, it is in a state of 
receive until the next message arrives. 
 



 2

In order for the callback mechanism to work, the processing elements must first register 
themselves with the dispatcher. All processing elements have a method that responds to 
messages from the dispatcher, and can be used to wake up from a receive call. 
 

Class signatures 
 
class SimDispatchElement extends SimElement { 
 
 //For singleton design pattern 
 private SimDispatchElement(); 
 private SimDispatchElement mySelf; 
 public SimDispatchElement getInstance(); 
 
 //For processing element callback 
 public boolean registerProcessingElement(SimProcessingElement argUnit) 
 
 //Notification of a message from a processing element 
 public void postEvent(SimEvent argEvent, long argTime); 
 
} 

 
class SimProcessingElement extends SimElement { 
 public int processEvent(SimEvent argEvent); 
} 

 
class SimPIM extends SimProcessingElement { 
 
 //communications primitives 
 public void send(SimPacket argPacket); 
 public SimPacket receive(); 
 
 //execution at this PIM has finished 

public void finished(); 
} 

 

Events 
 
The simulation is guided by a chronological progression of events. There are two main classes of 
events in the simulation: 

1. Events that are associated with data transfer and messages in the simulated architecture 
2. Events that indicate transitions in the state of the simulation 

 
This yields a simple class hierarchy of: 



 3

 
 
The SimEvent class is subclassed by the two subdivisions of messages classified by their 
payload. The precise details of the SimPacket class are left for external specification. 
 
Note: This subdivision could also be done by the division suggested above, with the two 
subclasses being SimSimulationEvent and SimSimulatedEvent to represent simulation control 
messages and simulated messages respectively. 
 
Currently, the implementation suggests two subclasses of SimPacketEvent to correspond with a 
message being sent from a processing element, and a message being received by a processing 
element. One subclass of SimNullEvent to notify the dispatcher that a processing element has 
finished its work would also be necessary. Additional subclasses can be added as appropriate. 
 
 


