
Abstract
Self-managed software requires monitoring and code

changes to an executing program. One technology that
enables such self management is software dynamic transla-
tion (SDT), which allows a program’s execution to be inter-
cepted and controlled by a separate software layer. SDT has
been used to build many useful applications, including soft-
ware security checkers that check for code vulnerabilities,
dynamic code optimizers, and program introspection tools.
While these systems use program instrumentation, the instru-
mentation is usually tailored to a specific application and
infrastructure. What is missing is a single scalable and flexi-
ble instrumentation framework that can be used in different
self-managed SDT infrastructures. In this paper, we describe
such a framework, called “FIST,” that can be used and tar-
geted by different algorithms and tools to enable instrumenta-
tion applications that are portable across SDTs and machine
platforms. Our interface supports multiple levels of granular-
ity from source level constructs to the instruction and machine
level. We describe and evaluate FIST’s capabilities in the
Strata system for the SPARC and the Jikes Research Virtual
Machine for Java on the Intel x86.

1. Introduction
Self-managed software systems that dynamically modify

and control the execution of a program have received much
attention due to the increased recognition of their importance.
For example, dynamic optimizers, such as IBM’s Jikes opti-
mizer [1] are self-managing systems that decide when to
apply code transformations at run-time based on program
behavior. In Jikes, decisions about how to optimize a method
are based on the predicted benefit of the optimization and its
cost. Other examples of such self-managed software dynamic
translators (SDT) have been used for detection and repair of
program faults [5,7], enforcing security policies [11], dynamic
compilation and optimization of binary and Java programs
[1], and debugging programs [9]. All of these systems use
information about the executing program to make decisions
about how to control the program’s execution and what to
change. For example, fault detectors check invariants by
instrumenting a program to monitor for anomalous behavior
[6], program debuggers insert instrumentation to track values
[9] (possibly even identifying sources of errors [18] or apply-

ing automatic repairs [5]), and security checkers use instru-
mentation to check for and recover from vulnerabilities [11].
Instrumentation in these and other systems is used to both
gather information and control or modify—i.e., self man-
age—the executing program.

Many instrumentation techniques and systems have been
proposed to monitor and control a program’s execution. These
techniques include static binary rewriting of application code
for profiling [12,17] and dynamic instrumentation
[8,13,14,15]. There have also been infrastructures that aim to
provide instrumentation capabilities for different machine
platforms [8,12]. However, these system lack a common inter-
face and general framework for dynamic instrumentation in
SDT. Yet, with the importance and number of self-managed
applications that use instrumentation and SDT, there is a need
to provide a framework that can be used for different instru-
mentation and control purposes. Such a framework must be
flexible to be configured for different purposes, architectures,
and SDTs and be scalable for different granularities and
amounts of information gathering and controlling.

This paper describes FIST: a new Framework for program
Instrumentation in self-managed Software dynamic Transla-
tors that is both scalable and flexible. The framework can
gather information, control a program, and dynamically adapt
the code and instrumentation. FIST is portable across differ-
ent infrastructures and machine architectures: It has a consis-
tent and single interface for instrumentation that avoids tying
instrumentation algorithms and tools to a single SDT infra-
structure or machine architecture. For example, a security
checker that uses our instrumentation capabilities can be
hosted in any SDT.

This paper makes several contributions, including:
• A framework (FIST) that combines an event-response

model and instrumentation primitives to enable flexi-
ble and scalable information collection and control in
self-managed systems that use SDT,

• Instrumentation primitives that are portable across dif-
ferent SDT infrastructures and machine architectures
with variable length and fixed-length instruction sets,

• An instance of FIST for a software dynamic translator
(Strata) and the SPARC,

• A second instance of the framework for a virtual
machine and JIT for Java (Jikes) for the Intel x86, and

• An evaluation of the performance and memory over-
head of our primitives.

Such a flexible and scalable instrumentation framework
can be configured for many applications and uses. For exam-
ple, it can be used to enforce security policies by monitoring
program vulnerabilities [11]. In these security applications,
monitoring is done for program vulnerabilities at the instruc-
tion level, and when a potential vulnerability is found, more
aggressive sandboxing can be applied. FIST can also be used
to modify the behavior of a program to correct an error.
Indeed, there are many compelling SDT applications that
could benefit from a general framework, ranging from code
profilers, to software testing tools, and to adaptive code envi-
ronments.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

WOSS'04 Oct 31-Nov 1, 2004 Newport Beach, CA, USA
Copyright 2004 ACM 1-58113-989-6/04/0010…$5.00.

Instrumentation in Software Dynamic Translators for Self-Managed Systems

Naveen Kumar, Jonathan Misurda, Bruce R. Childers

Department of Computer Science
University of Pittsburgh

Pittsburgh, PA 15260
{naveen,jmisurda,childers}@cs.pitt.edu

Mary Lou Soffa

Department of Computer Science
University of Virginia

Charlottesville, Virginia 22904
soffa@cs.virginia.edu

The remainder of this paper has the following organiza-
tion. Section 2 describes FIST, while Section 3 describes the
challenges and issues associated with incorporating the
framework into a SDT system and a Java VM. Section 4
describes related work and Section 5 summarizes the paper.

2. FIST
Our instrumentation mechanism is lightweight and allows

trade-offs between the cost and amount of interaction with the
program. It also supports algorithms and techniques that mon-
itor, profile, and affect program execution at different levels in
different ways. The mechanism can dynamically insert and
remove instrumentation to make decisions about how to
instrument and control program execution based on run-time
behavior. It also avoids exposing machine or platform charac-
teristics. To achieve these capabilities, the framework uses an
event-response model that triggers information gathering and
control when a property about a running program is satisfied.
In our approach, an event occurs when a program monitor dis-
covers that a property of the running program is satisfied and
a response is taken for that event. This reactive model permits
controlling the instrumentation dynamically and affecting the
program execution in different ways. Instrumentation for
security checks verify that system calls meet a security policy,
and if a call is unsafe, a response is taken, such as aborting the
program with an error message. Here, an event is triggered on
a policy violation and a response handles the event, which in
this case aborts the program.

Figure 1(a) shows the components of FIST. The frame-
work permits information gathering and control at the high
level for constructs such as classes, methods, and statements.
Programs execute at the instruction level and source informa-
tion must be related to the instructions and a program’s execu-
tion. FIST has mappings that indicate how high-level
constructs are related and translated to the instruction level.
To instrument an application, the framework has primitives to
monitor and gather information and to check whether speci-
fied properties are satisfied. The primitives integrate monitor-
ing, events, and responses at the instruction level and they are
the mechanism by which an instrumentation application is
implemented. The combination of mappings and instrumenta-
tion code built with our primitives form an instrumentation
plan that says how to gather information and control a pro-
gram’s execution. The instrumentation plan is a “recipe” of
how to instrument a program and the primitives are the
“steps” that say exactly what to do.

With FIST, standalone tools can target our interfaces to
gather information and control a program. Figure 1(b) shows
a possible way in which the framework can be used. In the
figure, an instrumentation planner translates an instrumenta-
tion specification into an instrumentation plan. The plan
includes mappings to relate instruction-level information to
the source level. There are also event monitors and response
handlers which are pieces of instrumentation code that can be

stitched into the program’s execution with our instrumenta-
tion primitives. In a later section, we present an application of
our framework to software structural testing of Java programs
that uses an approach similar to Figure 1(b).

We focus on the back-end portion of FIST in this paper
because it is the basis upon which the rest of the framework is
built. We describe the components of the back-end, including
its mechanism for generating events and responding to them,
the primitives for integrating events and responses, and instru-
mentation memory for code and data is handled.

2.1. Event Generation and Response
In FIST, events are generated synchronously during a pro-

gram’s execution at well-defined points in the code. A condi-
tion for generating an event is a boolean expression that can
be evaluated in the context of the running program and
machine platform. A response is general and may do any
number of activities for an event, such as changing the instru-
mentation sampling rate, saving state about the program and
machine platform, or updating the program with a repair.

Events have static and dynamic properties that need to be
monitored. A static property can be verified without actual
values or state at a particular instrumentation point. For exam-
ple, instruction type is a property that can be determined
strictly by looking at instructions without knowing anything
about their dynamic execution. A dynamic property can only
be verified by inspecting program values and state at an
instrumentation point. For example, the data value of a partic-
ular machine register or memory location is a dynamic prop-
erty. Instrumentation that monitors properties can be inserted
at compile-time or dynamically inserted and removed at run-
time. Further, the instrumentation itself can inspect instruc-
tions and state, and insert or remove instrumentation.

To implement events and responses, FIST has a trigger-
action mechanism. A trigger is code that checks for some spe-
cific condition and generates an event, while an action is code
that reacts to events. When a property is satisfied, the trigger
generates an event, which causes a call-back to the action.
The code that does event generation and call-back to actions
is a “trigger-action pair”.

The trigger-action mechanism works by attaching an
instrumentation point to the binary program. This instrumen-
tation point, when executed, transfers control to a trigger,
which checks for a code property and generates an event
when that property holds. When a trigger is fired, an action is
taken for the event. The figure shows that triggers can be
shared by instrumentation points and actions can be shared by
different triggers. An instrumentation point can also invoke
several triggers and their corresponding actions.

To monitor properties, a trigger has a static check and a
dynamic check. The static check verifies static properties
about instructions, the machine and the dynamic translator. It
is done when inserting new instrumentation into the program.

Figure 1: FIST and an example of its use

Instrumentation
specification

Instrumentation Planner

Mappings Event monitors Response
handlers

Program

(b) Example use of framework

High-level instrumentation

Instruction-level instrumentation

Mappings from high-level to
instruction-level events and

responses

Instruction-level events and
responses

Source constructs:
Classes, methods,
statements

Relate lower level to
program

Event - what to monitor
Response - how to react

Primitives
Instrumentation code
Instrumentation memory

Instrumentation Back-End

(a) Instrumentation framework

Instrumentation Plan

A trigger’s dynamic check inspects values and state at run
time and is invoked when control flow reaches an instrumen-
tation point in the program. Static checks are implemented as
part of the instrumentation system and interface, and dynamic
checks are implemented with instrumentation primitives.
These are the mechanisms that integrate monitoring, event
generation, and responses to intercept program control flow to
execute dynamic checks and actions.

2.2. Instrumentation Primitives
FIST has three primitives for instrumentation: inline-hit-

always, hit-once, and hit-many. These primitives are used to
build more complex operations and they differ in the way in
which instrumentation is inserted and left in the application.
Inline-hit-always is inserted directly into a basic block and
never removed. Hit-once is executed outside of the program
control flow and it is removed immediately after being hit.
Similarly, hit-many is executed outside of regular control flow
and remains in the code until explicitly removed.

Hit-once and hit-many intercept control flow and change it
to go out-of-line to another location. These primitives use a
fast breakpoint that replaces an instruction by a branch [10]
that takes control to code that does the dynamic check.

Figure 2 shows how we use fast breakpoints for a dynamic
check. As the figure shows, the breakpoint code (a breakpoint
handler) saves the context of the application, makes a call to a
function to do the dynamic check, restores the context of the
application, executes the original instruction and then exe-
cutes the next instruction after the one that was instrumented.
The application context here refers to the general-purpose
registers and other machine registers like the condition code.
This context must be saved before invoking the dynamic
check or action to free registers for the dynamic check and
action code. The context is available to be inspected by a
dynamic check and modified by the action, if desired. For
inline-hit-always, the code to save and restore the context is
inserted in-line during code generation around the call to the
dynamic check. Inline instrumentation eliminates at least two
branch instructions. Inline-hit-always also has the ability to
include simple instrumentation directly in the code, rather
than transferring control to the dynamic check and action.

The advantage of hit-once and hit-many is they can be
inserted and removed dynamically. Using a fast breakpoint to
implement these primitives makes it easy to insert a primitive
without changing code layout. To insert hit-once or hit-many,
usually only one instruction has to be changed. Likewise,
removing instrumentation is easy because the original instru-
mented instruction can be copied back to the instrumentation
point to remove the instrumentation. The only primitive that is
ever inserted in-line is one that will always remain in the
code. This avoids dynamically rewriting the code because in-
line instrumentation is never removed once inserted. With
these primitives, we can implement other primitives. For
example, hit-many can be used to implement a hit-always
primitive that is dynamically inserted and never removed.

2.3. Instrumentation Code and Data Memory
Instrumentation should not disturb a program to avoid

introducing artificial effects. However, in practice, it is diffi-
cult to completely avoid disturbing the program. We minimize
the disturbance by using a separate context for instrumenta-

tion code and data values. To keep the instrumentation light-
weight, this context is kept in an application’s process space,
which avoids expensive process switches and inter-process
communication between the application and the instrumenta-
tion. Context management is done by the instrumentation
itself, and depending on the particular target platform, we
keep the memory for instrumentation code in a single memory
region or attached to individual functions or methods. Instru-
mentation typically gathers information and needs to store
that information some place. Our framework provides a sepa-
rate data memory region that holds persistent information and
variables needed by the instrumentation.

3. SDT Instrumentation
To demonstrate FIST’s flexibility, we have incorporated it

in a SDT for the SPARC and a Java JIT/VM for the x86. In
this section, we describe the challenges associated with each
implementation, including special considerations for the tar-
get instruction set architectures (ISA) and SDT.

3.1. Strata and SPARC/Solaris
To address the difficulty of building software dynamic

translators, we (with the University of Virginia [16]) devel-
oped a highly configurable and retargetable SDT infrastruc-
ture called Strata. Strata is arranged as a VM that sits between
the program and the CPU. The VM translates a program’s
instructions before they execute on the CPU and mimics the
standard hardware with fetch, decode, translate and execute
steps. Fetch loads instructions from memory, decode cracks
instructions into their individual fields, and translate does any
modifications to the instructions as they are written into a
fragment or trace cache. The translate step is the point at
which the code can be modified. The execute step occurs
when control is returned to the binary in the fragment cache.
To include our instrumentation framework in Strata, we had to
address how to incorporate it into the VM and how to store
instrumentation code and data as part of the VM.

VM Interface. The Strata VM has target-independent com-
mon services, target-dependent specific services, and an inter-
face through which the two communicate. We incorporated
our instrumentation mechanisms in the common and target
specific services. The common services provide the interface
to convey to Strata the static and dynamic checks and actions.
The interface passes function pointers for call backs to check
a static or dynamic property and to invoke an action. Hence,
the static and dynamic checks and the action can be functions
written in a high-level language. The interface also allows
dynamic insertion and removal of instrumentation and exports
all program and machine state, and Strata internal structures.
The target specific services define an interface for inserting
and removing hit-once and hit-many primitives on a specific
machine to ease retargetability of the infrastructure.

Instrumentation Code and Data Memory. Code storage for
breakpoints is allocated in Strata’s fragment cache. This space
may be located in a portion of the cache reserved for instru-
mentation or immediately after a fragment in the cache. The
former has the advantage that code layout is preserved for
instruction traces, while the latter has locality benefits when
instrumentation code is executed frequently with a fragment.
When adding new dynamic checks on-the-fly into already
existing fragments, space is always allocated in the reserved

Figure 2: Hit-many for a dynamic check on a fixed-length instruction set

instruction

instruction1
branch

context save
call
context restore
instruction1

branch

dynamic check
if (dyn_check==1)
 call action

instruction

instruction

portion of the fragment cache. Instrumentation data memory
is also allocated as part of Strata’s context. An interface
exports access to this memory to the instrumentation.

Experiments. We measured the average memory and perfor-
mance overhead of the instrumentation primitives for Strata
on the SPARC, as shown in Table 1. The memory cost is the
number of instructions needed by each primitive, while the
performance cost is the run-time to execute a primitive. The
results were collected on a 500 MHz Sun Blade 100 with 256
MB of RAM. To compute overhead, we used a loop that iter-
ated 100 million times. On every iteration, a primitive is
inserted, removed and executed. Only the costs associated
with the primitive is measured.

Most of the instrumentation expense is due to saving and
restoring context. A full context save or restore takes 21
instructions each and the call to the dynamic check and action
takes 7 instructions. The control transfers to and from the
breakpoint handler take another 4 instructions and the cost of
emitting code at run-time for hit-once is 14 instructions for
the first instruction and 5 for each additional instruction.

In all cases, the performance cost of the instrumentation is
compounded by the presence of control transfers. Hit-once
also does a cache flush when the original instruction is
replaced. Inline-hit-always is the least expensive because it
has two less branches and DSIs than hit-once and hit-many.
Nevertheless, hit-many has good performance because it can
be both dynamically inserted and removed on-the-fly and hit-
once has low cost for temporary instrumentation because it
removes itself without any further cost.

To investigate the probe overhead in full applications, the
SPEC2000 benchmarks were instrumented with hit-many
probes. To compute the average probe cost, we inserted a hit-
many probe into each basic block executed. The dynamic
check always invoked the payload and the payload did no
operation. To compute the overhead, the difference in run-
times of the instrumented and the non-instrumented code was
divided by the total number of probes executed.

Table 2 shows the overhead the benchmarks. The second
column is the cost of a probe that does a full context save and
restore. A full context switch on the SPARC saves and
restores all machine registers. As the table shows, the probe
cost varies from 81–152 ns (average 102 ns) for a full context
switch. The large variation in the probe cost depends on how
well the cost of instrumentation insertion is amortized by fre-
quent execution of the probe. The overhead for hit-once and
hit-always is similar to hit-many because the cost of inserting
the hit-many probes is quickly amortized. The cost of a probe
also depends on machine affects, such cache misses and
branch mispredictions.

3.2. Jikes RVM and x86/Linux
FIST for the Jikes Research Virtual Machine (RVM) [1]

instruments an executing Java program at the instruction level

on x86, and can insert and remove instrumentation at any
point during a program’s execution. We can also map instruc-
tion-level information to bytecode and source statements, pro-
vided the bytecode has line number mappings. To integrate
FIST into Jikes, we had to address three issues. The first one
was how the instrumentation system gets control to instru-
ment a method, the second was how to handle multi-thread-
ing, and the final issue was the interaction of garbage
collection (GC) and instrumentation.

Instrumentation Injection. To get control when a method is
compiled, a simple modification was made to the VM to insert
a breakpoint in a method’s prologue to generate an event
when a method is entered. The response for that event gets
control on method entry. This structure makes the instrumen-
tation independent and transparent to the VM: the only inter-
action is the initial insertion of the static breakpoint. This
approach also ensures that methods are only instrumented
when they are executed. Finally, the JIT exports information
to the instrumentation, such as a method’s control flow graph.

Multi-threading Support. FIST supports multi-threading as
found in Java programs. Multi-threading comes into play
when trying to track state in a method with instrumentation
code. Because we use source-sink breakpoints, it is possible
that a thread switch can happen between the execution of the
source and sink breakpoint. In such a case, when the source
breakpoint needs to pass state to the sink breakpoint, the state
must be saved as part of the thread context. One possibility is
to modify the thread switch code in the RVM to save this
state. However, the state is likely to be instrumentation appli-
cation dependent and it is impractical to modify the RVM
whenever a new instrumentation application is developed.
Instead, yield points can be automatically identified and spe-
cial context saving instrumentation inserted to record state
that needs to be persistent across thread switches.

Garbage Collection. The concern with GC is where to
allocate data and code space for the instrumentation. One pos-
sibility is to allocate storage as part of the application context
or in the context of the RVM. This solution may, however,
have interactions with GC. A problem is that the instrumenta-
tion is machine code and GC may not be able to track refer-
ences involving the instrumentation. Another problem is that
in copying GC, addresses can change. However, for effi-
ciency, it is desirable to emit address constants in the instru-
mentation, rather than doing a table lookup to find addresses.
Because the solutions to these problems were expensive, we
rejected allocating instrumentation data and code as part of
the application. Instead, we allocate a memory buffer from the
operating system that is not visible to the run-time system to
hold instrumentation code and data. It avoids any interactions
with GC.

Experiments. For the x86, we measured the ideal perfor-
mance of the instrumentation primitives with a tight loop
whose body was instrumented (the same experiment as
described earlier for Strata). Our experimental platform was
Jikes 2.1.1 and a 700 MHz Pentium III machine with 512 MB
memory and RedHat Linux 2.4.18.

Table 3 shows the average cost of the instrumentation
primitives. The cost of hit-many is twice the cost of hit-once
because two breakpoints (a “source” and a “sink” breakpoint)
are executed by hit-many to ensure that the primitive remains
until explicitly removed. The use of source-sink breakpoints
is a consequence of the x86 instruction set architecture. Hit-
once uses the same mechanism as hit-many, except it does not

Hit-once Hit-many Inline-hit-always
Time (ns) 660 640 510

Num. instrs. 72 53 49
Table 1: Overhead of instrumentation primitives

Benchmarks Time (ns) Benchmarks Time (ns)
mcf 104 vortex 90
bzip 82 perl 93
gzip 87 gcc 106
vpr 153 twolf 103

Average 102
Table 2: Hit-many instrumentation probe cost

Hit-once Hit-many Inline-hit-always
Time (ns) 469 939 65
Num. instrs. 25 25 21
Storage 11 11 0

Table 3: Overhead of instrumentation primitives

use a “sink” breakpoint. Inline-hit-always is faster than both
hit-many and hit-once because it does not make code modifi-
cations. Hit-many and hit-once use self-modifying code,
which incurs significant cost because the instruction and data
caches must be kept consistent by the hardware. The table
also shows memory overhead. Hit-once and hit-many both use
25 instructions (68 bytes). There is an average of 11 bytes of
data storage to hold the original instruction and the addresses
where sink breakpoints should be inserted. Inline-hit-always
does not have any storage cost because the primitive is
inserted inline in the code and does not insert successors.

We also measured the average overhead of the hit-many in
several programs from SPECjvm98, as shown in Table 4.
These results were obtained from a tool that we developed to
do branch coverage testing. The numbers reflect expected per-
formance of hit-many, including all machine effects. As the
table shows, the instrumentation overhead can vary consider-
ably, ranging from 937 to 4,117 ns (average is 1,849 ns). The
large variance is partly due to instruction cache and branch
prediction behavior. In programs with tight loops (e.g., com-
press and mpegaudio), hit-many has better cache and branch
behavior, which results in less overhead.

A second effect is related to the breakpoints used by hit-
many. This primitive requires a sink breakpoint at each suc-
cessor basic block to an instrumentation location. Hence, the
more successors, the larger the cost of hit-many and the per-
formance tracks the average number of successors. For jack
and jess, the number of successors is quite high (both have
many control transfers), and hit-many has a larger cost
because many sink breakpoints are inserted. In compress and
mpegaudio there are relatively fewer sink breakpoints, and
combined with good machine behavior, hit-many has better
performance in these programs.

4. Related Work
Instrumentation techniques have been used in SDTs for a

number of purposes, including dynamic optimization [1,2],
program debuggers [9], software security [11], and binary
translation [4]. In these systems, the instrumentation is hard
coded. In Dynamo [2], the instrumentation happens in the
interpreter and in Dynamo/RIO, instrumentation is inserted on
back edges inside a basic block [3].

Fast breakpoints were pioneered by Kessler [10] and used
the technique that we call hit-many instrumentation. Kessler’s
fast breakpoints were not applied across different SDT and
architectures to dynamically instrument programs. Systems
like Dyninst [8] and Paradyn [13] use fast breakpoints simi-
larly to our approach. Like our framework, Dyninst is general,
with a language for specifying instrumentation [8]. However,
an approach for different SDTs with Dyninst has not been
described. Other instrumentation toolkits like ProbeMeister
[15] and Pin [14] are targeted to specific frameworks (e.g., the
Java VM for ProbeMeister) and are not portable across SDT
infrastructures.

5. Summary
This paper described a framework for flexible and scalable

instrumentation, called FIST, in self-managed software
dynamic translators. We demonstrated FIST’s capabilities in
two different SDTs and two target architectures. We described

how our framework and primitives can be incorporated in the
Strata SDT for the SPARC and in a Java VM for the x86.
These framework instances show that our approach is indeed
flexible enough to be used by different SDTs.

6. Acknowledgements
This work was supported in part by National Science

Foundation grants ACI–0305198 and ACI–0203945.

7. References
[1] M. Arnold, S. Fink, D. Grove, M. Hind, P. Sweeney,

“Adaptive optimization in the Jalapeño JVM”, Conf. on
Object Oriented Programming, Systems, Lang. and
Applications, 2000.

[2] V. Bala, E. Duesterwald,, S. Banerjia, “Dynamo: A trans-
parent dynamic optimization system”, Conf. on Pro-
gramming Lang. Design and Implementation, 2000.

[3] D. Bruening, T. Garnett, S. Amarasinghe, “An infrastruc-
ture for adaptive dynamic optimization”, Int’l. Symp. on
Code Generation and Optimization, 2003.

[4] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, et
al., “The Transmeta Code Morphing Software: Using
speculation, recovery, and adaptive retranslation to
address real-life challenges”, Int’l. Symp. on Code Opti-
mization and Generation, 2003.

[5] B. Demsky, M. Rinard, “Automatic detection and repair
of errors in data structures”, Conf. on Object Oriented
Programming Systems Lang. and Applications, 2003.

[6] M. Ernst, J. Cockrell, W. Griswold et al., “Dynamically
discovering likely program invariants to support pro-
gram evolution”, IEEE Trans. on Software Engineering,
27(2), 2001.

[7] D. Garlan, S-W. Cheng, B. Schmerl, “Increasing system
dependability through architecture-based self-repair”,
Architecting Dependable Systems, 2003.

[8] J. Hollingsworth, B. Miller, M. Goncalves, et al., “MDL:
A language and compiler for dynamic program instru-
mentation”, Conf. on Parallel Architecture and Compila-
tion Techniques, 1997.

[9] C. Jaramillo, R. Gupta, M. L. Soffa, “FULLDOC: A full
reporting debugger for optimized code”, Proc. of Static
Analysis Symposium, 2000.

[10] P. Kessler, “Fast breakpoints: Design and implementa-
tion”, ACM SIGPLAN Conf. on Programming Lang.
Design and Implementation, pp. 78–84, 1990.

[11] V. Kiriansky, D. Bruening, S. Amarasinghe, “Secure exe-
cution via program shepherding”, USENIX Security Sym-
posium, August 2002.

[12] J. R. Larus, E. Schnarr, “EEL: Machine-independent
executable editing”, Conf. on Programming Lang.
Design and Implementation, June 1995.

[13] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Holl-
ingsworth, et al., “The Paradyn parallel performance
measurement tools”, IEEE Computer, 28(11), 1995.

[14] Pin, http://rogue.colorado.edu/Pin/.
[15] ProbeMeister, http://www.objs.com/ProbeMeister.
[16] K. Scott, N. Kumar, S. Veluswamy, B. Childers, J.

Davidson, M. L. Soffa, “Reconfigurable and retargetable
software dynamic translation”, Int’l. Symp. on Code
Generation and Optimization, 2003.

[17] A. Srivastava, A. Eustace, “ATOM: A system for build-
ing customized program analysis tools”, Conf. on Pro-
gramming Lang. Design and Implementation, 1994.

[18] A. Zeller, “Isolating cause-effect chains from computer
programs”, Int’l. Symp. on the Foundations of Software
Engineering, 2002.

Benchmarks Time (ns) Benchmarks Time (ns)
jess 2,890 db 1,030
javac 1,637 mpegaudio 1,114
mtrt 1,221 jack 4,117
compress 937 Average 1,849

Table 4: Hit-many instrumentation probe cost

