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Abstract
This paper describes our experience designing and developing a
framework for structural testing in a Java Virtual Machine, called
Jazz2. We focus on the challenges of making this framework
extensible and flexible. These challenges include developing the
framework as part of a JVM that undergoes continual independent
updates, the consequences of the JVM itself being written in Java,
and how Jazz2 ties into existing code generation facilities to insert
instrumentation for our static (compile-time insertion) and demand-
driven (run-time insertion) testing techniques. We also address
how best to add code and data to the managed environment that
the JVM’s garbage collector provides, including when to avoid it
completely. Additionally, we provide suggestions for JVM designers
and implementers on how to better support the addition of tools like
Jazz2. We conclude by describing our implementation of Jazz2 with
the IBM Jikes RVM. With this implementation, we evaluate the cost
of determining how and where to test programs, memory overhead,
and how those factors impact the number of garbage collections.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools; D.3.3 [Programming
Languages]: Language Constructs and Features—Program instru-
mentation, run-time environments

General Terms Design, Experimentation, Measurement, Verifica-
tion

Keywords Testing, Code Coverage, Structural Testing, Demand-
Driven Instrumentation, Java Programming Language

1. Introduction
Testing the correctness of software is an increasingly important
phase of software development. Countless hours are invested in cre-
ating suites of example inputs, running these suites, and collecting
their results. The quality of the assembled test suite is assessed via
a coverage metric [24], such as the percentage of statements exe-
cuted or control-flow transfers taken in a given testing run. Typically,
structural software tests instrument a program to determine which
constructs (i.e., coverage) are executed by a test run. There are many
important structural tests and instrumentation strategies [24]. We
developed a framework, called Jazz2, that permits these approaches
to be used, combined, and compared. The framework can be used
to both test software and research and develop new structural test
strategies. In this paper, we describe the challenges, solutions, and
experiences in developing Jazz2 for Java and integrating it with a
Java Virtual Machine (JVM).

Java presents a rich environment for efficient structural testing.
It has increasingly become an important language for many appli-
cations where software correctness is vital for daily operation. As

applications have grown in complexity, the time spent in testing
has increased dramatically and become more costly. Indeed, a poor
test strategy and inefficient tools can even delay the next major
software release. As a language and runtime environment, JIT com-
pilation offers a unique facility for testing to achieve good runtime
performance by carefully and flexibly choosing how and where to
instrument a program to gather coverage information.

A straightforward approach to structural testing could add instru-
mentation to a method’s bytecode and leverage the JIT to convert
the instrumentation bytecode into machine code. However, the in-
strumentation will remain in the generated machine code for the
entire lifetime of the program unless an expensive full recompilation
of a method is triggered (i.e., to remove the instrumentation). With
a boolean property like coverage that in practice converges quickly,
this approach incurs unnecessary overhead. We are also at the mercy
of the quality of code generation and the effects of the Java runtime
environment, including garbage collection.

We take an alternative approach in Jazz2 that inserts instrumen-
tation directly into the generated machine code. This technique
bypasses the JIT compiler. By directly instrumenting the generated
code, Jazz2 offers low-level control over instrumentation behav-
ior; the approach even permits instrumentation to be dynamically
inserted and removed during program execution. Because instru-
mentation can be directly controlled, coverage testing can be made
considerably more efficient, as past work has demonstrated [21].

Jazz2 was designed from its inception to be a flexible and
extensible framework in which to research, develop, evaluate and
use structural tests. Its extensibility is obtained through the ability to
quickly and simply add new testing strategies either by modifying
existing ones or building new ones with the set of support services
Jazz2 provides. The framework is flexible through supporting a
simple test specification language that allows a user to specify when
and where to test, including the possibility of applying multiple
tests simultaneously in a single program test run. The framework
is also flexible because it is can be easily updated to accommodate
implementation changes to the underlying Java JIT and VM.

Jazz2 permits structural testing that relies on dynamic techniques,
such as our earlier work with the original version of Jazz [21]. Jazz
was built on top of an early version of IBM’s Jikes Research Virtual
Machine (RVM) [13]. As the RVM underwent continual upgrades
and improvements, Jazz was left behind without the bug fixes and
design improvements of the newer RVM releases. Jazz2’s design
comes from the lessons we learned in implementing the original
Jazz and reimplementing it to be more easily ported to new RVM
versions.

This paper makes several contributions, including:
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• The design of an extensible and flexible framework for structural
testing of Java programs (Jazz2).

• A detailed description of Jazz2’s implementation, including ser-
vices for instrumentation and code generation, memory alloca-
tion, and test specification. We also describe how the framework
is minimally integrated with the IBM Jikes RVM to ease inde-
pendently upgrading the RVM and developing Jazz2.

• Case studies on how Jazz2 can be used to implement structural
test techniques that rely upon different instrumentation styles.
These tests are included in a test library as part of the framework.
They can be extended to support new strategies.

• A thorough evaluation of the performance cost and memory
overhead of doing structural testing in Jazz2, including its impact
on garbage collection.

• We describe the rationale behind our implementation choices
and the lessons learned through our experience with Jazz2. These
lessons point to how a JVM can better support independent tools,
such as Jazz2, that are built on top of it.

The rest of the paper is organized as follows. Section 2 describes
Jazz2’s design. Section 3 presents the framework’s implementation
approaches. Section 4 describes case studies on static and demand-
driven branch testing to illustrate Jazz2. Section 5 reports on an
evaluation of the framework, including performance and memory
overhead and interaction with garbage collection. Finally, Sections 6
and 7 give related work and conclude the paper.

2. Framework Overview
Jazz2 is designed to let test engineers realize a specific structural
test for Java through its extensible test library. The implementation
of a testing strategy in Jazz2 is a test planner and the data structure
that drives runtime instrumentation to record coverage is a test plan.
An overview of Jazz2 is shown in Figure 1. Jazz2 integrates with a
Java Virtual Machine (JVM). The framework is designed to operate
with a JVM that uses just-in-time (JIT) compilation to convert Java
bytecode into native machine code.

Jazz2 takes as input Java bytecode and a specification of where
and how to test Java methods. The test driver processes the specifi-
cation and the bytecode and directs how the instrumented machine
code should be produced. The instrumentation monitors program
execution to gather coverage results, which are stored for later re-
porting to the user.

The core of Jazz2 is its support services and user-extensible test
library of structural test strategies. The support services provide
the common functionality that different structurals tests need, such
as instrumentation, control flow analysis, memory allocation, and
result collection. Jazz2 comes with a library of tests that we built
using the framework. It also supports adding tests by extending
existing ones or creating new implementations.

2.1 Support Services
Jazz2 offers support services to simplify building structural tests in
the framework. The services include:

Instrumentation Jazz2 supports various types of instrumentation
including permanent (inline) and transient instrumentation. Per-
manent instrumentation remains in the program for its entire
execution, while transient instrumentation can be dynamically
inserted and removed.

Callbacks A specific structural test needs to be informed of events
from the JVM, such as when a method is about to be compiled,
when a particular bytecode is translated to machine code, when
a method has finished compilation, or when the JVM is about
to exit. These callbacks serve as the interception points between
the JVM and astructural test implementation.

Memory Management Each instantiation of a structural test (i.e.,
when a method is compiled) needs to allocate memory to do
its work and to record information. Jazz2 supports memory
allocation in both the JVM’s managed heap and operating system
memory buffers (i.e., the native program heap and/or mmap
space). These memory regions can be used for data and code.

Control Flow Analysis Structural tests often need to analyze con-
trol flow properties of a method to determine how best to instru-
ment it. Jazz2 provides analysis support, including basic Control
Flow Graph (CFG) generation and more advanced CFG opera-
tions such as determining pre- and post-dominator trees, finding
strongly connected components, and graph traversal.

2.2 Extensible Test Library
The power of Jazz2 is the ability to add new testing strategies with
minimal effort. It is designed to be highly extensible with simple
facilities. There are two ways to add new tests: extend an existing
test from the test library, or develop a test from scratch (using the
support services) and add it to the library.

The initial structural tests that we implemented and added to
Jazz2’s test library support testing at node (statement) and branch
granularity. These tests demonstrate how Jazz2 provides support for
two major implementation approaches for structural testing:

Static This approach adds permanent instrumentation inline in the
generated machine code during JIT code generation.

Demand-driven This approach dynamically instruments a method
to determine coverage. Transient instrumentation is inserted and
removed along the path of execution.

Our current test library contains four combinations of these
strategies: Static Node, Static Branch, Demand Node, and Demand
Branch. It also includes three variations that use a static minimiza-
tion algorithm developed by H. Agrawal to reduce the number of
instrumentation points needed to gather coverage [12]. These tests
are Static Node Agrawal, Static Branch Agrawal, and Demand Node
Agrawal. We discuss the implementation of the tests in Section 4.

Creating a new test is straightforward. If it is a static or demand-
driven test, the base class of an existing test in the library can be
extended. Alternatively, a new test can be added by extending the
superclass for structural testing.

2.3 Test Specification
Jazz2 is flexible because it offers the ability to specify where and
how to test at the method level. The framework permits combining
different structural tests in a single run of a program, such as
choosing to test some methods with branch coverage and others
with node coverage or to instrument methods that are not frequently
executed with static instrumentation and the hot path of code with
demand-driven instrumentation. This approach avoids the expense
of multiple independent test runs.

To achieve this flexibility, Jazz2 provides a test specification
language, called testspec. This language lets a user of the framework
specify rules about how testing should be performed. The current
version of testspec allows for specifying a class and method name to
test, as well as the test types to apply to that method. In a dynamic
programming environment like Java, the class and method names
may not even be known until runtime. To avoid specifying every
class and method name to test, testspec provides language support
to describe name patterns and how to deal with unknown code.

Testspec has three wildcard operators to specify name patterns
and how to handle unknown methods. To specify all methods
in a class, we use a special =all flag. The asterisk globs class
names. The * matches any class in a specific package. For instance,
java.util.* will match Vector and ArrayList just as it
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Figure 1. Jazz2 framework for structural testing.

spec.benchmarks._209_db.Database:printRec:DEMAND_BRANCH
spec.benchmarks._209_db.Entry:equals:DEMAND_BRANCH
spec.benchmarks._209_db.Database:set_index:DEMAND_BRANCH
spec.benchmarks._209_db.Database:shell_sort:DEMAND_BRANCH
spec.benchmarks._209_db.Database:remove:DEMAND_BRANCH
spec.benchmarks._209_db.Database:getEntry:DEMAND_BRANCH
spec.benchmarks.**:=all:STATIC_BRANCH

Listing 1. Example test specification for db (SPECjvm98) where
the six methods will be instrumented with demand branch testing
and the remaining ones will be instrumented with static branch.
Explicit rules have higher precedence than wildcard rules.

would in a Java import statement. However, when we need to
test large projects or components, we may have a hierarchy of
subpackages to test. Since the asterisk in Java does not import
subpackages, we kept ours similarly limited. We use ** to match
any class in the specified package or any subpackage. Thus, the
expression spec.benchmarks.** is sufficient to select all of
the classes in any program in SPECjvm98.

An example of the testspec is shown in Listing 1. In the example,
the first six lines explicitly state a (class name, method name) pair
to be instrumented with the Demand Branch test from the Jazz2’s
test library. The remaining methods that execute at runtime will
match the wildcard rule on the last line and be instrumented with the
Static Branch test. Any rule that explicitly states a class and method
name takes precedence over a wildcard rule. Other rule conflicts are
resolved by using the earliest rule specified.

3. Framework Implementation
Jazz2 is integrated with the Jikes RVM [13], a just-in-time compiler
(JIT) for Java that is itself written in Java. A major challenge of a
framework that is coupled to a separate code base (like Jazz2 and
the RVM) is developing the framework with another code base that
constantly and independently changes. The obvious temptation is to
take the most recent release version and ignore any updates while
developing your own component. This is not without disadvantages
as any improvement or bug fix since the targeted version may
be missed. However, the effort of porting the framework to new
versions of the VM may not justify supporting every point release.
Nevertheless, new major versions are often worth the effort. To
ease the porting effort of Jazz2 to new versions of the RVM, it was
designed to flexibly integrate with the RVM in as few places as
possible.

Jazz2’s test driver (see Figure 1) is implemented by the class
FrameworkHarness. This class facilitates interaction with the
RVM and isolates Jazz2 from it. Our previous experience in creating
the original Jazz on top of an older version of the RVM led us to
identify four areas in which Jazz2 needed to minimally interact

with the existing code base or its output. First, inserting code as
instrumentation means that we must interact at a low level with
the JIT compiler during code generation. Second, the generated
instrumentation code needs data to direct how it operates and space
to store its results. Third, each test planner requires some facilities
that may already exist in a compiler, such as control or data flow
analysis. Finally, we need to efficiently parse and interpret our test
specification language to specify what and where to test.

3.1 Implementing the Test Driver
The implementation of the FrameworkHarness class contains
several static member functions that are called from the base RVM
code. These methods are hooks that we inserted into parts of the
existing RVM code base (such as changes to the commandline argu-
ment parser and callbacks in the JIT compiler) to interact with the
RVM in the four places identified above. FrameworkHarness
does test selection and invokes the appropriate test implementations
to instrument the code. Additionally, FrameworkHarness regis-
ters callbacks for the RVM’s exit notification to report final coverage
results (as the RVM is shutting down). Furthermore, the class is also
a place to store global settings, such as a verbose output flag to
dump detailed messages for tracing and debugging.

The RVM is written in Java and runs itself through its own
compiler. To make this possible, it uses a bootloader with a mini-
mally compiled bootimage to begin the RVM. Since the callbacks
to FrameworkHarness are part of the bootimage, we must add
FrameworkHarness to the bootimage. It is the only class in
Jazz2 that appears in the bootimage. We take precaution to avoid
instrumenting internal RVM code since the bootstrapping process is
delicate and much of the Java class library is unavailable.

3.2 Instrumentation & Code Generation
We require access to the compiled method code to instrument it. To
support this, there needs to be a low-level interface between the JIT
compiler and Jazz2. There are four points during compilation where
we might need to intercept control and have Jazz2 or one of its test
implementations do work. These four events and the interface for
capturing this interaction are shown in Table 1. We modified the
RVM’s JIT compiler to call these methods for a test implementation
that registers a handler for the events.

The earliest event that we need to be informed of is when a
new method is about to undergo compilation. For node and branch
coverage, the onCompilation event is used for initialization. We
need to construct object instances, register exit callback handlers,
and do the work of determining where to insert instrumentation
during the upcoming compilation phase.

The bytecode-oriented methods are used to insert static instru-
mentation directly into the generated machine code stream. The

3 2011/4/27



Callback function Description

onCompilation(Method m) A method is about to undergo compilation.
onBytecode(Bytecode b, int i) The ith bytecode is about to have machine code generated for it.
afterBytecode(Bytecode b, int i) The ith bytecode has just had machine code generated for it.
afterCompilation(Method m) A method has been completely compiled but is not yet being

executed.

Table 1. An interface for adding instrumentation in a method-oriented JIT environment.

static test strategies in Jazz2’s current test library implement the
onBytecode event to insert probes at the beginning of a basic
block. The afterBytecode event is provided to intercept the
JVM after bytecode code generation. Our current tests do not use it.

The afterCompilation event is a natural place to put clean-
up for static instrumentation. For demand-driven testing, it serves
a more fundamental role. Demand-driven testing instruments the
compiled machine code with fast breakpoints [19]. A fast breakpoint
is a jump out-of-line to separate instrumentation code (i.e., an
instrumentation probe and/or an instrumentation payload). A fast
breakpoint can be dynamically added by overwriting existing code,
and it can be easily removed by patching it with the original
instruction it replaced. The afterCompilation event is used to
intercept the JIT by an implementation of a demand-driven test
in Jazz2. The demand-driven test implementation modifies the
compiled instruction stream and returns the instrumented machine
code to the RVM for execution.

3.3 Memory allocation
In general, we need four types of memory in Jazz2:

1. Object instance memory for the Java code that interfaces with
the RVM;

2. Executable memory for instrumentation;
3. Storage for recording coverage and directing runtime instru-

mentation (e.g., conditions for removal of instrumentation for
demand-driven testing); and,

4. Method local storage to maintain test state.

A significant consequence of the RVM’s design is that the Java
code and data that comprise the RVM can and do share the same
memory regions as the applications that run on top of it. This
structure means that as we extend the RVM to support Jazz2, the Java
code in the test library that implements a test can increase pressure
on the garbage collector (GC), possibly degrading performance with
more collection rounds. Despite this potential drawback, the use of
heap memory is vital to conveniently express a test implementation
in Java itself. For Jazz2, the heap is used for any operation done
during JIT compilation, except storing instrumentation code and
data used and generated by the instrumentation code as it executes.

We avoid Java’s memory for instrumentation as it can adversely
interact with the garbage collector: if the JVM uses a copying
GC, the instrumentation might move during execution. Rather than
implement an additional level of indirection (as a JVM might), we
simply choose to avoid the extra lookup costs and allocate space
that is outside of the Java heap.

Most of the test strategies that we have implemented share some
common code between instrumentation probes in order to reduce the
code footprint. The shared code is the test payload code. It performs
test actions and records coverage results. The RVM has special
facilities for calling low-level system calls (e.g., mmap) to allocate
its own heaps. We reuse this functionality to allocate an executable
page of memory to store the test payload code.

With demand-driven testing, we seek to overwrite as little of
the original instruction stream as possible. If the instrumentation
extends past the end of a basic block, the program might jump

into the middle of that instrumentation and cause a crash. We do
two things to make the instrumentation probes as small as possible.
First, we extract the core functionality of the test probes into a
single shared test payload. However, each probe needs to do slightly
different work, and thus, the payload is essentially a parameterized
function. We also need a place to set up the arguments and make
the function call. Each probe has its own trampoline, which is a
short code segment that sets up and makes a call to the payload.
The instrumentation (probe) is a small jump overwriting the existing
machine code that transfers control to a trampoline and eventually
to the payload. In Jazz2, the trampolines are emitted directly to the
end of the RVM’s machine code object which contains the JIT-ed
machine code. We use a relative jump for a fast breakpoint, allowing
a test implementation to be unaffected by a copying GC.

The test payload is parameterized with a test plan that drives
and/or records the results of testing. The test plan is a data argument
passed to the payload. For instance, the test plan may indicate to a
demand-driven test where to dynamically insert new test probes or
where to remove existing ones upon recording coverage information.
The memory for a test plan should not move during execution, and
so we can allocate it via mmap, or use malloc as the region does
not need to be executable (it is data).

The final piece of memory needed for Jazz2 involves coverage
tests that require persistent state, such as branch coverage. This test
needs state to be propagated between the execution of two probes.
With our approach of placing instrumentation in basic blocks, to
record an edge the probe at an edge sink needs to know which
basic block proceeded it during execution (i.e., the source), and thus,
which edge to mark as covered. This state is local storage, as each
separate activation of a method needs its own copy of the state.

To support memory storage in Jazz2, requires modifications to
the RVM which have grown more difficult in each new release. A
perhaps simpler alternative would be to have a separate manually-
managed stack for storing test-specific state. This is the model we
will move to in the future as it provides more of the isolation from
RVM changes and eases continued development.

An interesting implication of memory allocation outside the
JVM is pointers and low-level operations for initialization and
reading memory must be used. The RVM has a special facility for
providing this capability for its own use called Magic [17]. Magic
are special snippets of what appear to be Java methods and code that
are intercepted by the JIT and replaced with operations that would
be normally prohibited in Java code.

3.4 Implementing Test Specification
A test specification, written in testspec, can be passed to Jazz2
through a file specified on the command line. Alternatively, a test
specification, if simple enough, can be given directly as a command
line argument (option -I). The FrameworkHarness consumes
the specification to drive testing. Internally, it creates an intermediate
representation (IR) of the test specification.

Each rule in a testspec specification is parsed to construct
a “matching” object. A matching object is a representation of a
rule. This object includes a matches method that can be used
to determine whether the rule should be applied to a particular
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method. Our first implementation of testspec’s IR arranged the
matching objects in a list. On each method load, the list was linearly
searched to check for a matching rule. However, for complex
test specifications, this approach proved to be computationally
expensive, slowing performance of the Java program under test.
For example, javac in SPECjvm98 has 742 methods. A linear search
for a matching test is responsible for 4% of total overhead.

We changed the intermediate representation to use a hashtable
to arrange the matching objects. The hashtable is checked when a
method is loaded for a corresponding matching object. There were
two complications. The first was that wildcards do not make sense to
hash. We implemented a solution where (literal class name, method
name) pairs are placed in a hashtable and patterns are left in an array
to be searched. The second issue was that neither HashMap nor
Hashtable were in the RVM’s bootimage. Thankfully, the RVM
developers provide an internal hashtable class that we were able to
reuse rather than writing our own.

In general, it may be useful to have full regular expression
support. However, so far this has proven unnecessary—the simple
pattern matching scheme used in the current version of testspec is
sufficient. Java has native support for regular expressions in its class
libraries that we may be able to reuse, but those classes are not part
of the bootimage.

3.5 JVM Support for Software Testing
In developing the support services and test library for Jazz2, we
identified several places where a JVM developer can ease implemen-
tation of a tool like Jazz2.

A foundation of structural testing is to discover control flow
properties of a region of code. To this end, we need, at bare
minimum, a control flow graph (CFG). The RVM provides a CFG
generator that scans the Java bytecode and determines the basic
blocks and their predecessors. Jazz2 needs both predecessor and
successor information. We extended the CFG with this information
and other information that is useful about the structure of the code.

While implementing the structural testing optimizations sug-
gested by Agrawal, we needed several analyses such as pre- and
post-dominator information. The RVM already has facilities for
these algorithms in its optimizing compiler. However, the code is
tied closely to the optimizer. It was too cumbersome to reuse this
code and we wrote our own analyses from scratch. The implementa-
tion of Jazz2 would have been simpler with support for control and
data flow analyses that is separated from the optimizer (e.g., such as
Phoenix provides [8]).

Finally, a JVM could provide a rich and varied set of events to
register callbacks. The RVM provides several callbacks, many of
which we do not need, but the exit handler callbacks were useful
for reporting our collected coverage results. For instance, the code
generation interface of Section 3.2 would be convenient to achieve
as much isolation from the JVM codebase as is possible.

4. Case Studies of Structural Testing with Jazz2
Jazz2 was built to support two significantly different strategies
for implementing structural testing: static testing and demand-
driven testing. To implement both strategies required the use of
different events from the interface in Table 1. Figure 2 illustrates the
interaction of the FrameworkHarness with the rest of the RVM
for both static and demand-driven testing. Figure 2a shows static
testing. FrameworkHarness takes the specification of what to
test and interacts with the JIT during compilation. This produces a
compiled method that contains instrumented code.

For demand-driven testing, shown in Figure 2b, the interaction
happens differently. Demand-driven testing does not insert code into
the compiled method but instead overwrites existing machine in-
structions with instrumentation. To that end, the interaction happens

1 public void onCompilation(
2 NormalMethod m) {
3

4 cfg = CFGBuilder.build(m);
5 seedSet = cfg;
6 }
7

8 public void onBytecode(
9 int bytecodeAddress,

10 Assembler asm) {
11

12 int index = seedSet.indexOf(
13 new Integer(bytecodeAddress));
14

15 if(index < 0) {
16 return;
17 }
18

19 asm.emitPUSH_Reg(GPR.EAX);
20 asm.emitMOV_Reg_Imm(GPR.EAX, plan[index]);
21 asm.emitMOV_RegInd_Imm(GPR.EAX, 1);
22 asm.emitPOP_Reg(GPR.EAX);
23 }

Listing 2. The static node coverage test planner.

only at the end of compilation and the JIT-ed code serves as input to
a demand-driven test planner.

4.1 Static Testing
Figure 2a shows how static testing operates. A testspec specification
is first loaded and parsed. When a method is about to be compiled, an
onCompilation event is sent to the FrameworkHarness. If
the current method matches a rule for a static test, Jazz2 instantiates
a static test planner. The planner is responsible for instrumentation
code generation, test plan generation, and result recording. After
the planner is initialized, the JIT compiler continues and emits
the method prologue and enters its main translation loop. In a
non-optimizing compiler, one bytecode expands into one or more
machine instructions. For static testing, FrameworkHarness
intercepts control via the onBytecode event and transfers control
to the test planner to insert instrumentation prior to the bytecode
being compiled.

Listing 2 shows an example of how the onBytecode event is
used in the Static Node test planner. For all static tests, there are
three common elements:

1. a seed set of code locations where the planner will sew perma-
nent instrumentation probes (to possibly invoke the test payload);

2. a test payload that implements the work of recording the desired
coverage information; and,

3. a test plan that provides storage for recording coverage.

The seed set is generated as part of the onCompilation event
handler method (lines 1–6). Static instrumentation is inserted at the
start of a basic block to avoid rewriting control flow transfers. A
control flow graph that is annotated with each basic block’s starting
bytecode address is built. These addresses become the locations
where permanent instrumentation is inserted, i.e., the seed set.

In the onBytecode event handler method of the static test
planner, a check is done to determine whether the current bytecode
is a seed. If so, the RVM’s assembler is used to emit instrumentation
code. For node coverage, the instrumentation is simple enough that
it can be inserted entirely inline. For more complex tests, Jazz2
supports instrumentation probes that call an out-of-line function
for a shared test payload. This probe type pushes location-specific
information onto the stack to pass information to the payload.
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Figure 2. Jazz2 uses two different approaches for tying into the RVM depending on the style of instrumentation being done.

1 public void onCompilation(
2 NormalMethod m) {
3

4 cfg = CFGBuilder.build(m);
5 seedSet = Agrawal.getProbeSet(cfg);
6 }

Listing 3. Extending the basic static node coverage planner to
incorporate Agrawal’s probe reduction algorithm.

1 mov ebp, dword ptr [esi + fpOffset]
2 mov ebx, dword ptr [ebp - 8]
3 mov dword ptr [ebp - 8], edx
4 mov ecx, dword ptr[edx]
5 test ecx, ecx
6 jz EXIT
7

8 add edx, 4
9 L1: cmp ebx, dword ptr [edx]

10 jne NEXT
11

12 mov dword ptr [edx + 4], 1
13 jmp EXIT
14

15 NEXT: add edx, 8
16 loop L1
17

18 EXIT: ret

Listing 4. Static payload for branch coverage testing.

H. Agrawal developed an algorithm to reduce the number of
instrumentation probes needed to record complete coverage [12].
The minimization algorithm requires control flow analysis on a
method under test. We incorporated the algorithm as a support
service since it can be used by more than one test strategy. With this
service and the basic Static Node, we created a new test, Static Node
Agrawal, that does node coverage with reduced instrumentation.
We extended the basic Static Node planner to use the algorithm
as is shown in Listing 3. The onCompilation event handler is
slightly adjusted to call the Agrawal support service. Based on the
minimized instrumentation points, a new seed set is generated. No
other changes to the base class of the basic Static Node test were
required.

We implemented a Static Branch coverage test in a similar
fashion to Static Node. The onCompilation event is handled
identically, as we still need to build a control flow graph. The seed
set is once again all basic blocks in the method. The main difference
between Static Node and Static Branch involves the onBytecode
event. Static Node recorded coverage directly as shown on line 21 of

Listing 2. Static Branch replaces this line with a call to the payload
shown in Listing 4. Lines 1–2 load the identifier of the block that
immediately preceded the current so we can mark that edge as hit
in lines 9–13. This block sets that same state for the next probe
encountered in line 3.

Another difference from Static Node involves the test payload.
Static Branch uses an out-of-line function to invoke the test payload.
The payload is relatively large—it takes 14 instructions to determine
which control flow edge was taken at runtime. If this code was fully
inlined, the generated machine code becomes very large, which puts
unwanted pressure on the instruction cache. Instead, we emit a call
to the shared payload functionality.

Similar to Static Node, Agrawal’s algorithm can be used to
reduce the amount of instrumentation for branch coverage testing.
We extended the basic Static Branch test planner to apply Agrawal’s
algorithm in the same as we did for Static Node.

4.2 Demand-Driven Testing
Demand-driven testing adds instrumentation after method compila-
tion. Figure 2b shows the difference from static testing. FrameworkHarness
implements the afterCompilation event handler. This handler
checks whether the just compiled method matches a rule for a
demand-driven test. If so, it invokes the instrument method of
the appropriate demand-driven test planner.

Listing 5 shows the base class for demand-driven structural
tests in Jazz2. Subclasses perform the appropriate work via the
instrumentmethod which is invoked from FrameworkHarness.
The arguments to the instrument method capture the JIT-ed ma-
chine code as well as how that code maps to the original bytecode.
The insertFastBreakpoint method exposes the foundation
all demand-driven structural tests share: the dynamic insertion and
removal of instrumentation via fast breakpoints.

Demand-driven testing extends the three common elements from
static testing and adds a fourth. All demand-driven tests have in
common:

1. a seed set of transient instrumentation probes that are inserted
before the method executes;

2. a test payload to record coverage information;
3. a trampoline targeted by a fast breakpoint that sets up location-

specific parameters for the instrumentation probe’s call to the
payload; and,

4. a test plan that contains directions for each instrumentation
probe in terms of what other probes to place and to remove, and
provides storage for recording coverage.

The Demand Node test planner is similar to the Static Node
planner. It constructs a CFG for a method and determines a seed
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1 public abstract class StructuralTest {
2 public abstract void printResults(
3 PrintWriter out);
4

5 public abstract MachineCode instrument(
6 Assembler asm,
7 NormalMethod method,
8 int[] bytecodeMap);
9

10 protected void insertFastBreakpoint(
11 ArchitectureSpecific.CodeArray instrs,
12 int nInsertAddr,
13 int nDestAddr){
14

15 int nImm = nDestAddr - (nInsertAddr + 5);
16

17 //JMP rel32 (relative to next instruction)
18 instrs.set( nInsertAddr+0,
19 (byte) 0xE9);
20 instrs.set( nInsertAddr+1,
21 (byte)((nImm >> 0) & 0xFF));
22 instrs.set( nInsertAddr+2,
23 (byte)((nImm >> 8) & 0xFF));
24 instrs.set( nInsertAddr+3,
25 (byte)((nImm >> 16) & 0xFF));
26 instrs.set( nInsertAddr+4,
27 (byte)((nImm >> 24) & 0xFF));
28 }
29 }

Listing 5. The base class for all demand-driven structural tests.

set of locations to place initial instrumentation. However, instead
of inserting the instrumentation inline, the test planner overwrites
instructions in a basic block with a control transfer (i.e., fast
breakpoint) to an associated trampoline. The trampolines set up
the function call to the shared payload. The trampolines are emitted
at the end of the machine code array. These components are shown
on the right side of Figure 2b.

Demand-driven branch coverage is considerably more involved.
As discussed in our previous work [21], there are certain control-
flow structures that lead to problems with the dynamic nature of the
demand-driven probes. If we do not fix the problem, there can be
edges that are left with no instrumentation to record their coverage.
We call this the stranded block problem.

The solution to the stranded block problem involves two spe-
cial instrumentation types. The first causes probes to remain in the
code associated with a stranded block until all edges involved in
the stranded block are covered. The second type is used to record
coverage for a block with a single incoming edge. Thus, in the De-
mand Branch test, there are actually three types of instrumentation
payloads: a default payload, a self-recording payload, and a stranded
block payload. These payloads require different parameters, and
thus, three different kinds of trampoline.

5. Evaluation
The current Jazz2 implementation is integrated with Jikes RVM
3.1.0. It was built for x86-64 Linux (BaseBaseMarkSweep RVM
configuration). Both the RVM and applications to be tested are
compiled (JIT’ed) without optimization. A mark and sweep garbage
collected is used. All experiments were done on a lightly loaded
quad-core Intel Xeon processor (2GHz with 4MB of L2 cache and
8GB RAM). The operating system is Red Hat Enterprise Linux
Workstation release 4.

We used SPECjvm98 [11] for benchmark programs. Our current
implementation does not include testing strategies for multi-threaded
programs, and as such, we discarded mtrt, which is a multi-threaded

Benchmark Methods Nodes Edges Runtime (s)

check 79 662 789 1.76
compress 42 191 217 25.87
jess 436 1569 1594 24.19
db 27 220 299 30.18
javac 742 4584 5744 24.92
mpegaudio 201 793 802 18.75
jack 266 2019 2372 23.15

Table 2. SPECjvm98 characateristcs. “Methods” is the number of
executed methods. “Nodes” and “Edges” is the number nodes and
edges in the CFG. “Runtime” is the baseline’s execution time.

ray tracer. Details about the properties of the benchmarks are shown
in Table 2. The table gives an indication of the complexity of each
benchmark and the baseline runtime without structural testing. All
timing results are averages across three runs of each benchmark.

To evaluate Jazz2, we present three sets of results for seven
coverage tests (Static Node, Static Node Agrawal, Demand Node,
Demand Node Agrawal, Static Branch, Static Branch Agrawal
and Demand Branch). We first experimentally examine the cost of
structural testing, including the cost of test planning and execution
of the instrumentation. Next, we study memory overhead. Finally,
we examine how the tests impact garbage collection.

5.1 Performance Overhead
Because structural testing requires “extra work” when a program
is executed, it imposes performance overhead. In the approach
employed by Jazz2, there are two sources of overhead. First, there
is overhead due to test planning (i.e., identifying how and where to
instrument the program) because the planning is done as part of JVM
execution. As a result, the test planning overhead is fully observed
by the user. Second, there is overhead from the instrumentation to
collect coverage information.

Figure 3 shows performance overhead of the SPECjvm98 pro-
grams for the seven test strategies. This overhead comes from test
planning and the number of probes needed for a test. It also depends
on the efficiency of Jazz2’s instrumentation code. Figure 3a gives
the overhead for node testing (Static Node, Static Node Agrawal,
Demand Node, and Demand Node Agrawal). Figure 3b gives over-
head for branch testing (Static Branch, Static Branch Agrawal and
Demand Branch). Performance overhead is reported as percentage
increase in runtime over baseline performance without testing (see
Table 2). The light gray part of each bar is the overhead from test
planning and the dark gray part is the overhead from the instrumen-
tation executed to gather coverage information.

The most apparent trend shown in the node coverage results
of Figure 3a is that the second and fourth bars, corresponding to
the addition of Agrawal’s technique for static probe reduction, are
typically the highest by far. This testing approach does the most
analysis of the seven strategies since it has to construct the CFG and
compute dominator information to minimize the number of probes.
The planning cost for the demand techniques is under 6% in all
cases except check, which runs uninstrumented in about 1.8 seconds.
As there are fixed costs in instantiating Jazz2, this fixed cost is not
well enough amortized in check due to the fact that there are many
methods but practically no reuse of them.

Runtime instrumentation overhead is small, especially with
the demand-driven approaches. Both static tests have higher than
average overhead on compress and mpegaudio. These benchmarks
are loop-intensive and leaving instrumentation—even small static
probes—in the loop for the entire program execution is costly. The
demand techniques do better on these programs; the overhead of
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(a) Overhead versus an uninstrumented run for node planning (shown in
light gray) and instrumentation (shown in dark gray).
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Figure 3. Overhead for Jazz2’s node and branch coverage techniques broken down into planner cost and instrumentation cost.

instrumentation is only incurred once because the instrumentation
is removed after only a few loop iterations.

Branch testing, shown in Figure 3b, has a similar trend in plan-
ning overhead as node coverage. The middle bar, representing Static
Branch Agrawal, again shows the high cost of doing Agrawal’s
probe reduction technique. The Static Branch and Demand Branch
(left and rightmost bars) show overhead under 25% except in check
which runs too quickly to amortize startup costs.

Branch testing demonstrates the effect where the instrumentation
overhead begins to dominate total overhead. The loop intensive
programs are the ones where demand-driven techniques are expected
to do the best because instrumentation is quickly removed. In
mpegaudio, this expectation is correct. However in javac and jack the
demand-driven technique performs worse than the static techniques.
This result is due to two factors. The first is that an individual
instrumentation probe from the static technique is about 20 times
cheaper than a demand-driven probe. This means that any region
that is not re-executed frequently will incur unnecessary cost. The
second issue is that the stranded block problem’s solution requires
demand probes to remain in the code until all incoming edges to the
stranded block are covered (i.e., 100% coverage). If this condition
happens late in program execution, or perhaps never, then it is less
costly to use the inexpensive static probes for the full execution.

It is interesting to note in the branch results that no one technique
is always the best. This result suggests that to get the minimal
overhead for testing, a test engineer may want to determine a
combination of techniques to apply together on different methods.
With Jazz2, this approach is easily supported—a test specification
can be written to select the appropriate test for different methods.

These results show that the runtime cost of implementing test
planners in Jazz2 is low for any program that runs long enough
to amortize the small startup cost. For test planners that do a lot
of work to determine where to place instrumentation, such as with
Agrawal’s algorithm, it may be beneficial to perform the planning
offline or save planner results between runs when the code to be
tested has not changed.

5.2 Memory overhead
Jazz2 supports memory allocation from the JVM’s managed heap
and the operating system (i.e., outside of the JVM). Table 3 lists
the memory requirements for the tests in Jazz2’s current test library.
The figures in the table are the sum of the payload code, trampoline
code, test plan, and inline instrumentation.

The first four rows in the table detail the memory needs of
the node coverage test implementations. As described earlier, the
amount of work done by Static Node is small enough that a separate
test payload is unnecessary. Instead, coverage information can
be collected for Static Node with just four machine instructions
(12 bytes) per node (basic block). Static tests do not use any
trampolines. The test plan has only one word (4 bytes) to store
a coverage result. The resulting total memory needs range from only
2.6 to 66.0 KB. Static Node Agrawal, due to the probe reduction
algorithm, needs even less space. The probes and test plans are the
same size as in Static Node, but there is an average 43% reduction
in probes, requiring only 1.4 to 42.2 KB of total storage.

Demand-driven node coverage (Demand Node and Demand
Node Agrawal) have larger payloads, trampolines, and data storage
requirements than the static tests. The demand-driven payload is
seven machine instructions that are shared across all probes in all
methods. Each fast breakpoint jumps to a six-instruction trampoline
that transfers control to the payload. The demand test plan is
larger than the static one because a location is reserved to store
the instruction(s) overwritten when the fast breakpoint is inserted.
This location holds the instruction so that it can be replaced when
the probe is removed. We find that Demand Node and Demand
Node Agrawal require about twice as much memory as the static
counterparts.

The final three rows show the memory requirements for branch
testing. Since this coverage test must look up which edge should
be recorded at runtime, it has a slightly larger payload than node
coverage. Static Branch and Static Branch Agrawal share the same
40 byte payload and insert six machine instructions per node to jump
to that payload. Per incoming edge, the test plan needs a unique
identifier for the potential CFG predecessor block and a location
to record coverage. Static Branch requires 6.2 to 152.4 KB of total
storage. Static Branch Agrawal reduces the number of probes by
11% on average, which gives a 22% average reduction in memory
size, with total usage ranging from 4.4 to 117.1 KB.

Demand Branch needs three payloads for the three specialized
probe types (to solve the stranded block problem). The test plans
are larger due to once again needing to store the original code
that the fast breakpoint overwrote as well as needing an entry for
each CFG successor (and CFG predecessor when dealing with a
stranded block) to place at runtime. Each record has three words of
storage: the address to place the fast breakpoint at, the offset of the
trampoline to construct the relative jump from, and a counter that
serves both to record the edge coverage and predicate if the probe
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check compress jess db javac mpegaudio jack

Static Node 9.8 KB 2.6 KB 19.7 KB 3.3 KB 66.0 KB 10.5 KB 29.7 KB
Static Node Agrawal 5.5 KB 1.4 KB 10.8 KB 2.0 KB 42.2 KB 5.5 KB 18.3 KB
Demand Node 19.7 KB 5.3 KB 39.3 KB 6.7 KB 132.0 KB 21.1 KB 59.4 KB
Demand Node Agrawal 11.0 KB 2.8 KB 21.5 KB 4.0 KB 84.4 KB 11.1 KB 36.6 KB

Static Branch 21.7 KB 6.2 KB 49.3 KB 7.5 KB 152.4 KB 24.9 KB 65.9 KB
Static Branch Agrawal 16.0 KB 4.4 KB 31.4 KB 5.9 KB 117.1 KB 16.6 KB 51.4 KB
Demand Branch 41.1 KB 10.2 KB 75.6 KB 14.5 KB 320.2 KB 37.6 KB 115.5 KB

Table 3. Total memory usage. This number includes the size of the payload, trampolines, test plan, and inline instrumentation.

should be placed. Despite the extra memory needs, our experiments
only show a 2.1 times increase in memory usage over Static Branch.

The maximum memory used for code and instrumentation for
any benchmark was under one third of a megabyte. From these
results, we conclude that the library of tests that Jazz2 provides have
reasonably small memory requirements to implement a test.

5.3 Impact on GC
Planning and performing a coverage test requires memory storage
as shown earlier in Table 3. The memory space is allocated from
two places. The test plans and payloads are allocated outside of
the Java heap with mmap (or malloc). The trampolines, inline
instrumentation, and planner objects themselves are allocated from
Java’s heap. The RVM does not have a separate heap for “internal”
Java code. As a result, Jazz2’s memory is intertwined with the
application memory, which can cause more pressure on garbage
collection. This adverse interaction can be significant and harm
program performance. In our experiments, the average garbage
collection took 459 ms (range: 295–2161 ms). This high cost clearly
demonstrates that avoiding additional GCs is just as important as
avoiding the execution of test probes.

To analyze Jazz2’s influence on the number of garbage collec-
tions, we ran each of the seven testing strategies with each bench-
mark to collect a verbose GC trace (provided by an argument to
the RVM). This trace indicates when GC is invoked and the size
of the collected heap. The results are shown in Table 4. For our
baseline, we measured the number of garbage collections in an unin-
strumented run of each program. The default maximum heap size
of 100 MB was used. The top two rows of Table 4 show the results
separated by origin of garbage collection. As part of the SPECjvm98
benchmark harness, System.gc() is called immediately before
and after each run of the core portion of each benchmark. This
explains why there are two “forced” GCs per run. The additional
forced GC calls for check is due to the benchmark being a test of
JVM correctness and javac has a call between each file it compiles.

The remaining table rows show the net change in unforced
garbage collections for each test strategy. Using Agrawal’s technique
causes many additional garbage collections due to temporary graphs
constructed for analysis on each benchmark. Once the seed set
is placed during test planning, these temporary graphs are no
longer needed. In general, the highest number of increased garbage
collections happen on the benchmarks with the most methods, such
as javac and jack. Since the test planner is invoked for each method,
more memory space is needed, leading to more garbage.

An interesting effect occurs in jess with the static node and
the demand-driven node testing techniques. In both cases, the
instrumented version has one less GC than the baseline. This is
a result of the way that the RVM grows the heap when GC occurs.
The amount the heap is increased depends on how recently the heap
was grown. This changes the GC points and allows for fewer live
objects to exist in later GCs, causing the heap to grow less and fewer
GCs to occur.

These results show that for the test types that do not depend
on Agrawal’s technique, the impact on the number of GCs was
acceptably small. When we add in the Agrawal support service’s
work, we find a significant memory usage which additionally
impacts runtime from doing the additional GCs. The previously
proposed approach of doing offline planning or caching the results of
planning for unchanged methods may be necessary to get reasonable
performance out of the technique.

6. Related Work
Jazz2 is integrated with the Jikes Research Virtual Machine
(RVM) [7, 13]. It uses the coverage testing techniques and lessons
learned from our first version of Jazz [21]. Jazz [21] focused on
demand-driven testing. It was not not an extensible framework for
building and apply multiple test types. It was built with the older
2.0 series of Jikes RVM and the experience of moving to the 3.x
versions directly influenced Jazz2’s design.

There are several tools to collect coverage for Java programs.
Commercial tools such as Clover [3] and IBM’s Rational Suite [10]
can collect node coverage and JCover [6], as well as open source
tools such as Emma [5] and Cobertura [4], can collect both node
and branch coverage information.

These tools take one of three strategies for collecting coverage
information. One approach is to use the JVM interface meant for
external debuggers. When this interface is used, JIT compilation is
disabled and the bytecode is interpreted, unlike with Jazz2’s ability
to coexist with the JIT compiler. Alternatively, instrumentation
is inserted into the class files with a tool such as the Bytecode
Engineering Library (BCEL) [2] or at load time with a custom
classloader. Neither of these approaches allows for the dynamic
removal of the instrumentation as Jazz2 does.

Additionally, these tools apply instrumentation to entire class
files or jar files. They lack the ability that Jazz2 has to choose the
most appropriate instrumentation type on a per method basis.

Balcer, Hasling, and Ostrand propose a domain specific language
to ease the overall testing process [14]. Their language does not solve
the problem of specifying where or how to do coverage testing.

Bytecode-level instrumentation is an example of a cross-cutting
concern that Aspect-Oriented Programming (AOP) [16] seeks to
easily support. In particular, the Join Point Model of AspectJ [1]
is a rich language that could be used to specify where instrumen-
tation (aspects) should be woven into existing class files. Rajan
and Sullivan extend the Join Point Model to support the targeted
specification of regions of Java code for testing [22]. It is unclear if
their language supports the application of different testing strategies
to the selected regions. Jazz2’s simple language supports this and
the implementation provides it.

Fast breakpoints were pioneered by Kessler [19], but these break-
points were proposed for traditional debugging rather than as dy-
namic instrumentation for structural testing. Dynamic instrumenta-
tion systems such as PIN [9], Dyninst [18] and Paradyn [20] used a
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check compress jess db javac mpegaudio jack

Forced GCs 4 2 2 2 6 2 2
Baseline Unforced GCs 0 7 9 4 4 0 9

Static Node — +1 -1 — — — —
Static Node Agrawal +1 — +2 — +3 +1 +4
Demand Node — — -1 — — — —
Demand Node Agrawal +1 — +1 — +3 +1 +3

Static Branch — +1 — — — — —
Static Branch Agrawal +3 +1 +3 +1 +10 +2 +8
Demand Branch — +1 — — +1 — —

Table 4. Change in the number of garbage collections. Top two rows (in italics) are number of collections for baseline without testing,
including number forced calls to System.gc() and unforced collections. The other rows show the increase (+), decrease (-), or no change
(—) in collections over the baseline. The default initial heap size of 20 MB and maximum heap size of 100 MB were used.

technique similar to ours to instrument programs. Like our frame-
work, Dyninst is intended to be general, with a language for specify-
ing instrumentation [18]. However, their instrumentation techniques
were not designed to support test development.

Tikir and Hollingsworth use a dynamic technique for node
coverage with Dyninst [18, 23]. As in Jazz2, the Dyninst tool
dynamically inserts instrumentation on method invocations for
node coverage. However, instead of removing instrumentation
as soon as possible, a separate thread periodically removes the
instrumentation. This instrumentation remains until collected, even
when it is not needed. Additionally, Tikir and Hollingsworth do not
address the issues of test specification nor is their tool a framework
for implementing additional tests such as branch coverage. Jazz2’s
extensibility permits this technique to be implemented with the
support services. We have an implementation of collection-based
removal of test probes currently in development.

Jazz2 makes use of the work of Agrawal to reduce the num-
ber of instrumentation probes inserted at compile-time [12]. Other
strategies exist for reducing the cost of collecting coverage informa-
tion, such as path profiling [15]. This technique inserts probes that
add a block-specific value to a counter so that an accumulated sum
uniquely identifies a taken path. Path coverage subsumes both node
and branch coverage, but the probes inserted are never removed.
This technique could be added to Jazz2’s test library.

7. Conclusion
This paper described Jazz2, a flexible and extensible framework
for structural testing. Jazz2 provides support services to do code
generation, memory management, control flow analysis, and handle
interaction with a JVM. Using these services we built an initial
library of test planners to do structural testing. New test planners
can be created by extending existing tests from the library or writing
new ones with the support services. We detailed our experience in
Jazz2 on top of IBM’s Jikes RVM for Java. Our evaluation shows
that Jazz2 has feasibly low overhead. It is a powerful framework
that provides a rich set of capabilities to create a variety of structural
tests relying on different instrumentation strategies.
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