
Abstract
Producing reliable and robust software has become
one of the most important software development
concerns in recent years. Testing is a process by
which software quality can be assured through the
collection of information about software. While
testing can improve software reliability, current
tools typically are inflexible and have high over-
heads, making it challenging to test large software
projects. In this paper, we describe a new scalable
and flexible framework, called SoftTest, for testing
Java programs with a novel path-based approach to
coverage testing. We describe an initial implemen-
tation of the framework for branch coverage testing
and demonstrate the feasibility of our approach.

1 Introduction
In the last several years, the importance of produc-
ing high quality and robust software has become
paramount [2]. Testing is an important process to
support quality assurance by gathering information
about the software being developed or modified. It
is, in general, extremely labor and resource inten-
sive, accounting for 50-60% of the total cost of soft-
ware development [3]. The increased emphasis on
software quality and robustness mandates improved
testing methodologies.

Testing approaches are hindered by the lack of
quality tools. Current tools are not scalable in terms
of both time and memory, limiting the number and
scope of the tests that can be applied to large pro-
grams. These tools often modify the software
binary to insert instrumentation code for testing.
However, the tested version of the application is not
the same version that is shipped to customers and
errors may remain. Testing tools are usually not
flexible and only implement certain types of testing,
such as various kinds of structural testing.

In this paper, we describe a testing framework,
called SoftTest that addresses these problems. Our
approach uses techniques that apply different test-
ing strategies in an efficient and automatic way. Our
method relies on a novel scheme to employ test
plans that describe what should be automatically
inserted and removed in executing code to carry out
testing strategies. A test plan is a “recipe” that
describes how and where a test should be per-
formed. The approach is path specific and uses the
actual execution paths of an application to drive the
instrumentation and testing. Once a test site is com-
plete, the instrumentation is dynamically removed
to avoid run time performance overhead, and the
test plan continues. The granularity of the instru-
mentation is flexible and includes statement level
and structure level (e.g., loops, functions). Because
our approach is dynamic and can insert and remove
tests as a program executes, the same program that
is tested can be shipped to a customer.

To ensure that our framework is general, we are
developing a specification language from which a
dynamic test plan can be automatically generated
by a plan generator. The test specification describes
what tests to apply and under what conditions to
apply them. For example, specifications could be
written for structural testing, data flow testing, ran-
dom testing, hot path testing, and user defined test-
ing. The specification language has both a visual
representation and textual form. The visual lan-
guage is expressed through a graphical user inter-
face (GUI). The graphical tool also includes the
ability to collect test results and present them to the
user with a test analyzer, highlighting relevant parts
of the application with the test results. The test
framework—the GUI, test planner, and test ana-
lyzer—are an Eclipse plug-in for building new flex-
ible and scalable testing tools.

We have implemented a prototype tool built with
SoftTest that can perform branch coverage testing

SoftTest: A Framework for Software Testing of Java
Programs

B. Childers, M. L. Soffa, J. Beaver, L. Ber, K. Cammarata, T. Kane, J. Litman, J. Misurda

Department of Computer Science
University of Pittsburgh

Pittsburgh, Pennsylvania 15260
{childers, soffa, beaver, libst18, juliya, jmisurda}@cs.pitt.edu

over multiple regions of code in a Java program to
demonstrate the feasibility and practicality of our
approach. Our preliminary results show low run-
time overhead for several small Java programs.

2 Test Framework
We are developing SoftTest as a complete frame-
work for testing of Java software. Figure 1 shows
the components in the framework, including a test
specifier, a test planner, a test virtual machine
(TVM), and a test analyzer. One component is a lan-
guage, testspec, for specifying a software test pro-
cess. The specification includes the relevant parts of
the program to be tested and the actions needed in
the testing process. Testers can either write a speci-
fication in testspec or, better, use the GUI, which
automatically generates a specification in testspec.
A test planner consumes the testspec specification
and determines a plan for testing the program given
the specification. Using the plan, the TVM dynami-
cally instruments an executing program to conduct
the specified tests. Hence, the test plan is essentially
a “program” that runs on the TVM to apply differ-
ent software tests. The TVM is incorporated in the
IBM Jikes Java RVM. Finally, the framework has
an analyzer for reporting test results to the user.

In the following sections, we discuss SoftTest and
our branch coverage tool, including test specifica-
tion, test planning, the TVM, and the test analyzer.

2.1 Test Specification
In testing a software application, a developer may
wish to apply different tests to various code regions.
The tests are also often applied with different cover-

age criteria. SoftTest includes a graphical user inter-
face for specifying the tests to apply, where to apply
them, and under what conditions. Our tool for
branch coverage testing includes the capability to
select code regions using the GUI interface. A cov-
erage criteria can also be specified for each region.

As shown in Figure 2, the GUI lets an user visu-
ally create a test specification. The main GUI fea-
tures are identified with numbers in Figure 2.
Feature 1 shows the button within the Eclipse plat-
form that allows Eclipse to start the GUI. Feature 2
is the screen where the user creates and runs tests.

Feature 3 displays where the user selects the tests
to run and defines regions to test. Feature 4 shows
the text selection component of the GUI for high-
lighting lines of code to test in a Java program. In
this way, the user is able to see the code and exactly
what needs to be tested.

Features 5 and 6 aid the user in setting parameters
for a specific test. One of these parameters is the
number of times a code section should be hit to be
considered covered. Finally, feature 5 sets parame-
ters for whole test specification. From the visual
specification, the GUI generates a specification in
the testspec language. An example of the test speci-
fication for a method is shown in Figure 3.

As shown, the test specification language repre-
sents a user’s desired test process. The language
consists of two parts: DEFINITIONS and a BODY.
In DEFINITIONS, regions of the code to test are
defined. A region consists of a.java file name and
class name, followed by any combination of line
numbers, procedure names, loop identifiers or other
regions. The purpose of DEFINITIONS is to

Figure 1: SoftTest testing framework for Java programs

Test Spec.

Test Planner

Application

Test Plan

Test Virtual
Machine

T1 T2 T3 T4

JVM

Jikes
RVM

Test Specification

Eclipse Plug-in

Results

Test Spec.

Test Planner

Application

Test Plan

Test Virtual
Machine

T1 T2 T3 T4

JVM

Jikes
RVM

Test Specification

Eclipse Plug-in

Results

declare code regions for testing that can be refer-
enced in the BODY section.

The BODY section has the actual test specifica-
tions. It has the test type (BRANCH_TEST means
branch coverage testing) and what regions from
DEFINTIONS to apply that test. In addition, condi-
tions can be specified that must be met for the test
to be considered complete. In Figure 3, the test cov-
erage specified is 90%, meaning the test is complete
when branch coverage reaches 90%.

2.2 Test Planner
From the test specification, an intermediate repre-
sentation is generated for the test planner to decide
how to instrument a Java program. For branch cov-
erage, the test planner is invoked every time a

method is loaded by the Jikes Just-in-Time com-
piler. The planner checks whether the loaded
method is in the test specification to see whether it
should be instrumented to apply branch coverage
testing. Thus, only methods that are actually loaded
and executed are instrumented by the planner.

The planner also retrieves the source code to byte-
code line number mapping from a Java class file. If
a user specified certain test regions, the planner will
identify the basic blocks that need to be tested and
set the appropriate parameters in the test plan.

The main function of the test planner is to deter-
mine where and how to test the application by pro-
ducing a test plan. A test plan has two parts: a test
table and instrumentation payload. The test table
has information about how to conduct a specific
test. For branch coverage, it says when to insert and
remove instrumentation for covering each edge of a
method’s control flow graph (CFG). The payload
code is target machine code that is executed at each
instrumentation point. The payload for branch cov-
erage updates a table that records which edges have
been covered. The payload also removes instrumen-
tation once an edge has been covered and inserts
new instrumentation to cover edges that are next to
execute and have not yet been hit. In this way, the
payload inserts and removes instrumentation
dynamically along a path of execution.

To apply branch coverage testing with minimal
overhead, the test planner must determine how best
to instrument the program. The goal is to minimize
the amount of instrumentation that is executed

public class simple6 {
public int foo(int x) {
if (x==200) x = x + 100;
else x = x - 100;
return x;

} }

DEFINITIONS {
NAME: X, REGION_D,
LOCATION: FILE example.java {
CLASS simple6, METHOD foo

}
} BODY {

DO BRANCH_TEST
ON REGION X UNTIL: 90% }

Figure 3: Example test specification

Figure 2: Test specification in Eclipse GUI

when the method runs. Instrumentation is placed
dynamically by having a block that is hit place
instrumentation in its successors, according to the
plan. To determine the edge that was executed for
branch testing, predecessors and successors are
needed. To get this information, the planner con-
structs a method’s CFG.

The CFG is also used to identify special code con-
structs to identify the best way to instrument them.
For instance, a reflexive block is a special case that
occurs when a basic block has itself as a successor
(see Figure 4b). The planner recognizes this condi-
tion and ensures that instrumentation is inserted to
account for the reflexive loop by describing where
its successor should place the instrumentation.

Other cases arise when there may not be enough
information to determine which edge was taken by
a branch. To produce correct branch coverage
results, it is necessary to track of the current block's
predecessor at run-time, so that the appropriate
edge can be marked as covered. One special case
occurs for a stranded basic block. Assume a basic
block A has multiple predecessors and at least one
of A’s predecessors has multiple children. Then
control comes from any predecessor but the first,
we must ensure that there is instrumentation in the
predecessor so the edge can be identified. In Figure
4a, the shaded block (5) is stranded if the paths 1-
>2->4->6 and 1>3>5>6 are taken and then the path
1->2->5->6 is taken. However, since instrumenta-
tion is inserted and deleted dynamically in our
scheme, instrumentation would be removed from
blocks 2 and 3 as soon as instrumentation is put in
its successors (4 and 5). In the second time through

block 5, we do not know whether the actual prede-
cessor was block 2 or 3 because the instrumentation
for covering block 2 and 3 was removed. To solve
the stranded block case, instrumentation is placed in
predecessors' basic blocks if the above conditions
are satisfied.

Finally, the test planner can reduce the instrumen-
tation overhead by inserting specialized payloads
for single-entry blocks and their predecessors.
Since single-entry blocks have a single predecessor,
a simplified version of instrumentation can be used
that updates the coverage table without knowledge
about predecessor blocks.

2.3 Test Virtual Machine
Using the information gathered from the test plan-
ner, the TVM provides the functionality to insert
and remove instrumentation at run-time. The TVM
operates on target machine code generated by the
Jikes JIT compiler. The TVM implements an inter-
face for inserting and removing instrumentation
with fast breakpoints. A fast breakpoint replaces an
instruction in the target machine code with a jump
to a breakpoint handler that invokes the test instru-
mentation payload from the test planner.

In the prototype for branch coverage, the TVM
inserts a breakpoint in the first point specified by
the test plan. This single breakpoint is then respon-
sible for placing the next breakpoints needed,
which, in the case of branch coverage, would be the
nodes as identified by the planner as successor basic
blocks. These successor breakpoints in turn, as they
are hit, execute payload code that is responsible for
placing breakpoints in successor blocks. In this
manner, we can minimally affect the execution of
the program since we are guiding the instrumenta-
tion by the currently executing path. This allows for
performance to be minimally affected since hot
paths and tight loops will be instrumented only for a
few passes. Hence, most of the execution time is
spent executing code without instrumentation.

The TVM’s API provides primitives, such as the
placement of successor breakpoints, storing test-
specific data, and removal of breakpoints, for con-
structing fast breakpoints with varying payloads.
This API allows for flexible instrumentation that
can be specified in a variety of ways. The instru-
mentation constructed with the API is also highly
scalable since only relevant portions of the program
are instrumented for only as long as needed.

Figure 4: Example CFGs for test planner

pro

1

2 3

4 5

6

epi

(a) Example CFG with
stranded block (shaded)

(b) Example CFG with
block as its own successor

2.4 Test Analyzer
The test analyzer displays the results of tests con-
ducted in the SoftTest framework. For branch cov-
erage, the analyzer displays the CFG for a method
and highlights the edges that were covered for a
particular test input. The prototype displays the
CFG for the target machine code; we are imple-
menting support for source level coverage as well.

3 Preliminary Results
Our branch coverage tool implements the method-
ology outlined in this paper. A user can specify
code regions on which to apply branch coverage for
arbitrary methods in a Java program.

Using our tool, we have done preliminary experi-
ments to determine performance and memory over-
head. The benchmarks are small Java programs that
uncompress a file, transpose a matrix, and create
parallel threads. On these programs, the perfor-
mance overhead for coverage varied from 1% to
5.5% of the total execution time. Of the total perfor-
mance overhead, the test planner accounted for
27% to 64% and the instrumentation code 36% to
72%. In some cases, the planner overhead was more
than the instrumentation overhead. This case can
occur when a method has many basic blocks, but a
short path is taken through the method. Similarly,
the instrumentation overhead can be higher than the
planning overhead when some instrumentation is
repeatedly hit (e.g., in a stranded block in a loop).

For the benchmarks, the memory overhead was
178 to 822 bytes for the test table. The payload code
has a common portion that is shared by all instru-
mentation points and a portion specific to each
breakpoint inserted. The common code is 110 bytes
and the breakpoint specific code is 31 bytes.

These initial experiments demonstrate that our
approach has both low performance and memory
overhead. We are currently evaluating the overhead
for larger programs, including the SPECjvm98
benchmarks, and we expect that our preliminary
results will scale to these programs.

4 Related Work
There are a number of commercial tools that per-
form coverage testing on Java programs, including
JCover and IBM’s Rational TestStudio. Most of
these tools statically instrument the program to per-

form coverage testing. The work that is most
closely related to ours is a tool developed with the
ParaDyn parallel instrumentation framework [4].
This tool dynamically inserts and removes instru-
mentation on method invocations to do node cover-
age, where we take a similar approach for branch
coverage. Unlike our approach, instrumentation is
inserted in the whole method when it is invoked and
a separate garbage collection process is done to
remove instrumentation. Our technique instru-
ments only along executed paths and removes
instrumentation on-demand as soon as possible.

5 Summary
This paper described a framework, called SoftTest,
for software testing of Java programs that relies on
a novel scheme for dynamically inserting and
removing instrumentation based on execution
paths. We presented an initial prototype tool built
with SoftTest for branch coverage testing. Our pre-
liminary results are very encouraging: The test
overhead on several small benchmarks ranged from
1% to 5.5%. We are currently extending our frame-
work and tools to support other test types, including
statement coverage and def-use coverage. Our
future work will also include the ability to conduct
software tests on optimized Java code.

Acknowledgements
This research was supported in part by an IBM
Eclipse Innovation Grant.

References
[1] P. Kessler, “Fast breakpoints: Design and

implementation”, ACM SIGPLAN Conf. on
Programming Languages, Design and Imple-
mentation, June 1990.

[2] L. Osterweil et al., “Strategic directions in soft-
ware quality”, ACM Computing Surveys, Vol.
4, December 1996.

[3] W. Perry, Effective Methods for Software Test-
ing, John Wiley & Sons, Inc., New York, New
York, 1995.

[4] M. Tikir and J. Hollingsworth, “Efficient
instrumentation for code coverage testing”,
Int’l. Symp. on Software Testing and Analysis,
Rome, Italy, 2002.

