
EFFICIENT BRANCH AND NODE TESTING

by

Jonathan Misurda

Bachelor of Science, University of Pittsburgh, 2003

Master of Science, University of Pittsburgh, 2005

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2011



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Jonathan Misurda

It was defended on

November 29, 2011

and approved by

Bruce R. Childers, Department of Computer Science

Panos Chrysanthis, Department of Computer Science

Mary Lou Soffa, University of Virginia, Department of Computer Science

Youtao Zhang, Department of Computer Science

Dissertation Director: Bruce R. Childers, Department of Computer Science

ii



Copyright c© by Jonathan Misurda

2011

iii



EFFICIENT BRANCH AND NODE TESTING

Jonathan Misurda, PhD

University of Pittsburgh, 2011

Software testing evaluates the correctness of a program’s implementation through a test

suite. The quality of a test case or suite is assessed with a coverage metric indicating what

percentage of a program’s structure was exercised (covered) during execution. Coverage

of every execution path is impossible due to infeasible paths and loops that result in an

exponential or infinite number of paths. Instead, metrics such as the number of statements

(nodes) or control-flow branches covered are used.

Node and branch coverage require instrumentation probes to be present during

program runtime. Traditionally, probes were statically inserted during compilation. These

static probes remain even after coverage is recorded, incurring unnecessary overhead,

reducing the number of tests that can be run, or requiring large amounts of memory.

In this dissertation, I present three novel techniques for improving branch and node

coverage performance for the Java runtime. First, Demand-driven Structural Testing

(DDST) uses dynamic insertion and removal of probes so they can be removed after

recording coverage, avoiding the unnecessary overhead of static instrumentation. DDST

is built on a new framework for developing and researching coverage techniques, Jazz.

DDST for node coverage averages 19.7% faster than statically-inserted instrumentation on

an industry-standard benchmark suite, SPECjvm98.

Due to DDST’s higher-cost probes, no single branch coverage technique performs best

on all programs or methods. To address this, I developed Hybrid Structural Testing (HST).

HST combines different test techniques, including static and DDST, into one run. HST

uses a cost model for analysis, reducing the cost of branch coverage testing an average of
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48% versus Static and 56% versus DDST on SPECjvm98.

HST never chooses certain techniques due to expensive analysis. I developed a third

technique, Test Plan Caching (TPC), that exploits the inherent repetition in testing over

a suite. TPC saves analysis results to avoid recomputation. Combined with HST, TPC

produces a mix of techniques that record coverage quickly and efficiently.

My three techniques reduce the average cost of branch coverage by 51.6–90.8% over

previous approaches on SPECjvm98, allowing twice as many test cases in a given time

budget.
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1.0 INTRODUCTION

Beware of bugs in the above code; I have only proved it correct, not tried it.

—Donald Knuth, March 29, 1977

As programs grow ever larger and more complex, demonstrating them to be bug-

free becomes an increasing challenge. In a 2002 study, the National Institute of Standards

and Technology estimated that errors in software cost the United States $59.5 billion each

year [50]. With so much money at stake, not to mention issues of health and safety, it is

clear that reducing the number of bugs found in software is a paramount concern of the

software development process.

For example, in October 2011, British car manufacturer Jaguar Cars Ltd. issued a recall

of nearly 18,000 cars due to a software bug that prevented the cruise control from being

disabled. It could only be disengaged by shutting off the ignition, something not safely

done at speed. Jaguar stated that “in some circumstances the cruise control may not

respond to the normal inputs” [30], a bug that adequate testing should be able to expose.

However, the size of modern programs can make the task of testing nearly impossible.

Larger programs have more source code statements, more branches, and more data values

where a mistake may occur. In a 1999 empirical study, Rothermel et al. report that the

software product of an industry partner containing about 20,000 lines of code requires

seven weeks to run the entire test suite [59].

Traditionally there have been two schools of Software Engineers: those who want to

formally verify a program through proofs, and those who want to test the actual behavior
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of the code’s execution versus its expected behavior. Formal verification is a lofty goal,

and while automatic theorem provers have been somewhat successful—usually with

specially designed programming languages or annotations—the techniques are far from

general. Worse, they are often impractical for the very large programs that need it the

most [65, 28]. Instead, through the intelligent use of test techniques, software testing can

be made practical and accurate.

1.1 SOFTWARE TESTING

Just as most people will test drive a car before they purchase it, even novice programmers

instinctively check program output to determine the behavior of a program. However,

this is usually done in an ad hoc fashion. The bigger question that may be asked is:

“Can this be done in a systematic way?” The answer, of course, is a resounding “Yes!”.

Software Testing is the discipline of Software Engineering devoted to empirically testing

a program’s execution to determine software correctness [38].

Software testing begins with the realization that to effectively check a program’s

behavior, one needs to test as much of the code as possible. Too many programs have

been written where “rare” code, such as error handlers, have been left untested. The first

step then is to construct a set of test cases that are designed to exercise the program via

carefully constructed inputs. The second step is to run the suite of test cases and to check

the output. Any discrepancy between the actual and expected results constitutes a bug.

This strategy can be extremely effective, but it hinges on the tests being created in a

deliberate fashion rather than just ad hoc collections of input. There needs to be a way to

assess the quality of a test suite—i.e., how well it tests the program. One possible way

of evaluating the test suite is to look at the structure of a program—its control and data

flow paths—and to count how many of those paths are taken versus how many exist.
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1.2 STRUCTURAL TESTING

While the ideal in Structural Testing is to completely test every path a program can take,

this is an untenable goal in practice. Some portions of program code may be infeasible,

and no test case will ever execute the code. Even if the tests are restricted to feasible

paths, the number of possible paths in a program that has loops may be vast or even

infinite [37].

If path-based structural testing could be done simply, the evaluation of a test suite

would be the ratio of executed paths to the total number of possible paths. The lower the

percentage of covered paths, the less thorough the test suite. This ratio is a coverage metric,

where a test case is said to cover some path or paths.

Since path-based structural testing is hard or impossible in many cases—specifically

those large programs that need thorough testing—some other, more practical manner

by which to determine the quality of a test suite is needed. One possible approach is to

relax the granularity of the structure from a path to something simpler to test such as

individual code statements or branches.

1.2.1 The Coverage Metrics

There are two classes of coverage metrics: the control flow metrics and the data flow

metrics. Zhu et al. describe these tests formally [69] and I will describe them briefly here

for convenience. The most commonly-used control flow metrics are:

Path Coverage Path coverage is the ideal coverage metric. If a test suite covers 100% of

the paths of a program, including implied paths such as integer overflow or other

exceptions, the program should be bug-free. There are many implicit assumptions,

however, including the questions of what to do with infeasible code, what to do when

inputs cause a program to never halt, or how possible it is to actually generate all

possible inputs to get all paths.

Branch Coverage While there may be an infinite number of paths due to back-edges,

there are a finite number of branch instructions. Branch coverage seeks to evaluate
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a test suite for how many branches it covers out of the total number of branches in

the code. This coverage metric is, however, weaker than path coverage, since it is

possible to construct a path that is comprised of covered branches but has other paths

uncovered.

Node Coverage Node coverage (also called statement coverage), he weakest of all the

control flow coverage metrics, simply seeks to discover if every statement in the

program has been executed by a test suite. Since the path to the node is not even

recorded at the branch level, statement coverage can miss bugs that result from two

nodes being executed in some order, even though both nodes could have been covered.

The data flow coverage metrics include:

Def-Use Coverage A data flow metric that seeks to determine how many Definition-Use

(DU) pairs of a variable have been covered out of all possible ones. A DU-pair is an

edge between where a variable is defined and where that assigned value is used.

All Uses Coverage The all-uses coverage metric records if for every variable definition, a

path has been covered that reaches every use. This is weaker than the All DU-pairs

criterion since only a single path must be exercised instead of every path.

All Defs Coverage This metric records coverage of every definition of a variable that

reaches a use. It is the weakest of the data-flow coverage metrics.

The subsumption hierarchy for the control flow metrics is that path coverage subsumes

branch coverage which subsumes node coverage. For data flow metrics, Def-Use coverage

subsumes All Uses which subsumes All Defs. Many other works focus on the creation of

test cases and specific coverage metrics [43, 26, 38, 29].

1.3 THE CHALLENGES OF EFFICIENT STRUCTURAL TESTING

With such a well-defined testing strategy, why has coverage testing not become standard

practice among all large software projects? For some reason, the discipline that software

testing requires often falls to the wayside during software projects. Often programmers
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are unmotivated to write test suites, thinking that the extra work it involves is wasted

rather than saving debugging time down the road. Also, testing is just one more obstacle

in the increasingly tight time and monetary budgets of many companies. But the simplest

of the many reasons is that currently it is not feasible to do quick structural testing on

large programs. This is due to the deficiencies in the current tools and techniques.

Coverage testing needs to be emphasized as a major part of the development process.

The easiest way to do this is to integrate testing into the development environment.

However, existing test techniques are not automated, and limited to what a tool provides

by default, which is often only low-content coverages like statement coverage. Even

worse, existing instrumentation techniques used in commercial tools are slow and often

require access to the source code. Java testing tools that use the Java Debugging Interface

disable Just-In-Time compilation and default back to painfully slow interpretation [7, 44].

As if the slow methods of data gathering were not enough, existing coverage al-

gorithms place instrumentation probes without regard to the actual execution of the

program. This means instrumentation is unnecessarily placed in regions of code that are

infeasible, wasting time. Frequently these probes are inserted at compile-time, possibly

masking bugs such as buffer overruns with the storage for counter variables.

Take for example, the control flow graph (CFG) in Figure 1.1. The program in this

figure is a simple one that adds the even and odd integers from one to one million. With

traditional tools, static instrumentation would be placed into each basic block (indicated

by the colored boxes) and even though every node or branch but the return would be

covered on the second iteration, the program would still be incurring high overheads. In

the example program of Figure 1.1, there will be 4,000,003 total probe executions when

node coverage only needs one execution of the instrumentation probe in each of the seven

basic blocks.

Figure 1.2 shows an approach to improving the cost of structural testing that attempts

to place less probes and infer coverage. The algorithm was developed by H. Agrawal

and uses dominator information to allow one probe to record the coverage of multiple

structures [12]. The resulting probe locations shown in the figure yield over a 50%

reduction in the static number of probes. However, when the code is executed, there still
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evenSum+=i;

if(i%2 == 0)

oddSum+=i;

i++;

if(i<1000000)

return;

long evenSum=0;
long oddSum=0;

int i=0;

Figure 1.1: Static instrumentation is not removed after recording coverage.

evenSum+=i;

if(i%2 == 0)

oddSum+=i;

i++;

if(i<1000000)

return;

long evenSum=0;
long oddSum=0;

int i=0;

Figure 1.2: Agrawal’s algorithm statically places fewer instrumentation probes.
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remain 1,000,001 dynamic probe executions when only three were necessary to record

full coverage. Additionally, the cost of computing the probe locations is high, reducing

the advantage of the fewer probe executions.

1.4 RESEARCH OVERVIEW

With these shortcomings, it is clearly time for a better system for doing structural testing.

This dissertation presents an end-to-end solution efficiently collecting coverage informa-

tion for node (statement) and branch coverage in a Java JVM that uses just-in-time (JIT)

compilation.

First, I present a new framework, called Jazz, which allows for the easy implementation

and research of different structural test techniques. Jazz supports inserting multiple

types of instrumentation at different phases in the JIT compilation process. It does the

insertion by interfacing into the Java JIT compilation process and exposing an interface

for building test planners that drive the placement and operation of instrumentation

probes. Additionally, Jazz provides facilities to handle memory management and control-

flow analysis. It also provides a test specification language that allows for convenient

specification of which test techniques to apply to which packages, classes, and methods

in a particular testing run. On top of these services, I developed an extensible test library

that formed the foundations for the novel test techniques this dissertation will present.

One member of the test library is a novel technique for structural testing called demand-

driven structural testing (DDST). DDST uses instrumentation probes constructed out of

fast breakpoints [40] that can be easily inserted and removed during the execution of the

tested program. Dynamic insertion and removal of probes allows instrumentation to

have as short of a lifetime as possible, taking advantage of the fact that coverage is a

boolean property that, in practice, converges quickly. By removing instrumentation as

soon as it is no longer necessary, the majority of the tested program’s execution will be

instrumentation-free. Experiments using DDST show it to be the best choice for node

coverage and is a good choice for loop-intensive code when testing with branch coverage.
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However, uniform application of DDST-based branch coverage testing to all programs

or even all methods in a program is not always the best choice when compared to

mixing in more traditional static, always-present instrumentation. DDST requires a more

expensive instrumentation probe and some methods have a control-flow structure called

a stranded block, which prevents instrumentation from being removed when coverage has

not reached 100%. Instead of using just one test technique, this dissertation presents a

hybrid approach called Profile-driven Hybrid Structural Testing (HST) that combines

three different branch coverage test techniques: DDST, Static, and Static with Agrawal’s

optimization technique. Information from a profiling run on a small input is combined

with a model of instrumentation probe behavior to provide a customized plan of testing

techniques to be applied to the methods of a program. Results show that the hybrid

approach improves upon the naı̈ve application of a single test technique by an average of

48% versus Static and 56% versus DDST.

Structural testing can be further improved by examining the software testing process

as a whole. In general, there is a suite of more than one test case over which the program

is run. Since there is repeated execution of methods that have not changed between runs,

some of the cost of planning where and how to instrument the program can be cached and

reloaded on subsequent test cases from the suite. This dissertation introduces Test Plan

Caching (TPC) that uses saved test plans. By eliminating the unnecessary recomputation

of test plans, more test cases out of the suite can be executed in a limited time budget.

1.5 CONTRIBUTIONS

This dissertation makes a number of contributions to the challenges of structural testing.

They are:

1. A formalized notation and model of structural testing that captures the properties

inherent in the various test techniques, allowing for analysis and development of new

techniques,
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2. A framework, Jazz, for the convenient implementation and evaluation of structural

testing algorithms,

3. Testspec, a language for the specification of regions on which to apply the structural

tests developed in Jazz,

4. A novel approach for structural testing using demand-driven instrumentation (DDST),

5. Hybrid Structural Testing (HST), a profile-based approach for selecting the appropriate

branch test technique for use on a given method, and

6. Test Plan Caching (TPC), a method for using repeated test runs over the test cases of

a suite to further improve testing performance by caching over the entire suite.

1.6 ASSUMPTIONS & SCOPE

This work addresses the problem of efficient structural testing under a set of assumptions.

First, the Jazz framework targets a Java Virtual Machine (JVM) that uses just-in-time

compilation. The JVM must be freely modifiable to allow for the addition of the Jazz

framework components. Secondly, I focus on baseline compilation where aggressive

optimizations that would result in code movement or elimination are not applied. The

techniques of this dissertation apply to arbitrary sequences of binary code, but with

optimization enabled, mapping the coverage information back to the source code becomes

more difficult. The same problem has been solved with debuggers in the work of

Jaramillo [35] and those techniques could be applied to DDST.

The Java programming language also makes it possible to compute a control flow

graph before the code is run, as there are no computed branches with targets unknown at

JIT compilation time.

The instrumentation is written as self-modifying x86 machine code. It is assumed that

self-modifying code is supported by the hardware and the operating system.

This work targets single-threaded applications written solely in Java with no native

code. The modifications to the techniques to support multithreading are addressed in

this dissertation, but implementation is future work.
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1.7 ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 examines the background and

related work. Chapter 3 presents a new framework, Jazz, designed to facilitate the research

and development of structural tests in a JVM. Chapter 4 describes a novel technique for

doing structural testing using instrumentation that is dynamically inserted and removed

during program execution. Experimental results from testing DDST techniques show

that none of the evaluated techniques for branch coverage is consistently the best choice

across all programs, nor even across all methods in a single program. Chapter 5 thus

presents a way of using a small profiling input to determine which technique to apply

to a method on subsequent full testing runs. In Chapter 6, I seek to exploit the testing

process to identify ways where a test suite can be optimized beyond a single test case

run by using caching and information gathered in prior runs of the test suite. Finally,

Chapter 7 concludes and discusses future work.
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2.0 BACKGROUND AND RELATED WORK

In this chapter, I present the background of software testing and discuss previous

work to frame the new solutions presented in the remainder of this dissertation. Related

work is presented in four parts. First, existing coverage tools are discussed. Next,

previously suggested techniques for improving the cost of coverage collection are given.

Third are several instrumentation techniques useful for software testing. Finally, languages

related to specifying how to test or where to instrument are explored.

2.1 SOFTWARE TESTING

Software testing is the process of assessing the functionality and correctness of a program

through execution or analysis [38]. Its purpose is to reveal software faults before they

manifest themselves as failures during regular program usage. A failure is defined to be

“the inability of a system or component to perform its required functions within specified

performance requirements” [33]. A fault is a portion of a program’s source code that is

incorrect [33].

The discovery of faults through testing is, at its heart, an intractable problem. For

instance, the number of inputs to a program may be exponential in size, an input may

cause a program to never terminate, or the fault may lie in the specification of the problem

rather than the implementation of the program [18, 38]. However, this does not mean that

testing should be ignored.

Testing can be done by inspection or by execution [38]. This dissertation focuses on

execution-based testing approaches. This means that the program to be tested is run with
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an input designed to exercise the program in a certain way, known as a test case. Since

a single run may not exercise the program adequately, there may be multiple test cases

assembled into a suite [37, 38, 33, 18, 69].

However, feedback is necessary to know how well a test suite has exercised the

program, and thus exposed faults. For this, an adequacy criterion is used [69]. A question

then is: “What constitutes a reasonable measure of adequacy?” Two possible categories

are criteria that are specification-based, where testing determines if the software meets

a set of predefined requirements, and program-based where the adequacy of testing is

determined in relation to the properties of the program under test [69].

2.1.1 Structural Testing

This dissertation focuses on a program-based adequacy criterion, specifically structural

testing, where the requirements for a test suite are based upon a particular aspect of the

structure of the program. Structures that can be explored include control-flow ones, such

as the nodes, edges, or paths of a program’s control flow graph, or data-flow ones, which

track variable definitions and uses [69].

Not all adequacy criteria are equal. For instance, if a test case exercises a control-flow

structure such as a path through a program, that path is said to be covered. Coverage of a

path implies that each branch taken as part of that path is also covered. In this way, a

criterion such as path coverage is said to subsume the branch coverage criterion [69, 38].

Clarke et al. created and proved a subsumption hierarchy that relates data- and

control-flow adequacy criteria to each other. The relevant part of this hierarchy for this

dissertation is shown in Figure 2.1 [23]. Path coverage is the most complete of the criteria

as covering all paths would be to test all possible executions of the program. However,

the number of paths can be infinite or exponential in programs with loops [69, 38].

Additionally, some paths are infeasible, where no input will ever exercise it [49].

For the data-flow criteria, there are both definitions of variables and uses of the

variables to cover (du coverage). A use of a variable in a computation is called a c-use and

a use of a variable as a predicate in a conditional statement is known as a p-use [69, 38].
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All-Paths 

All-DU-Paths 

All-Uses 

All-C-Uses/ 
Some-P-Uses 

All-P-Uses/ 
Some-C-Uses 

All-Defs 
All-P-Uses 

All-Edges 

All-Nodes 

Figure 2.1: Partial subsumption hierarchy for adequacy criteria.
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Control-flow criteria are based on paths, branches, and nodes—the basic blocks of the

control flow graph, which correspond to the statements in the program’s source code.

The control-flow criteria are colored in Figure 2.1. This dissertation focuses on branch

and node coverage.

2.1.2 Uses of Structural Coverage Criteria

The original motivation for collecting coverage with structural testing was to determine

test suite adequacy. However, coverage results can also be used to drive the composition

and application of the test suite to a program under test. Additionally, it can be used

as part of regression testing to select the appropriate test cases to target where new

modifications of the source code might have introduced a new fault into the program [38].

Test selection uses the results of coverage information to run a subset of test cases out

from a suite that target the locations where code has been modified. This is done to

reduce the cost of regression testing [16, 56, 38].

Some test cases in the test suite are more useful than others. These cases can be chosen

to run first to make sure the maximal amount of coverage can be achieved in a given

time budget. Test suite prioritization also allows faults to be exposed sooner in the testing

process. Structural coverage can be used to assess the priority of a test case [57, 59, 29, 38].

In addition to prioritization, test suite reduction uses coverage results to prune test

cases that do not supply additional information from the other cases in the suite [36, 58].

2.2 RELATED WORK

Due to the well-established utility of coverage testing, there is a body of traditional tools

and techniques to collect coverage. This section describes those tools and techniques

developed to more quickly collect coverage and other similar runtime properties. The

techniques below and in this thesis also depend upon program instrumentation. Finally, I

examine previous work regarding the problem of specifying where in a program to test.
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2.2.1 Coverage Tools

Commercial tools such as JCover [7], Clover [3], and IBM’s Rational Suite [32] provide

various methods to do node and occasionally branch coverage, as part of an integrated

tool. When applied to Java programs they avoid instrumenting the code by using the Java

Virtual Machine (JVM) interface meant for external debuggers. When this interface is

used, Just-In-Time compilation is disabled to use the much slower interpretation mode.

Open source tools such as Emma [6] and Cobertura [4] take a different approach.

They often offer two separate ways to collect coverage information. The first approach is

to use a tool such as the Bytecode Engineering Library (BCEL) [2] to rewrite a Java class

file to insert instrumentation. A second approach involves using a custom classloader

that inserts the instrumentation when a JVM requests a class the first time.

2.2.2 Improving Coverage Testing Performance

Ball and Laurus seek to improve the performance of path profiling, which counts the

number of times a particular path has been executed [17]. From this information, obvi-

ously coverage can be inferred. Path profiling is useful to determine the “hot” paths of a

program in an effort to focus attention from an optimizing compiler or runtime system.

Their technique generates for each path a unique sum that is computed by additions that

occur along each branch. This reduces the instrumentation to little more than an add

instruction, which is likely as lightweight instrumentation as is possible for this process.

Arnold and Ryder improve upon the performance of path profiling where precise

execution profiles are not required [14]. Their approach uses sampling, where instru-

mentation only records execution with some predetermined frequency. Their technique

duplicates the region to be instrumented, leaving a clean copy and an instrumented

copy. At the start of each region a check of the sampling condition is inserted, and the

instrumented or non-instrumented portion is chosen at runtime.

The use of path profiling for recording coverage information does not make sense. In

the Ball and Laurus work, the instrumentation, though individual points are efficient,

remains much longer than a coverage tool needs to collect its information. Arnold-Ryder
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instrumentation acknowledges the idea that most of the time, users want to be running

uninstrumented code. However, the very notion of sampling makes it inappropriate for

coverage.

Agrawal seeks to improve the performance of node and edge coverage by reducing the

total number of locations that need to be instrumented in a program [12]. By computing

the pre- and post-dominators in a control flow graph, coverage of certain nodes in the

graph imply the coverage of the “dominated” blocks [49]. Experimental results show a

significant reduction in the number of locations instrumentation needs to be placed, with

only 29% of blocks and 32% of edges being necessary to infer complete coverage in the

test programs.

Pavlopoulou and Young attempt to solve the problem of reaching full coverage [53].

They acknowledge that test cases may not expose all feasible paths in a program and

wish to use actual deployments of the program in the field to do further testing. However,

there is no need to collect coverage information that has already been gathered in the

testing phase, so before deployment, the application is statically reinstrumented only

in the locations that were not covered during the testing phase of development. The

motivation for reducing instrumentation is not to burden the users of production software

with the overhead of instrumentation, except where necessary to provide further feedback

on software quality.

Tikir and Hollingsworth use a dynamic technique to insert instrumentation probes

for node coverage [67]. These probes are placed at method invocation and remain until a

time-periodic “garbage collector” removes them. Since the collector does not immediately

remove the unneeded instrumentation, they remain in the program, incurring overhead.

To reduce the total number of probes, they use an algorithm also based upon the idea of

dominators, inferring coverage where possible. They report overhead of .001% to 237%,

with an average slowdown of 136% for C programs. Tikir and Hollingsworth do not

compare their approach to the immediate removal of an instrumentation probe when it is

no longer necessary.

Chilakamarri and Elbaum seek to improve the performance of coverage testing for

Java programs by “disposing” of instrumentation when it is no longer needed [20, 21].
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Their technique involves replacing a function call to their collection method with nop

instructions when the coverage information is recorded. They do this by modifying the

Kaffe JVM. Compared to static instrumentation with dominator information, they report

a 57% improvement on average. However, they only attempt method and node coverage

testing. Additionally, their benchmarks exclude the two SPECjvm98 benchmarks that are

most loop intensive.

After my preliminary work [48], Santelices and Harrold sought to improve upon

def-use testing by attempting to infer coverage via data flow analysis [60]. While many

du-chains in straight-line code can be inferred in their approach, any reasonably sized

program yields a high level of uncertainty in their coverage results. It seems counter to

the testing philosophy to sacrifice such accuracy for speed, when other techniques can

likely make no sacrifices at all.

Another avenue for improving coverage performance is using hardware performance

monitoring counters to collect coverage. Shye et al. use the Branch Trace Buffer of the Intel

Itanium2 processor to gain information about the last four branches taken in the program.

Using dominator information and frequent sampling of the performance counters yields

50–80% of the true node coverage value [61]. However, sampling-based approaches with

less than 100% accuracy may miss rare code that a good test suite will aim to cover.

For certain processors, increased branch history sizes and the ability to raise an

exception when the buffer is full allow for 100% accuracy. Tran, Smith, and Miller use

an embedded Blacking DSP with a 16-entry buffer to record node coverage with 100%

accuracy by trapping when the buffer is full. They report an overhead of 8–12% but are

unable to run a full desktop benchmark suite for comparison due to the nature of their

embedded system [68].

Soffa, Walcott, and Mars examine the current state of software testing via hardware

performance counters and find that the Intel Core i7 has a 16-entry branch trace store,

however access to it enables a special debug mode on the CPU, resulting in a 25–30×

slowdown. Otherwise, a sample-based approach with the aforementioned drawbacks can

be used [62].
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2.2.3 Instrumentation Techniques

Instrumentation packages like Dyninst [31] and Pin [10] provide generic frameworks for

building probes, but have no specific support for software testing. Much of the focus on

instrumentation has been motivated by debugging. Kessler [40] proposed a way to create

software breakpoints that avoid trapping into the operating system. The code location

to break at is overwritten with a jump to a different portion of the address space where

the appropriate payload code is executed. However, these breakpoints were proposed for

traditional debugging rather than as dynamic instrumentation for structural testing.

In Kapfhammer’s dissertation on testing database-centric applications, the tool he

developed may use either a static or dynamic approach to instrumentation [39]. An Aspect-

Oriented Programming tool called an aspect weaver takes a set of conditions to insert

instrumentation creating statically instrumented Java classfiles. He also has a modified

classloader that can instrument when Java’s dynamic loading mechanism encounters a

reference to a class for the first time. In both of these cases, the instrumentation remains

throughout the execution of the code.

2.2.4 Test Specification

The challenges of generating test cases, running programs multiple times, and collecting

and aggregating the results is tedious enough that work has been done to automate it

via a Domain-Specific Language (DSL). Balcer, Hasling, and Ostrand propose a domain

specific language to ease the overall testing process [15]. Their language does not solve

the problem of specifying where or how to do coverage testing.

Bytecode-level instrumentation is an example of a cross-cutting concern that Aspect-

Oriented Programming (AOP) [24] seeks to easily support. In particular, the Join Point

Model of AspectJ [1] is a rich language that could be used to specify where instrumentation

(aspects) should be woven into existing class files. Rajan and Sullivan extend the Join

Point Model to support the targeted specification of Java code regions for testing [54].

Kapfhammer’s work also suggests an alternative model for a coverage testing DSL based

on AOP.
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3.0 A FRAMEWORK FOR NODE AND BRANCH COVERAGE

There exist many tools for collecting coverage metrics on programs but none

of them are designed to support the research and development of new structural test

techniques [7, 3, 32, 6, 4]. To address this shortcoming, I have created a framework for

branch and node coverage testing.

The framework consists of two parts. The first is a formalization of the common

elements of structural tests such as branch and node coverage. This formalization

describes the location of instrumentation probes, the actions those probes must take, the

conditions under which those actions should occur, and the memory (state) necessary for

collecting coverage.

In addition to the formalization, I have created an extensible and flexible framework

called Jazz that serves as a platform on which to research, develop, evaluate, and use

techniques for structural testing. Jazz provides the components and support to realize

the structural tests described in my formal notation.

Jazz targets Java programs that are compiled with a just-in-time (JIT) compiler. Java

presents a rich environment for efficient structural testing as it has increasingly become

an important language for many applications where software correctness is vital for

daily operation. As applications have grown in complexity, the time spent in testing has

increased dramatically and become more costly. As a language and runtime environment,

JIT compilation offers a unique facility for testing to achieve good runtime performance

by carefully and flexibly choosing how and where to instrument a program to gather

coverage information.

Jazz’s extensibility comes from the capability to quickly and simply add new test

techniques either by modifying existing ones or building new ones on top of the support
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services Jazz provides. The framework is flexible and supports a simple test specification

language that allows a user to specify when and where to test, including the possibility

of applying multiple tests simultaneously in a single program test run. The framework is

also flexible because it is can be easily updated to accommodate implementation changes

to the underlying Java JIT and VM.

3.1 FORMAL NOTATION FOR BRANCH AND NODE TESTING

Structural tests such as branch and node coverage share several common features. To

build a practical framework that will support various techniques for collecting coverage, I

developed a formal notation framework that distills the common aspects test planning

and collecting coverage information. This framework assumes that the instrumentation

necessary for collecting coverage will be placed in basic blocks rather than an alternative

approach such as rewriting branch instructions.

For the region R of a program to test, a control flow graph, (N, E) = CFG(R), that

captures the structure of R is necessary. The set I ⊆ N represents the nodes in R that will

contain instrumentation probes. The data and actions necessary to record the coverage

information of R constitute a test plan. The test plan for a region contains:

• A set S ⊆ I seed locations where instrumentation probes are placed prior to the

execution of region R.

• A set of probe plans P, one for each element of I, where the probe plan for instrumenta-

tion probe Pi contains:

– A set A of actions to perform on probe execution.

– A set C of conditions used to determine if an action should be performed.

• A state M ⊇ ⋃
1≤j≤|I| Pj.C to update upon Pi being executed. This state is shared

among all probes in a region but each region has a separate state. It will also contain

the record of coverage, Cov, that is collected as the probes execute.
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There are two versions of the framework. In this section, I use the notation to express

the data and actions necessary for Static Node and Branch Coverage. In Chapter 4, a

second version for testing with dynamic instrumentation is used.

3.1.1 Static Node Coverage

Using this formalized notation, each of the traditional techniques for collecting coverage

can be expressed. Static Node Coverage places inline instrumentation at compile time

that records the coverage of a node when executed. These instrumentation probes record

the coverage of the node they are placed in and remain throughout the lifetime of the

program.

For a region R on which to perform Static Node Coverage, the set of nodes N are the

locations to instrument (I = N). The test plan for R contains:

• The set of seed locations S = I, where every node in R will get an instrumentation

probe before the region is executed.

• The set of probe plans, P, where each probe plan Pi contains:

– A set of actions A that contains only the action to record coverage of node i in

Cov[i] = true.

– A set of conditions, C, on which to perform the actions, where Ci is true for all

actions.

• The state M contains the |N| boolean values that comprise the Cov array.

3.1.2 Static Branch Coverage

Similarly to Static Node Coverage, Static Branch Coverage inserts instrumentation probes

at compile-time in the source and sink basic blocks of a control flow edge to collect

coverage. These probes also remain throughout the entire lifetime of the program.

To record the edge between the source and the sink probes, a thread-local, region-

specific variable is introduced called the previously hit block. Thus, when the sink in-

strumentation probe is executed, it can record the edge from the recorded source to

itself.
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For a region R, the set of nodes N are again the locations to instrument (I = N). The

test plan for R contains:

• The set of seed locations S = I, where every node in R will get an instrumentation

probe before the region is executed.

• The set of probe plans, P, where each probe plan Pi contains:

– A set of actions A that contains:

1. An action to identify the previously hit block, b.

2. An action to record coverage of the edge b→ i in Cov[b→i] = true.

3. An action to set the previously hit block indicator to the current one, b← i.

– A set of conditions, C, on which to perform the actions, where Ci is true for all

actions.

• The state M contains the |E| boolean values that comprise the Cov array as well as

the space necessary for recording the previously hit block.

3.1.3 Agrawal

Agrawal’s techniques for reducing the number of static probe locations by using the

dominance relationship to infer nodes or edges can be applied to either of the Static

techniques. In each case, applying Agrawal’s algorithm only affects the set I of basic

blocks which have instrumentation probes. This in turn affects the set of seed locations,

S, since it is equal to I.

For Static Agrawal Node, Agrawal’s algorithm yields the set of nodes that must be

instrumented, and thus seeded, S = I = Agrawal(CFG(R)). Static Agrawal Branch,

however, returns a set of edges for which coverage must be recorded. Each edge in the

set is split it into its (source, sink) pair, and I is the union of all sources and sinks.

The probe plans remain the same for each technique. The state M remains the same

but the size of Cov is reduced accordingly.
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Figure 3.1: The general framework of Jazz.

3.2 JAZZ OVERVIEW

With the formalism of the previous chapter, a software framework to realize various

structural test techniques can be built. To this end, I developed Jazz, a framework for

creating structural tests for Java programs run under a Java Virtual Machine (JVM) that

uses just-in-time (JIT) compilation to convert Java bytecode into native machine code.

An overview of Jazz is shown in Figure 3.1. Jazz integrates with a JVM to provide

support for structural testing and is designed to let testing engineers realize a specific

structural test for Java through its extensible test library. The implementation of a test

technique is called a test planner and the data structure that drives runtime probes and

records the coverage is a materialized test plan from the formalism of the previous section.

Jazz takes as input Java bytecode and a specification of where and how to test Java

methods. The test driver processes the specification and the bytecode and directs how the

instrumented machine code should be produced. The instrumentation monitors program

execution to gather coverage results, which are stored for later reporting. When the

program terminates, Jazz issues a “coverage report” that is presented to the user.

The core of the Jazz framework is its support services and user-extensible test library

of structural test techniques. The support services provide the basic functionality that the

23



tests need to do instrumentation, control flow analysis, memory allocation, and result

collection. Jazz comes with a library of tests that were built using the framework. It also

supports additional user-defined tests that extend existing tests or are completely new.

3.2.1 Support Services

Jazz provides support services to simplify building structural tests in the framework.

These services are used by the test techniques that are pre-defined in the framework. The

services can also be used to construct new tests. The services include:

Instrumentation Jazz provides support for various types of instrumentation including

permanent inline instrumentation and transient instrumentation.

Callbacks A specific structural test needs to be informed of events from the JVM, such as

when a method is about to be compiled, when a particular bytecode is translated to

machine code, when a method has finished compilation, and when the JVM is about

to exit. These callbacks serve as the interception points between the JVM and the

structural test implementation.

Memory Management Each instantiation of a structural test (i.e., when a method is

compiled) needs to allocate memory to do its work and to record information. Jazz

supports memory allocation in both the JVM’s managed heap and operating system

memory buffers (i.e., heap and/or mmap space). These memory regions can be used

for data or code (marked as executable to support code generation).

Control Flow Analysis Structural tests often need to analyze control flow properties of

a method to determine how best to instrument it. Jazz provides analysis support,

including basic Control Flow Graph (CFG) generation and more advanced CFG oper-

ations such as determining pre- and post-dominator trees, finding strongly connected

components, and graph traversal.

3.2.2 Extensible Test Library

The power of Jazz is the ability to add new test techniques with minimal effort. It is

designed to be highly extensible with simple facilities. There are two ways to add new
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tests: extend an existing test from the test library, or develop a test from scratch (using

the support services and a similar technique from the library as a guide or template) and

add it to the library.

The initial structural tests that I implemented and added to Jazz’s test library allows

testing at node (statement) and branch granularity. The test library contains implementa-

tions of Static Node and Static Branch coverage testing. It also includes a variation of each

that uses a static minimization algorithm developed by H. Agrawal to reduce the amount

of static instrumentation needed for coverage testing [12]. These tests are Static Node

Agrawal and Static Branch Agrawal. Their implementation is discussed in Section 3.4.

Creating a new test is straightforward as well. If it is a static test, an appropriate

existing test in the library can be extended. Alternatively, a new test can be added by

extending the superclass for structural testing. The implementation of a new test is

simplified by using the support services provided by Jazz.

3.2.3 Test Specification

Jazz is flexible because it offers the capability to specify where and how to test at the

method level. It is built with the goal of permitting the combination of different test

techniques in a single run of a program, such as choosing to test some methods with

branch coverage and others with node coverage, or to instrument methods that are not

frequently executed with static instrumentation and the hot path of code with static

Agrawal instrumentation. This approach permits fine-grain testing with a single test run,

which avoids the expense of multiple independent runs.

To achieve this flexibility, Jazz provides a test specification language, called testspec.

This language lets a user of the framework specify rules about how testing should be

performed. Testspec allows for specifying a class and method name to test, as well as the

test types to apply to that method. However, it is too tedious to specify every method and

its tests. Instead, testspec provides syntax to avoid this burden. Three wildcard operators

are included in the specification language.

A special =all flag is used to specify all methods in a class. The asterisk globs class
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spec.benchmarks._209_db.Database:printRec:AGRAWAL_NODE
spec.benchmarks._209_db.Entry:equals:AGRAWAL_NODE
spec.benchmarks._209_db.Database:set_index:AGRAWAL_NODE
spec.benchmarks._209_db.Database:shell_sort:AGRAWAL_NODE
spec.benchmarks._209_db.Database:remove:AGRAWAL_NODE
spec.benchmarks._209_db.Database:getEntry:AGRAWAL_NODE
spec.benchmarks.**:=all:STATIC_BRANCH

Figure 3.2: Example test specification for the SPECjvm98 db benchmark.

names. The * matches any class in a specific package. For instance, java.util.* will

match Vector and ArrayList just as it would in a Java import statement. However,

when one wishes to test large projects or components, there may be a hierarchy of

subpackages to test. Since the asterisk in Java does not import subpackages, it is kept

similarly limited in testspec. Instead, the pattern ** matches any class in the specified

package or any subpackage. Thus, the expression spec.benchmarks.** is sufficient to

select all of the classes in any program in SPECjvm98.

An example of the testspec is shown in Figure 3.2. In the example, the first six lines

explicitly state a (class name, method name) pair to be instrumented with the Static

Agrawal Node test from the Jazz’s test library. The remaining methods that execute at

runtime will match the wildcard rule on the last line and be instrumented with the Static

Branch test. Any rule that explicitly states a class and method name takes precedence

over a wildcard rule. Other rule conflicts are resolved by using the earliest rule specified.

3.3 JAZZ IMPLEMENTATION

Jazz is integrated into the Jikes RVM [13], a just-in-time compiler (JIT) for Java that is itself

written in Java. One of the major challenges of having a framework that is coupled to a

separate code base, such as the RVM, is developing in an environment that is constantly
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changing. The obvious temptation is to take the most recent release version and ignore

any updates while developing one’s own component. This is not without significant

disadvantages, however, as one misses out on any improvements or bug fixes made to

the code base since the version you decided to target was released. However, the effort of

porting code to new versions may not justify supporting every point release. Nevertheless,

new major versions are often worth the effort. In this case, to make the effort as minimal

as possible, Jazz was developed to tie into the RVM in as few places as possible.

Jazz’s test driver (see Figure 3.1) is implemented by the class FrameworkHarness.

This class facilitates interaction with the RVM and isolates Jazz from it. I identified four

minimal areas where Jazz needs to interact with the existing code base or its output [46].

First, inserting code as instrumentation means that Jazz must interact at a low level

with the JIT compiler during code generation. Second, the generated instrumentation

code needs data to direct how it operates and space to store its results. Thus, memory

allocation must be considered. Third, each test planner requires some facilities that may

already exist in a compiler, such as control or data flow analysis. Finally, Jazz must

efficiently parse and interpret the test specification language to specify what and where

to test.

3.3.1 Implementing the Test Driver

The implementation of the FrameworkHarness class contains several static member

functions that are called from the base RVM code. These methods are hooks that were

inserted into parts of the existing RVM code base (such as changes to the commandline

argument parser and callbacks in the JIT compiler) to interact with the RVM in the four

places identified above. FrameworkHarness does test selection and invokes the appro-

priate test implementations to instrument the code. Additionally, FrameworkHarness

registers callbacks for the RVM’s exit notification to report final coverage results (as the

RVM is shutting down). Furthermore, the class is also a place to store global settings,

such as a verbose output flag to dump detailed messages for tracing and debugging.

The RVM is written in Java and runs itself through its own compiler. To make this
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Table 3.1: Interface for adding instrumentation in a method-oriented JIT environment.

Callback function Description

onCompilation(Method m) A method is about to undergo compilation.

onBytecode(Bytecode b, int i) The ith bytecode is about to have machine
code generated for it.

afterBytecode(Bytecode b, int i) The ith bytecode has just had machine code
generated for it.

afterCompilation(Method m) A method has been completely compiled but
is not yet being executed.

possible, it uses a bootloader with a minimally compiled bootimage that enables the RVM

to begin. Since calls to FrameworkHarness are compiled into methods that are part of

the bootimage, FrameworkHarness must be added to the bootimage as well. It is the

only class in Jazz that appears in the bootimage. Jazz takes special precaution to avoid

instrumenting internal RVM code since the bootstrapping process is delicate and much of

the Java class library is unavailable.

3.3.2 Instrumentation & Code Generation

Access to the compiled method code is required to instrument it. To support this, there

needs to be a low-level interface between the JIT compiler and Jazz. There are four points

during compilation where control might need to intercepted and to have Jazz or one

of its test implementations do work. These four events and the interface for capturing

this interaction are shown in Table 3.1. The RVM’s JIT compiler is modified to call these

methods for a test implementation that registers a handler for the events.

The earliest event handler necessary is for when a new method is about to undergo

compilation. For node and branch coverage, the onCompilation event is used for

initialization. This is the time to construct object instances, register exit callback handlers,

and do the work of determining where to insert instrumentation during the upcoming

compilation phase.
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The two bytecode-oriented methods are used to insert static instrumentation directly

into the generated machine code stream. The static test techniques in Jazz’s current test

library implement the onBytecode event to insert probes at the beginning of a basic

block. However, none of the tests in Jazz’s library make use of the afterBytecode event.

It is provided for completeness should a new test require it. The afterCompilation

event is a natural place to put clean-up for static instrumentation.

3.3.3 Memory allocation

In general, four types of memory are used in Jazz:

1. Object instance memory for the Java code that interfaces with the RVM;

2. Executable memory for instrumentation;

3. Storage for recording coverage and directing runtime instrumentation (e.g., conditions

for removal of instrumentation for demand-driven testing); and,

4. Method local storage to maintain test state.

A significant consequence of the RVM’s design is that the Java code and data that

comprise the RVM can and do share the same memory regions as the applications that

run on top of it. This structure means that as the RVM is extended to support Jazz, any

of the Java code that implements a test in the test library can increase pressure on the

garbage collector (GC), possibly degrading performance with more collection rounds.

Despite this potential drawback, the use of heap memory is vital to conveniently express

a test implementation in Java itself. For Jazz, the heap is used for any operation done

during JIT compilation, except storing instrumentation code and data used and generated

by the instrumentation code as it executes.

Jazz avoids Java’s memory for instrumentation as it can adversely interact with the

garbage collector; if the JVM uses a copying GC, the instrumentation might move during

execution. Rather than implement an additional level of indirection (as a JVM might),

Jazz avoids the extra lookup costs and allocates space that is outside of the Java heap.

Most of the test techniques implemented in Jazz share some common code between

instrumentation probes to reduce code footprint. The shared code is the test payload code.
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It performs test actions and records coverage results. The RVM has special facilities for

calling low-level system calls (e.g., mmap) to allocate its own heaps. This functionality is

reused to allocate an executable page of memory to store the test payload code.

The test payload is parameterized with a test plan that drives and/or records the

results of testing. The test plan is a data argument passed to the payload. For instance,

the test plan lists the predecessors in Static Branch so the appropriate counter can be set

as covered at runtime. The memory for a test plan should not move during execution,

and Jazz allocates it via mmap. (Instead, malloc could be used as the region does not

need to be executable—it is data.)

The final piece of memory needed for Jazz involves coverage tests that require persis-

tent state, such as branch coverage. This test needs state to be propagated between the

execution of two probes. With Jazz’s approach of placing instrumentation in basic blocks,

to record an edge the probe at an edge sink needs to know which basic block proceeded it

during execution (i.e., the source), and thus, which edge to mark as covered. This state is

local storage, as each separate activation of a method needs its own copy of the state. For

branch coverage, each probe stores a block-unique identifier. The static implementation

of branch coverage uses the address of the previous block. The demand implementation

uses the address of the previous probe’s test plan. Each address requires one word of

storage and so my implementation places these into the activation record of the JIT-ed

method.

To support memory storage in Jazz requires modifications to the RVM which have

grown increasingly more difficult in each new release. A perhaps simpler alternative

would be to have a separate manually-managed stack for storing test-specific state. This

is the model Jazz will move to in the future as it provides more of the isolation from RVM

changes and eases continued development.

An interesting implication of memory allocation outside the JVM is that pointers and

low-level operations for initialization and reading memory must be used. The RVM has a

special facility for providing this capability for its own use called Magic [25]. Magic are

special snippets of what appear to be Java methods and code that are intercepted by the

JIT and replaced with operations that would be normally prohibited in Java code.
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3.3.4 Implementing Test Specification

A test specification, written in testspec, can be passed to Jazz through a file specified

on the command line. Alternatively, a test specification, if simple enough, can be given

directly as a command line argument (option -I). The FrameworkHarness consumes

the specification to drive testing. Internally, it creates an intermediate representation (IR)

of the test specification.

Each rule in a testspec specification is parsed to construct a “matching” object. A

matching object is a representation of a rule. This object includes a matches method

that can be used to determine whether the rule should be applied to a particular method.

My first implementation of testspec’s IR arranged the matching objects in a list. On

each method load, the list was linearly searched to check for a matching rule. However,

for complex test specifications, this approach proved to be computationally expensive,

slowing down runtime performance of the Java program under test. For example, the

javac program in SPECjvm98 has 742 methods. A linear search for a matching test is

responsible for 4% of total overhead.

The intermediate representation was reworked to use a hashtable to arrange the

matching objects. The hashtable is checked when a method is loaded for a corresponding

matching object. There were two complications. The first was that wildcards do not

make sense to hash. Instead, literal (class name, method name) pairs are placed in a

hashtable and patterns are left in an array to be searched. The second issue was that

neither HashMap nor Hashtable were in the RVM’s bootimage. Thankfully, the RVM

developers provide an internal hashtable class that Jazz reuses rather than writing new

one.

In general, it may be useful to have full regular expression support. However, this has

proven unnecessary in practice. The simple pattern matching scheme used in testspec is

sufficient. Java has native support for regular expressions in class libraries that may be

able to be reused, but those classes are not part of the bootimage.
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3.3.5 JVM Support for Software Testing

In developing the support services and test library for Jazz, there are several places where

a JVM developer can ease implementation of a tool like Jazz.

A foundation of structural testing is to discover control flow properties of a region

of code. To this end, at bare minimum, a control flow graph (CFG) is necessary. The

RVM provides a CFG generator that scans the Java bytecode and determines the basic

blocks and their predecessors. Jazz needs both predecessor and successor information.

The CFG is augmented with this information and other information that is useful about

the structure of the code.

Jazz needed several analyses such as pre- and post-dominator information to support

the structural testing optimizations suggested by Agrawal. The RVM already has facilities

for these algorithms in its optimizing compiler. However, the code is tied closely to the

optimizer. It was too cumbersome to reuse this code and so the necessary analyses were

written from scratch. The implementation of Jazz would have been simpler with support

for control and data flow analyses that is separated from the optimizer (e.g., such as

Phoenix provides [9]).

Finally, a JVM could provide a rich and varied set of events to register callbacks. The

RVM provides several callbacks, many of which Jazz does not need, but the exit handler

callbacks were useful for reporting the collected coverage results. For instance, the code

generation interface of Section 3.3.2 would be convenient to achieve as much isolation

from the JVM codebase as is possible.

3.4 STATIC BRANCH AND NODE TESTING WITH JAZZ

Figure 3.3 shows how static testing operates. A testspec specification is first loaded and

parsed. When a method is about to be compiled, an onCompilation event is sent to the

FrameworkHarness. If the current method matches a rule for a static test, Jazz instanti-

ates a static test planner. The planner is responsible for instrumentation code generation,
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Figure 3.3: Static instrumentation in Jazz.

test plan generation, and result recording. After the planner is initialized, the JIT compiler

continues and emits the method prologue and enters its main translation loop. In a

non-optimizing compiler, one bytecode expands into one or more machine instructions.

For static testing, FrameworkHarness intercepts control via the onBytecode event and

transfers control to the test planner to insert instrumentation prior to the bytecode being

compiled.

3.4.1 Static Node Testing

Figure 3.4 shows an example of how the onBytecode event is used in the Static Node

test planner. For all static tests, there are three common elements:

1. a seed set of code locations where the planner will sew permanent instrumentation

probes (to possibly invoke the test payload);

2. a test payload that implements the work of recording the desired coverage information;

and,

3. a test plan that provides storage for recording coverage.
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1 public void onCompilation(NormalMethod m) {
2 cfg = CFGBuilder.build(m);
3 seedSet = cfg;
4 }
5

6 public void onBytecode(
7 int bytecodeAddress,
8 Assembler asm) {
9

10 int index = seedSet.indexOf(
11 new Integer(bytecodeAddress));
12

13 if(index < 0) {
14 return;
15 }
16

17 asm.emitPUSH_Reg(GPR.EAX);
18 asm.emitMOV_Reg_Imm(GPR.EAX, plan[index]);
19 asm.emitMOV_RegInd_Imm(GPR.EAX, 1);
20 asm.emitPOP_Reg(GPR.EAX);
21 }

Figure 3.4: The static node coverage test planner.
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1 public void onCompilation(NormalMethod m) {
2 cfg = CFGBuilder.build(m);
3 seedSet = Agrawal.getProbeSet(cfg);
4 }

Figure 3.5: Extending the Static Node planner to incorporate H. Agrawal’s algorithm.

The seed set and test plan are the implementations of the same items from the formaliza-

tion of Section 3.1.

The seed set is generated as part of the onCompilation event handler method (lines

1–6). Static instrumentation is inserted at the start of a basic block to avoid rewriting

control flow transfers. A control flow graph that is annotated with each basic block’s

starting bytecode address is built. These addresses become the locations where permanent

instrumentation is inserted, i.e., the seed set.

In the onBytecode event handler method of the static test planner, a check is done to

determine whether the current bytecode is a seed. If so, the RVM’s assembler is used to

emit instrumentation code. For node coverage, the instrumentation is simple enough that

it can be inserted entirely inline. For more complex tests, Jazz supports instrumentation

probes that call an out-of-line function for a shared test payload. This probe type pushes

location-specific information onto the stack to pass information to the payload.

Agrawal’s algorithm reduces the number of instrumentation probes needed to record

complete coverage using control flow analysis on a method under test. The algorithm is

incorporated as a support service since it can be used by more than one test technique.

With this service and the basic Static Node, I created a new test, Static Node Agrawal,

that does node coverage with reduced instrumentation. I extended the basic Static Node

planner to use the algorithm as is shown in Figure 3.5. The onCompilation event

handler is slightly adjusted to call the Agrawal support service. Based on the minimized

instrumentation points, a new seed set is generated. No other changes to the basic Static

Node test were required.
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3.4.2 Static Branch Testing

Static Branch coverage testing is implemented in a similar fashion to Static Node. The

onCompilation event is handled identically, as a control flow graph still needs to be

built. The seed set is once again all basic blocks in the method. The main difference

between Static Node and Static Branch involves the onBytecode event. Static Node

recorded coverage directly as shown on line 21 of Figure 3.4. Static Branch replaces

this line with a call to the payload shown in Figure 3.6. Lines 1–2 load the identifier of

the block that immediately preceded the current so the edge can be marked as hit in

lines 9–13. This block sets that same state for the next probe encountered in line 3.

Another difference from Static Node involves the test payload. Static Branch uses an

out-of-line function to invoke the test payload. The payload is relatively large—it takes

14 instructions to determine which control flow edge was taken at runtime. If this code

was fully inlined, the generated machine code becomes very large, which puts unwanted

pressure on the instruction cache. Instead, the code contains a call to the shared payload

functionality.

The test plan for Static Branch Coverage is implemented as a table in memory. The

layout is shown in Figure 3.7. The table contains a row for each instrumentation probe that

is in the test region. The first entry in a row is the number of control flow predecessors

(and therefore is the number of incoming edges). For each predecessor, there are two

additional entries in the table. The first is the address of that predecessor. The address is

matched at runtime in the test payload to the value in the previously hit block variable

to determine the control flow edge that was taken to the current probe. When the

appropriate value is found, the associated coverage counter is set to one to indicate the

edge was covered.

Similar to Static Node, H. Agrawal’s algorithm can be used to reduce the amount of

instrumentation for branch coverage testing. The basic Static Branch test planner was

extended to apply H. Agrawal’s algorithm in the same way as was done for Static Node.
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1 mov ebp, dword ptr [esi + fpOffset]
2 mov ebx, dword ptr [ebp - 8]
3 mov dword ptr [ebp - 8], edx
4 mov ecx, dword ptr[edx]
5 test ecx, ecx
6 jz EXIT
7

8 add edx, 4
9 L1: cmp ebx, dword ptr [edx]

10 jne NEXT
11

12 mov dword ptr [edx + 4], 1
13 jmp EXIT
14

15 NEXT: add edx, 8
16 loop L1
17

18 EXIT: ret

Figure 3.6: Static payload for branch coverage testing.

Number of 
Predecessors Address0 Counter0 … 

0 4 8 12 

Figure 3.7: A row of the test plan for Static Branch as laid out in memory.
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3.5 SUMMARY & CONCLUSIONS

In this chapter, I describe a two-part framework for performing branch and node testing.

The first part was a formal framework for describing a structural test technique that

encompasses instrumentation probe location, runtime actions, conditions for those actions

to occur, and state.

Additionally, I developed Jazz, a flexible and extensible practical framework for

realizing the implementation of structural tests. Jazz provides a set of support services

to perform code generation, memory management, control flow analysis, and handle

interaction with a JVM. In addition to these services I built a library of test planners to

do branch and node coverage testing.

New test planners can be created by extending existing tests from the library or

by using the support services directly. Jazz also provides a test specification language,

testspec, that allows multiple test planners to be combined and applied in a single run of

the application being tested.

Jazz is implemented on top of the Jikes RVM for Java. For Jazz’s test library, I have

described and implemented Static Node, Static Agrawal Node, Static Branch, and Static

Agrawal Branch. Both parts of the framework greatly eased the development of these

structural tests.
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4.0 DEMAND-DRIVEN STRUCTURAL TESTING

Traditional techniques for recording structural test coverage rely on statically-

inserted instrumentation probes that remain throughout the lifetime of the program.

Coverage, however, is a boolean property that only needs to be recorded on the first

execution of a node or branch in a program. When there is a loop in the test region,

many of the dynamic executions of those instrumentation probes occur after any coverage

information has been recorded. These extraneous executions incur runtime overhead in

terms of both CPU time and memory without contributing new coverage data.

It seems that a better course of action would be to remove instrumentation when it is

no longer necessary. However, removal will also incur runtime cost and so the question

becomes: “When is it appropriate to remove instrumentation probes that are no longer

necessary?”

There is a large spectrum of choices for the appropriate removal time ranging from

“never” with traditional static instrumentation to the immediate removal of a probe after

its execution. Other choices include using a time- or event-driven collection scheme

to periodically remove instrumentation. Tikir and Hollingsworth use a time-periodic

removal scheme to collect away instrumentation probes for node coverage on C programs.

However, the runtime overhead they report is high, up to 3.26 times slower than the

uninstrumented execution [67].

In light of the poor performance of never removing probes and time-periodic removal,

this chapter explores the other extreme: instantaneous removal of instrumentation.

Instantaneous removal of instrumentation from an instruction stream requires self-

modifying code. Memory hierarchies make many assumptions about the read-only nature

of code in order to maintain consistency and to cache it. This means that removing a
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single instrumentation probe is likely to incur a significant overhead and reduce the

gain provided by not using the cheaper and cache-friendly static instrumentation probes.

For a technique that relies on self-modifying code to improve upon static’s permanent

instrumentation probes, sufficient dynamic executions of instrumentation probes must be

eliminated to amortize this removal cost.

Demand-driven Structural Testing (DDST) uses the program’s own execution to drive

where instrumentation is inserted and removed. Demand-driven removal attempts to

alleviate the problem of permanent instrumentation by removing probes when they are

not longer necessary. Demand-driven insertion allows for the execution of the program

to place probes only along the frontier of execution, preventing probes from being placed

into infeasible paths or into code that is not being tested in this run.

Both branch and node coverage can benefit from the demand-driven approach. How-

ever, with the runtime management of probes that DDST implies, care must be taken in

planning the actions of the instrumentation code itself. DDST is implemented on top of

Jazz and uses the same model of planning as was used for Static and Static Agrawal testing.

This chapter describes the challenges and approaches for designing and implementing

DDST in Jazz.

4.1 PLANNING FOR DDST

The main function of the test planner is to determine where and how to test a code

region. Using the specification and the intermediate code for a test region, the test

planner determines the actions necessary to carry out tests. These actions are the run-time

activities that collect coverage information and instrument the test region. The actions

form the basis for the test plan. In the next sections, I will discuss some of the test planner

challenges and implementation strategies for DDST.

To generate a test plan, a planner needs to determine when to insert probes, where

to instrument a test code region, and what to do at a probe. There are three cases the

planner has to consider when deciding when to insert and delete instrumentation. First, it
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must identify which probes are seeds. Seeds are those probes that are initially inserted in

a test region. Second, it needs to determine which probes are used for coverage and can

be inserted and removed on-demand along a path. Finally, the planner has to determine

the lifetime of a probe and whether it must be re-inserted after being hit by its “control

flow successor” basic blocks (anchors).

The test planner also must identify the locations of probes in a test region. These

locations correspond to seed, coverage, and anchor probes. Seed locations must be marked

in a table, called the probe location table (PLT), that drives the dynamic instrumenter,

which inserts the seed probes. Coverage and anchor locations also have entries in the PLT

to hold information needed by the probes. Coverage locations have an entry in the PLT

to record coverage information.

The last task of the planner is to determine what actions should take place at a probe.

In some cases, different payloads or combinations of payloads may be used at different

probes and the planner needs to select the appropriate payload.

4.1.1 Planner Actions

Actions in a test plan are implemented with a test probe and payload. Probes can be

inserted in a code region at any basic block where test actions need to take place. A

test plan may have multiple payloads, which can be invoked by different probes, and

multiple probes may be inserted at the same location to call different payloads. The test

plan uses the PLT to encode probes and their locations. A PLT entry has a probe type, a

payload, and a list of probes to insert (and in some cases, to remove). Additional fields

can be added to the PLT by the planner. The test plan also has data storage, including

global memory that is persistent with program scope (i.e., there is a single global storage

area) and local storage with method scope. Global storage is used to hold test results

for multiple test runs (i.e., what has been covered) and the local storage is used to hold

temporary values needed by a payload. Other storage scopes can also be incorporated

into a plan (e.g., thread or class scope).
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4.1.2 Node Coverage Planner

With the formal notation framework defined in Section 3.1, the test plans for node coverage

with DDST can be expressed. An addition for DDST is necessary: There needs to be a set

of locations, L, in which to place probes at runtime.

• The seed set S contains the entry point(s) of the test region.

• A set of |N| test plans, P, where Pi is a test plan corresponding to a probe in basic

block i and contains:

– A set L ⊆ N of locations to place instrumentation, and are those nodes that are

CFG successors of node i.

– A set C of boolean flags (Cov), all initially set to false, where Cov[j] records if

node j has been covered.

– A set A of actions, where the actions for Pi are:

1. Record the coverage of node i in Cov[i] = true.

2. For each location Lj, if Cov[j] = false, place a probe at Lj.

• The global state M is the union of all sets C, |M| = |N|.

The test planner for node coverage must populate S, allocate the space for M, and

then create a set of test plans, P, for each node in the region to test, filling in L with the

appropriate code locations. The space for M and L is allocated in the PLT, which is the

implementation of the set of test plans, P.

The planner that constructs these test plans for node coverage is shown in Algo-

rithm 4.1. Each node in the region to be tested, testRegion, is added to the PLT with

the node coverage payload. If there are no predecessors of the node in the region to

be tested, lines 6–8 mark the block as a seed. Seed probes then place their control flow

successors in a demand-driven fashion.

4.1.3 Branch Coverage Planner

The branch coverage test planner determines where to place instrumentation probes in

a region to ensure that all edges can be marked as covered when they are traversed.
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1: CFG G ← buildCFG(testRegion)
2: for all Block b ∈ G.nodes do
3: PLT[b].payload ← nodePayload
4: PLT[b].insert ← b.successors
5: // Check if block b is an entry block (a seed)
6: if b.predecessors 6⊂ G.nodes then
7: PLT[b].seed ← true
8: end if
9: end for

Algorithm 4.1: The node coverage planner.

For branch coverage, the seed blocks are the entry points into a test region. These seed

blocks insert instrumentation when control passes through an entry. Seeds are once again

identified as basic blocks that have one or more predecessors outside of the test region.

A more difficult issue is how to record which edges are executed, and when probes

need to be inserted and removed. To cover an edge, two probes are executed: one in the

edge’s source basic block and one in the sink block. The probe in the source records the

beginning of an edge and the probe in the sink marks the edge as covered. This informa-

tion is recorded as part of thread-local state in a variable that records the previously hit

block. The branch coverage planner needs to determine which instrumentation probes to

insert and delete when a block is hit to ensure that the correct edge is recorded.

This yields a similar description of branch coverage test planning in the notation of

Section 3.1 as for node coverage:

• The seed set S contains the entry point(s) of the test region.

• A set of |N| test plans, P, where Pi is a test plan corresponding to a probe in basic

block i and contains:

– A set L ⊆ N of locations to place instrumentation, and are those nodes that are

CFG successors of i.

– A set C of boolean flags (Cov), initially set to false, where Cov[i→j] records if

the edge between i and the probe at Lj has been covered.
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Figure 4.1: The shaded basic block is a stranded block.

– A set A of actions, where the actions for Pi are:

1. Look up the previously hit block, b.

2. Record the coverage of edge b→ i in Cov[b→i] = true.

3. For each location Lj, if Cov[i→j] = false, place a probe at Lj.

4. Set the previously hit block, b← i.

• The global state M is the union of all sets C, |M| = |E| plus an additional element of

storage for the previously hit block.

However, this ends up being insufficient for DDST branch coverage to yield correct results.

4.1.3.1 Stranded Blocks DDST records coverage using a pair of probes at the source

and sink basic blocks of a control flow edge. This is convenient for the ease of inserting

and removing probes dynamically as branches and fall-throughs do not need to be

rewritten in the machine code. However, it can lead to a situation in which one or both of

the probes has been removed via a previous execution of the region being tested, resulting

in an edge which cannot be recorded as covered.

Figure 4.1 shows a CFG with this problem. If the path 1→ 2→ 4→ 6 is taken and

then 1→ 3→ 5→ 6 is taken, there is no instrumentation in the region to record when
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the edge 2 → 5 is covered. This problem is the stranded block problem and block 5 is

designated as the stranded block. The problem exists because there are multiple paths

into block 5 and at least one path that excludes block 5 but includes a control flow

predecessor (block 2), allowing for that probe to be removed before all of the outgoing

edges are recorded.

A stranded block b can be identified by defining three predicates:

Fork(x) that returns true if x has multiple control flow successors.

Merge(x) that true if x has multiple control flow predecessors.

Predecessor(x,y) that returns true if x is a control flow predecessor of y.

Thus, Stranded(b) can be defined as:

Stranded(b) = Merge(b) ∧ ∃x(Predecessor(x, b) ∧ Fork(x))

The planner for demand-driven branch testing must identify any stranded blocks

in a test region and must keep some instrumentation probes in the program until the

stranded block problem is resolved. An approach to handling a stranded block is to

leave instrumentation in its predecessors until the stranded block’s incoming edges are

all covered. In the example CFG of Figure 4.1, instrumentation must remain in blocks 2

and 3 until the edges 2→ 5 and 3→ 5 are covered. Care must be taken to ensure that

an instrumentation probe remains in block 2 even if the edge 2→ 4 is taken. Thus, the

solution requires more than just adjusting the actions taken by the probe in the stranded

block itself, it also affects any “siblings” of the stranded block.

By the definition of a stranded block, the common If-Then structure as shown in

Figure 4.2 also has a block that is considered to be stranded. Block 3 has multiple

predecessors and one of them, block 1, has multiple successors. If the path 1→ 2→ 3 is

taken, there will be no probes left to record the path 1→ 3. The solution presented above

applies to If-Then stranded blocks as well.

However, another issue arises in the opposite situation. If the path 1 → 3 is taken

first, there remains a probe in block 2 that has no prior probe to record the source of the

edge. Since there is only one possible edge into block 2, a simple solution is to use a
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Figure 4.3: The shaded basic blocks are singleton blocks.
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1: CFG G ← buildCFG(testRegion)
2: for all Block b ∈ G.nodes do
3: PLT[b].type ← regular
4: // Check if block b is an entry block (a seed)
5: if b.predecessors 6⊂ G.nodes then
6: PLT[b].seed ← true
7: // Check if block b is a singleton
8: else if |b.predecessors| = 1 then
9: PLT[b].type ← singleton
10: end if
11: // Check if block b is stranded
12: for all Block p ∈ b.predecessors do
13: if |p.successors| > 1∧ |b.predecessors| > 1 then
14: PLT[b].type ← stranded
15: end if
16: end for
17: end for

Algorithm 4.2: First phase of the branch coverage planner.

probe that does not need to look up the previously hit block but instead automatically

records the appropriate incoming edge’s coverage. This type of block is called a singleton.

Singleton blocks are orthogonal to stranded blocks, as is shown in Figure 4.3. While this

If-Then-Else CFG does not have a stranded block according to the definition, if either

path is taken, the opposite path will be left without a probe to record the source. Thus,

blocks 2 and 3 are both designated singletons and will automatically record the incoming

edge without looking in the previously hit block variable.

To handle coverage of normal blocks, stranded blocks, and singleton blocks, the

planner for demand-driven branch coverage is implemented in two phases. The algorithm

for the first phase of the planner is shown in Algorithm 4.2. The planner creates a CFG

for the test region on line 1. Next, it iterates over basic blocks to determine whether they

are a seed, singleton, stranded, or regular block. Initially, on line 3, a block is treated as a

regular block that inserts probes in its successors blocks. Lines 5 and 6 check whether

the block has any predecessors that are not in the test region and sets the PLT field seed
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1: for all Block b ∈ G.nodes do
2: for all Block s ∈ b.successors do
3: s.addAction(COVERAGE SUCCESSOR, GLOBAL[b→s])
4: end for
5: if b.type = stranded then
6: for all Block p ∈ b.predecessors do
7: p.addAction(ANCHOR, GLOBAL[b])
8: for all Block s ∈ p.successors do
9: s.addAction(ANCHOR, GLOBAL[b])
10: if s 6= b then
11: p.addAction(ANCHOR, GLOBAL[b])
12: end if
13: end for
14: end for
15: end if
16: end for

Algorithm 4.3: Second phase of the branch DDST planner.

to true, if so. When a block has a single predecessor and it is not a seed, then it is a

singleton, as shown on lines 8–10. In this case, the singleton’s predecessor is recorded in

a table in global memory. At run-time, when the singleton payload is invoked, it accesses

the table to get its predecessor. Finally, lines 12 to 16 check for stranded basic blocks.

Once the various types of blocks have been determined, the second phase of the

planner begins. The steps are shown in Algorithm 4.3. This phase walks over the basic

blocks in the test region again, examining the type of block as determined in the previous

phase. For regular basic blocks, line 3 adds an action to the block to dynamically place

each control flow successor predicated on the coverage of the edge from the block to its

successor. Lines 5–16 handle a stranded block. A boolean variable is allocated in the

global state representing the stranded block. For each basic block that is a predecessor

of the stranded block, the instrumentation probe in that predecessor block needs to be

replaced when the stranded block is hit (lines 6 and 7). Those same probes must also

be replaced if a path is taken through a sibling of the stranded block. This situation

is handled on lines 8–13. These actions are deemed to be anchors as opposed to probe
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16: // Is this the special case of the If-Then stranded block?
17: if PLT[b].type = stranded then
18: if |b.predecessors | = 2 then
19: if one predecessor has the other as a successor then
20: PLT[b].type ← ifthenstranded
21: root ← predecessor of b that has 2 successors
22: end if
23: end if
24: end if

Algorithm 4.4: Handling a If-Then Stranded Block in Phase 1.

placements that are meant to record coverage.

4.1.3.2 Improving Stranded Block Performance The general solution to the stranded

block problem requires many probes to remain as anchors even after they have recorded

the coverage of all incoming edges. If-Then stranded blocks can be dealt with in a simpler

way than the general solution, which provides an opportunity to improve the performance

of the general case.

The realization that enables a different solution for an If-Then stranded block than

the general case is that the singleton block allows for only replacing the stranded block’s

predecessors until the edge 1 → 3 is taken. The general solution would leave probes

in until both 1 → 3 and 2 → 3 are covered, but in essence, a singleton block enables

the reseeding of a region that has had instrumentation probes removed by previous

executions.

To implement this improved case, Algorithm 4.2 is augmented to identify If-Then

stranded blocks. Algorithm 4.4 shows the logic that is inserted at line 16 of Algorithm 4.2.

It identifies an If-Then stranded block by its control flow structure and sets a new type.

Algorithm 4.5 is the necessary addition to the second phase of the branch coverage

planner, as was shown in Algorithm 4.3. The code is inserted before the original line 5, and

the stranded condition becomes an else-if. The new line 7 contains the key to the If-Then
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5: if b.type = ifthenstranded then
6: for all Block p ∈ b.predecessors do
7: p.addAction(ANCHOR, GLOBAL[root→b])
8: end for
9: end if

Algorithm 4.5: Handling a If-Then Stranded Block in Phase 2.

stranded block improvement: The predicate on which the stranded block’s predecessors

are replaced is reduced from the special stranded block global state in the general case to

being predicated on the edge from the if-condition block (the root) to the stranded block.

The singleton that is the body of the if statement reseeds the region, allowing for the edge

from it to the stranded block to be covered even if the instrumentation probe has been

removed from the root.

4.1.4 Pre-seeding

Another improvement to the runtime performance of both branch and node testing is to

redefine the seed set of a region to be tested. Seeding only the entry points in the region

allows for demand-driven insertion, where instrumentation probes are placed along the

frontier of execution, that is, in basic blocks that control flow could immediately reach.

This leaves infeasible or rarely-executed code paths mostly instrumentation free.

However, due to instruction cache behavior and the costs of self-modifying code,

demand-driven insertions could be a source of runtime cost that a planner for DDST can

mitigate. If every block in a tested region is considered a seed, the probes can be placed

after the JIT-compiler has generated the code for the method but before that code actually

executes.
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Figure 4.4: Demand-driven instrumentation in Jazz.

4.2 IMPLEMENTING DDST IN JAZZ

Demand-driven testing adds instrumentation after compilation of a method. Figure 4.4

shows an overview of DDST under Jazz. Jazz’s afterCompilation event is handled as

part of FrameworkHarness. This handler checks whether the current method (just com-

piled) matches a rule that applies a demand-driven test. If so, it invokes the instrument

method of the appropriate demand-driven test planner.

Figure 4.5 shows the base class for demand-driven test planners in Jazz. Subclasses

perform work via the instrument method which is invoked from FrameworkHarness.

The arguments to instrument capture the JIT-ed machine code as well as how that

code maps to the original bytecode. The insertFastBreakpoint method exposes the

foundation all demand-driven structural tests share: the dynamic insertion and removal

of instrumentation via fast breakpoints.

Demand testing extends the three common elements from static testing and adds a

fourth. All demand tests have in common:

1. a seed set of instrumentation probes that are inserted before the method executes;
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1 public abstract class StructuralTest {
2 public abstract void printResults(
3 PrintWriter out);
4

5 public abstract MachineCode instrument(
6 Assembler asm,
7 NormalMethod method,
8 int[] bytecodeMap);
9

10 protected void insertFastBreakpoint(
11 ArchitectureSpecific.CodeArray instrs,
12 int nInsertAddr,
13 int nDestAddr){
14

15 int nImm = nDestAddr - (nInsertAddr + 5);
16

17 //JMP rel32 (relative to next instruction)
18 instrs.set( nInsertAddr+0, (byte) 0xE9);
19 instrs.set( nInsertAddr+1, (byte)((nImm >> 0) & 0xFF));
20 instrs.set( nInsertAddr+2, (byte)((nImm >> 8) & 0xFF));
21 instrs.set( nInsertAddr+3, (byte)((nImm >> 16) & 0xFF));
22 instrs.set( nInsertAddr+4, (byte)((nImm >> 24) & 0xFF));
23 }
24 }

Figure 4.5: The base class for all demand-driven structural tests.
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Figure 4.6: Breakpoint implementation on x86.

2. a test payload to record coverage information;

3. a trampoline targeted by a fast breakpoint that sets up location-specific parameters for

the instrumentation probe’s call to the payload; and,

4. a test plan that contains directions for each instrumentation probe in terms of what

other probes to place and to remove, and provides storage for recording coverage

information.

The Demand Node test planner is similar to the Static Node planner. It constructs

a CFG for a method and determines a seed set of locations to place fast breakpoints.

However, instead of inserting the instrumentation inline, the test planner overwrites

instructions in a basic block with a control transfer (i.e., fast breakpoint) to an associated

trampoline. The trampolines set up the function call to the shared payload. The trampo-

lines are emitted at the end of the machine code array. These components are shown on

the right side of Figure 4.4.

4.2.1 Dynamic Instrumentation for the x86

DDST under Jazz uses fast breakpoints [40] to implement instrumentation probes as

shown in Figure 4.6. A fast breakpoint replaces an instruction in the target machine

code with a jump to a trampoline. The breakpoint handler calls the test payload and it
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executes the original instruction that was replaced by the jump. Fast breakpoints have low

overhead and can be easily inserted and removed on binary code. When implementing

fast breakpoints there are essentially two choices. The first choice is to execute the original

instruction as part of the breakpoint handler. The second choice copies the instruction

back to its original location where it is executed when the breakpoint handler completes.

Hence, these breakpoints are “transient” and similar to the invisible breakpoints used by

debuggers to transparently track program values and paths.

A consequence of transient breakpoints is probes do not remain in a test region

once executed. If a permanent probe is needed, then the test planner has to re-insert

the probe. Re-insertion can be done by placing probes in the successors (anchors) to a

block that needs a permanent probe. The successor probes re-insert the original probe

when executed and remove themselves and their siblings. While fast breakpoints can

be implemented to make them permanent, variable length instruction sets, like x86,

complicate the implementation. Instead, transient breakpoints simplify and increase the

portability of the instrumentation interfaces.

On the x86, copying the instrumented instruction back to its original location works

better than executing the instruction in the handler. If the instrumented instruction

is executed in the handler, then instructions have to be decoded to find instruction

boundaries because an entire instruction must be copied to the handler. Indeed, in some

cases, multiple instructions may have to be copied and executed in the handler because

the breakpoint jump can span several instructions. The breakpoints do not know anything

about the instructions where a breakpoint is inserted, which significantly simplified their

implementation. The trade-off is for a breakpoint to remain, it must be re-inserted after

the original instruction is executed.

4.2.1.1 Short Blocks A second issue arises when using fast breakpoints on a variable-

length instruction set such as the x86’s. If the fast breakpoint is implemented in terms

of a multi-byte opcode, it is possible that the fast breakpoint will overwrite more than a

basic block in the original instruction stream. This is the short block problem. If the fast

breakpoint extends past the end of a short block, there may be a control flow transfer
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Figure 4.7: A reflexive basic block.

around the instrumented basic block that jumps into the middle of the fast breakpoint

instruction, resulting in an invalid opcode being executed.

There are several possible solutions to the short block problem. This problem is not

unique to structural testing but also occurs in traditional debugging, and so the architec-

ture supports a single byte breakpoint trap (int 3 encoded as 0xCC) that guarantees it

will never extend beyond a single basic block. However, traps and the resulting signals

involve context switches into and out of the operating system, incurring significant delays.

Another approach is to use a smaller opcode for jumping, usually with a smaller relative

offset immediate. A full 32-bit relative jump requires five bytes of encoding on the x86,

but a 16-bit jump can be encoded in 4-bytes (1-byte opcode, 2-byte immediate, and 1-byte

16-bit mode prefix). An 8-bit jump is unlikely to be sufficient to reach a trampoline, but

might be appropriate to use in some situations.

A final approach is to simply identify short blocks while doing the JIT compilation of

a method and to pad them with nops. This is the approach used in Jazz.

4.2.1.2 Reflexive Blocks Using transient instrumentation probes introduces a problem

when a loop has a single basic block, as is shown in Figure 4.7. In a Java program,

a reflexive block is a result of a do...while loop without any additional control flow

transfers in the loop body. The issue arises because of the operations that occur when a

probe is executed:

1. A fast breakpoint is hit in the basic block, jumping to the trampoline code.

2. The trampoline jumps to the payload.
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3. The payload records coverage, if applicable.

4. The payload places probes for coverage successors and anchors.

5. The payload removes the fast breakpoint from the basic block.

6. The payload returns to trampoline.

7. The trampoline returns to the start of the basic block.

If one of the coverage successors or anchor probes is the block itself, the payload will

replace this probe (unnecessarily, since it has not yet been removed) and then remove it.

This situation is not a problem for node coverage since it does not affect the correctness

of the coverage results. However, for branch coverage, there is now no way to record the

coverage if the self-loop is taken.

There are several possible solutions for this issue. One approach is to split the basic

block into two logical blocks, placing two probes, one to record the source and one to

record the sink. If the block is not long enough for this, due to increasing the potential

short block problem, another approach is to rewrite the branch instruction to jump to

some instrumentation code, essentially instrumenting the back edge itself.

It is interesting to note that if steps 4 and 5 are reversed, the fast breakpoint will be in

the basic block when control is returned to it, causing a jump back to the trampoline and

payload in an infinite loop.

Pre-seeding eliminates this issue in the case of node coverage because no probe will

place any other probes, including itself. However, branch coverage, even with pre-seeding

will still have the reflexive block problem. The current implementation of DDST under

Jazz does not handle reflexive blocks.

4.2.2 Trampolines

Each probe location (where a fast breakpoint is seeded or placed) has a corresponding

trampoline location. A trampoline is an out-of-line function call, allowing for a smaller

instrumentation probe, in this case, just a single relative jump. The trampoline contains

code that is specific to each probe location and calls a payload function to do the work

associated with the instrumentation probe.
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Every trampoline starts with a context switch where the state of the machine registers

is saved. For demand-driven node coverage, the trampoline then sets up the address of

the entry in the PLT for recording coverage and placing successors (if not pre-seeding).

Branch coverage has three types of trampolines: one for the regular basic blocks, another

for singleton blocks, and a final one for stranded blocks.

Identically to the node coverage trampoline, the regular block payload passes the

PLT entry for the breakpoint to the payload. For singletons, the PLT entry is passed

so that the probe can place coverage and anchor successors and also explicitly passes

the appropriate coverage counter to record the edge from the one and only control flow

predecessor. The stranded block trampoline is similar to the singleton one, but instead

of passing the edge counter, the counter representing that the stranded block is safe to

remove is passed instead.

Every trampoline then invokes the appropriate payload function code. When that code

returns, the trampoline restores the saved registers. It then determines the appropriate

location in the original code to return to and executes the jump.

4.2.3 Payloads

Each trampoline has a call to a function payload that does the work of recording coverage,

removing probes, and placing probes as necessary. As with the trampolines, there is a

payload for demand-driven node coverage, and three more for demand-driven branch

coverage.

4.2.3.1 Node Coverage Payload The payload for doing demand-driven node coverage

is comprised of four actions:

1. Mark the coverage counter in the PLT as covered for this block (passed as a parameter

from the trampoline),

2. Conditionally place probes in control flow successors,

3. Remove probe from the basic block currently being executed, and

4. Return to the trampoline.
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The condition of step 2 is the coverage of the node where a potential probe would be

placed. If pre-seeding is done, step 2 is omitted.

4.2.3.2 Branch Coverage Regular Payload The regular payload for branch coverage is

similar to the one for node coverage. The same four steps are taken; however the first

step, marking the covered edge, requires some additional work. A regular payload is

assigned to a basic block that meets the previous Fork definition (otherwise it would

be a singleton, by definition). The payload must determine which of the control-flow

predecessors was executed immediately before this block. This is achieved through the

previously hit probe variable that is stored in each thread’s local storage. To mark the

edge as covered, the PLT is examined to find the counter representing the edge between

that predecessor and this probe. Thus, each probe in branch coverage needs an additional

step, to be inserted as step 2:

2. Record this block in the previously hit block variable.

This step must be done prior to returning to the trampoline. Additionally, placing the

control flow successor probes is predicated on the coverage of the edge between the

current block and the successor being placed. Any anchor probes are predicated on a

special per-stranded block value that is updated by the stranded block’s payload when

all incoming edges are covered.

4.2.3.3 Singleton Payload The singleton payload does not have to iterate through the

PLT to find which counter is associated with the edge just executed. The counter’s address

is directly passed to the payload from the trampoline. Otherwise, the singleton payload

is the same five steps as the regular payload of the previous section.

4.2.3.4 Stranded Payload The stranded block problem requires the control-flow prede-

cessors of the stranded block to remain until all edges into the stranded block are covered.

In the planning phase, a special predicate variable was allocated in the PLT to identify at

runtime whether the anchor probes need to be replaced, without concern for the covered
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Figure 4.8: Row in the PLT for DDST.

or uncovered state. As part of the stranded block payload, this condition must be updated

so that the probes involved in handling the stranded block problem can be eventually

removed.

The stranded block trampoline passes the address of this special variable to the

payload. Before the payload returns but after coverage has been recorded, the coverage of

each incoming edge to the stranded block’s is logically-ANDed together and the result

stored in the variable.

4.2.4 Probe Location Table

Each payload depends on a data structure that encodes the test plan called the Probe

Location Table or PLT. The PLT contains a table row for each probe that will be placed in

the test region, even if that probe is not part of the seed set. The layout of a PLT entry is

shown in Figure 4.8.

The first four bytes are the address of the current probe in the test region code. This

location is stored so that the fast breakpoint can be removed. Removal is done by copying

the original machine instructions over the fast breakpoint. The breakpoint is implemented

as a 32-bit relative jump in x86, which is five bytes long. The table row is filled with the

five bytes of original machine code prior to seeding.

Next are two values that indicate the amount of work the probe needs to perform at

runtime. A probe will place the number of probes indicated, provided that they record

an uncovered edge or are an anchor to an uncovered stranded block. The number of

anchors is a separate entry because the stranded block solution requires anchors to remain

until all incoming edges into a stranded block are covered. Thus, the anchors’ coverage
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counters, which predicate replacing the anchors, will all be set to “covered” at the same

time—when the stranded block is covered. This work is performed in the stranded block

payload.

Next is a single byte of padding that is unused. This makes the fixed size of the table

row a multiple of four bytes for better cache alignment.

For each anchor and coverage successor there is a 12-byte entry, the first four bytes of

which are the location place a fast breakpoint. Next is the offset to the trampoline for that

particular probe. These four bytes are appended to the jump 32-bit relative opcode (0xE9

in x86) to form the five-byte fast breakpoint. Finally, there is a pointer to the coverage

counter that records the edge between the current probe and the probe to insert. The

indirection is necessary for two reasons. First, for a regular stranded block, every anchor

probes’s replacement is predicated on the special stranded block counter, whose coverage

is only set when all incoming edges into the stranded block are covered.

Additionally, a counter is also shared among more than one entry in the if-then

stranded block solution. The counter that represents the coverage of edge 1 → 3 in

Figure 4.2 is a predicate both to block 1 placing a coverage successor in block 3 as well

as to block 3 replacing an anchor probe in block 1 (if only the path 1→ 2→ 3 has been

taken thus far).

4.3 EVALUATION

The current Jazz implementation is integrated with Jikes RVM 3.1.0. It was built for x86-64

Linux (BaseBaseMarkSweep RVM configuration). Both the RVM and applications to be

tested are compiled (JIT’ed) without optimization. A mark and sweep garbage collector

is used. All experiments were done on a lightly loaded quad-core Intel Xeon processor

(2GHz with 4MB of L2 cache and 8GB RAM). The operating system is Red Hat Enterprise

Linux Workstation release 4.

I used SPECjvm98 [11] for benchmark programs. The implementation does not include

test techniques for multi-threaded programs, and as such, mtrt was excluded, as it is a
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Table 4.1: Properties of the SPECjvm98 benchmark suite.

Benchmark Methods Nodes Edges Runtime (s)

check 79 662 789 1.76
compress 42 191 217 25.87
jess 436 1569 1594 24.19
db 27 220 299 30.18
javac 742 4584 5744 24.92
mpegaudio 201 793 802 18.75
jack 266 2019 2372 23.15

multi-threaded ray tracer. Details about the properties of the benchmarks are shown in

Table 4.1. The methods column is the number of executed methods. Nodes and edges

refer to the complexity of the control flow graph, with nodes being equivalent to the

number of basic blocks. The runtime column is the baseline time of execution without

structural testing. All timing results were determined by averaging three runs of each

benchmark.

To evaluate Jazz and DDST, I present three sets of results for seven different coverage

tests (Static Node, Static Node Agrawal, Demand Node, Demand Node Agrawal, Static

Branch, Static Branch Agrawal and Demand Branch). First, the cost of structural testing is

experimentally examined. This includes the cost of test planning and execution of the

instrumentation. Next, the memory overhead for each instrumentation type used by the

different tests is studied. Finally, how the tests interact and impact garbage collection is

examined.

4.3.1 Performance Overhead

Because structural testing requires “extra work” when a program is executed, it imposes

performance overhead. In the approach employed by Jazz, there are two sources of

overhead. First, there is overhead due to test planning (i.e., identifying how and where to

instrument the program) because the planning is done as part of JVM execution. As a

result, the test planning overhead is fully observed by the user. Second, there is overhead
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from the instrumentation to collect coverage information. This overhead is due to the

complexity of the test and the implementation efficiency of Jazz.

Figure 4.9 gives the overhead for node testing (Static Node, Static Node Agrawal,

Demand Node, and Demand Node Agrawal). Figure 4.10 gives overhead for branch

testing (Static Branch, Static Branch Agrawal and Demand Branch). Performance overhead

is reported as percentage increase in runtime over baseline performance without testing

(see Table 4.1). The overhead reported in these figures comes from the number of probes

needed for a particular test as well as the efficiency of Jazz’s instrumentation code. The

light blue part of each bar is the overhead from test planning and the dark blue part is

the overhead from the instrumentation executed to gather coverage information.

The most apparent trend shown in the node coverage results of Figure 4.9 is that the

second and fourth bars, corresponding to the addition of Agrawal’s technique for static

probe reduction, are typically the highest by far. This test technique does the most analysis

of the seven since it has to construct the CFG and compute dominator information to

minimize the number of instrumentation probes. The planning cost for the demand

techniques is under 6% in all cases except check, which runs uninstrumented in about

1.8 seconds. As there are fixed costs in instantiating Jazz, this cost is not well-amortized

in check due to the fact that there are many methods but practically no reuse of them.

Runtime instrumentation overhead is small, especially with the demand-driven ap-

proaches. Both static tests have higher than average overhead on compress and mpegaudio.

These benchmarks are loop-intensive and leaving instrumentation—even small static

probes—in the loop for the entire program execution is costly. The demand techniques do

better on these programs; the overhead of instrumentation is only incurred once because

the instrumentation is removed after a few loop iterations.

Branch testing, shown in Figure 4.10, has a similar trend in planning overhead as

node coverage. The rightmost bar, representing Static Branch Agrawal, again shows the

high cost of doing Agrawal’s probe reduction technique. The Demand Branch and Static

Branch (left and middle bars) show overhead under 25% except in check which runs too

quickly to amortize startup costs.

Branch testing demonstrates the effect where the instrumentation overhead begins to
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dominate total overhead. The loop intensive programs are the ones where demand-driven

techniques are expected to do the best because instrumentation is quickly removed. In

mpegaudio, this expectation is correct. However in javac and jack the demand-driven

technique does worse than the static techniques. This result is due to two factors. The

first one is that an individual instrumentation probe from the static technique is about

20 times cheaper than a demand-driven probe. This means that any region that is not

re-executed frequently will incur unnecessary cost. The second issue is that the stranded

block problem’s solution requires demand probes to remain in the code until all incoming

edges to the stranded block are covered (i.e., 100% coverage). If this condition happens

late in program execution, or perhaps never, then it is less costly to use the inexpensive

static probes for the full execution.

In the branch results no one technique is always the best. This result suggests that to

get the minimal overhead for testing, a test engineer may want to determine a combination

of techniques to apply together on different methods. With Jazz, this approach is easily

supported—a test specification can be written to select the appropriate test for different

methods.

These results show that the runtime cost of implementing test planners in Jazz is

low for any program that runs long enough to amortize the small startup cost. For test

planners that do a lot of work to determine where to place instrumentation, such as with

Agrawal’s algorithm, it may be beneficial to perform the planning offline or save planner

results between runs when the code to be tested has not changed.

4.3.2 Memory overhead

Jazz supports memory allocation from the JVM’s managed heap and the operating system

(i.e., outside of the JVM). Table 4.2 lists the memory requirements for the tests in Jazz’s

test library. The figures in the table are the sum of the payload code, trampoline code,

test plan, and inline instrumentation. The baseline GC heap size is 20 MB and can grow

to a maximum of 100 MB.

The first four rows in the table detail the memory needs of the node coverage test
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Table 4.2: Total memory usage for each of the SPECjvm98 benchmarks.

check compress jess db javac mpegaudio jack

Static Node 9.8 KB 2.6 KB 19.7 KB 3.3 KB 66.0 KB 10.5 KB 29.7 KB
Static Node Agrawal 5.5 KB 1.4 KB 10.8 KB 2.0 KB 42.2 KB 5.5 KB 18.3 KB
Demand Node 19.7 KB 5.3 KB 39.3 KB 6.7 KB 132.0 KB 21.1 KB 59.4 KB
Demand Node Agrawal 11.0 KB 2.8 KB 21.5 KB 4.0 KB 84.4 KB 11.1 KB 36.6 KB

Static Branch 21.7 KB 6.2 KB 49.3 KB 7.5 KB 152.4 KB 24.9 KB 65.9 KB
Static Branch Agrawal 16.0 KB 4.4 KB 31.4 KB 5.9 KB 117.1 KB 16.6 KB 51.4 KB
Demand Branch 41.1 KB 10.2 KB 75.6 KB 14.5 KB 320.2 KB 37.6 KB 115.5 KB

implementations. As described earlier, the amount of work done by Static Node is small

enough that a separate test payload is unnecessary. Instead, coverage information can be

collected for Static Node with just four machine instructions (12 bytes) per node (basic

block). Static tests do not use any trampolines. The test plan has only one word (4 bytes)

to storage coverage result. The total memory usage ranges from only 2.6 to 66.0 KB. Static

Node Agrawal, due to the probe reduction algorithm, needs even less space. The probes

and test plans are the same size as in Static Node, but there is an average 43% reduction

in probes, requiring only 1.4 to 42.2 KB of total storage.

Demand-driven node coverage (Demand Node and Demand Node Agrawal) have

larger payloads, trampolines, and data storage requirements than the static tests. The

demand-driven payload is seven machine instructions that are shared across all probes

in all methods. Each fast breakpoint jumps to a six-instruction trampoline that transfers

control to the payload. The demand test plan is larger than the static one because a

location is reserved to store the instruction(s) overwritten when the fast breakpoint is

inserted. This location holds the instruction so that it can be replaced when the probe

is removed. Demand Node and Demand Node Agrawal require about twice as much

memory as the static counterparts.

The final three rows show the memory requirements for branch testing. Since this

coverage test must look up which edge should be recorded at runtime, it has a slightly

larger payload than node coverage. Static Branch and Static Branch Agrawal share the

same 40-byte payload and insert six machine instructions per node to jump to that
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payload. Per incoming edge, the test plan needs a unique identifier for the potential CFG

predecessor block and a location to record coverage. Static Branch requires 6.2 to 152.4 KB

of total storage. Static Branch Agrawal reduces the number of probes by 11% on average

and this translates into a 22% average reduction in memory size, with total usage ranging

from 4.4 to 117.1 KB.

Demand Branch needs three payloads for the three specialized probe types (to solve

the stranded block problem). The test plans are larger due to once again needing to store

the original code that the fast breakpoint overwrote as well as an entry for each CFG

successor (and CFG predecessor when dealing with a stranded block) to place at runtime.

Each record has three words of storage: the address for placing the fast breakpoint, the

offset of the trampoline to construct the relative jump from, and a counter that serves

both to record the edge coverage and predicate if the probe should be placed. Despite

the extra memory, the experiments show only a 2.1 times increase in memory usage over

Static Branch.

The maximum memory usage for any benchmark was under one third of a megabyte.

From these results, I conclude that the library of tests that Jazz provides all have reasonably

small memory requirements.

4.3.3 Impact on Garbage Collection

Planning and performing a coverage test requires memory storage as shown in Table 4.2.

The memory space is allocated from two places. The test plans and payloads are allocated

outside of the Java heap with mmap (or malloc). The trampolines, inline instrumentation,

and planner objects themselves are allocated from Java’s heap. The RVM does not have

a separate heap for “internal” Java code. As a result, Jazz’s memory is intertwined

with application memory, which can cause pressure on garbage collection. This adverse

interaction can be significant and harm program performance. In my experiments, the

average garbage collection took 459 ms (range: 295–2161 ms). This high cost clearly

demonstrates that avoiding additional GCs is just as important as avoiding the execution

of instrumentation probes.
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Table 4.3: Change in the number of garbage collections due to testing with Jazz.

check compress jess db javac mpegaudio jack

Forced GCs 4 2 2 2 6 2 2
Baseline Unforced GCs 0 7 9 4 4 0 9

Static Node — +1 -1 — — — —
Static Node Agrawal +1 — +2 — +3 +1 +4
Demand Node — — -1 — — — —
Demand Node Agrawal +1 — +1 — +3 +1 +3

Static Branch — +1 — — — — —
Static Branch Agrawal +3 +1 +3 +1 +10 +2 +8
Demand Branch — +1 — — +1 — —

To analyze Jazz’s influence on the number of garbage collections, I ran each of the

seven test techniques with each benchmark to collect a verbose GC trace (provided by

an argument to the RVM). This trace indicates when GC is invoked and the size of

the collected heap. The results are shown in Table 4.3. The top two rows (in italics)

give the number of collections for the baseline that does not do testing. These numbers

report how many calls are made to System.gc() and how many GCs happen in an

uninstrumented run (without testing). The other rows show the increase (+), decrease (-),

or no change (—) in collections over the baseline for each test. The default initial heap size

of 20 MB and maximum heap size of 100 MB were used. For the baseline, I measured the

number of garbage collections in an uninstrumented run of each program. The default

maximum heap size of 100 MB was used. The top two rows of Table 4.3 show the results

separated by origin of garbage collection. As part of the SPECjvm98 benchmark harness,

System.gc() is called immediately before and after each run of the core portion of each

benchmark. This explains why there are two “forced” GCs per run. The additional forced

GC calls for check is due to the benchmark being a test of JVM correctness and javac has a

call between each file it compiles as part of its conversion to a benchmark.

The remaining table rows show the net change in unforced garbage collections for each

test technique. Using Agrawal’s technique causes many additional garbage collections

due to the amount of temporary graphs constructed for analysis on each benchmark.
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Once the seed set is placed during test planning, these temporary graphs are no longer

needed. In general, the highest number of increased garbage collections happen on the

benchmarks with the most methods, such as javac and jack. Since the test planner is

invoked for each method, more memory space is needed, leading to more garbage.

An interesting effect occurs in jess with the static node and demand-driven node

techniques. In both cases, the instrumented version has one less GC than the baseline.

This situation is a result of the way that the RVM grows the heap when GC occurs. The

amount the heap is increased depends on how recently the heap was grown. This changes

the GC points and allows for fewer live objects to exist in later GCs, requiring the heap to

grow less and fewer GCs to occur.

These results show that for the test types that do not depend on Agrawal’s minimiza-

tion technique, the impact on the number of GCs was acceptably small. When the work

for Agrawal’s support service is added in, there is a significant increase in memory usage

that additionally impacts runtime from doing the additional GCs. Offline planning or

caching planning results for unchanged methods may be necessary to get reasonable

performance out of the technique.

4.4 SUMMARY & CONCLUSIONS

This chapter described an alternative to the statically-inserted instrumentation probes of

traditional testing tools called Demand-driven Structural Testing. DDST seeks to remove

instrumentation probes dynamically, allowing for the majority of the execution of a

program to be instrumentation-free. DDST also supports dynamically inserting probes,

avoiding placing instrumentation along paths that are infeasible or not exercised in a

given test run.

The additional run-time work that a DDST instrumentation probe must perform

requires a more sophisticated test planner than was necessary for Static or Static Agrawal.

Node coverage testing under DDST involves placing a single seed probe in the entrypoint

to the test region or to preseed every node in the region. These probes are implemented
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as fast breakpoints and are removed as soon as they hit.

Branch coverage can also benefit from DDST, but since the instrumentation probes are

placed in blocks rather than edges, certain control-flow structures such as the stranded

block problem make both planning and the runtime actions performed by a probe more

complex.

I implemented DDST for node and branch coverage under Jazz and evaluated their

performance relative to Static and Static Agrawal. For node coverage, DDST is the clear

winner. The instrumentation cost is amortized quickly as only the first execution of a

basic block records coverage. Branch coverage’s performance is affected by the higher

cost of a DDST instrumentation probe compared to a static one and by the longer-lived

probes necessary to solve the stranded block problem. Demand Branch performs best

in loop-intensive code but can be worse than Static if code re-execution is infrequent or

stranded blocks are common with coverage never reaching 100%.
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5.0 PROFILE-DRIVEN HYBRID STRUCTURAL TESTING

DDST’s results do not definitively answer the question of which test technique to use

in practice. For node coverage, the results are clear: demand-driven removal of probes

is the best choice, resulting in the lowest overhead. For branch coverage, however, the

choice is not as clear. With certain programs or inputs, Static Branch or Static Agrawal

Branch may result in lower overhead than DDST Branch.

When these three techniques are evaluated for branch coverage on the SPECjvm98

benchmark suite, the results show that there is no single best choice across all programs.

Table 5.1 shows the overhead that each technique incurs over the baseline uninstrumented

execution time when applied uniformly to all methods in the program. DDST incurs

the lowest overhead most often, for four of the seven benchmarks. Static Branch’s

simple planner, low individual instrumentation probe cost, and its application to short-

running benchmarks, results in it being best on the remaining three programs. Agrawal’s

algorithm is so expensive that it is never the best due to the cost of test planning never

Table 5.1: No single test technique is consistently the best.

Static Agrawal DDST

check 27.8% 301.1% 44.3%
compress 56.3% 49.8% 47.9%
jess 16.5% 59.7% 15.9%
db 7.0% 11.2% 6.3%
javac 12.8% 180.7% 50.4%
mpegaudio 44.1% 54.4% 13.3%
jack 7.0% 242.3% 24.3%
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Figure 5.1: Three methods from compress.

being amortized by the reduction in probes.

DDST’s strength is that its instrumentation probes can be removed quickly and the

majority of the program will execute without the overhead of the instrumentation. DDST

should then be expected to perform the best on loop-intensive benchmarks, such as

compress and mpegaudio, which matches the results shown in Table 5.1.

However, just as every program does not behave in the same way, neither does every

method in a program. Finding the best choice on a per-method granularity shows the

same trend as before: No one technique is uniformly the best.

Figure 5.1 illustrates this point with an example from compress. This benchmark

compresses five files five times and then decompresses them to get the original files. Both

the compress and decompress functions are similar in structure with a high-iteration

loop reading the file data, and either adding or checking each codeword in a hashtable.

However, as the figure shows, when instrumentation is added to the two methods, the

best test technique is dramatically different. The expectation of DDST performing best

for loop-intensive code holds true in compress but fails in decompress. A closer

examination of the source code shows that the decompress loop has an error check for

an invalid codeword that is never encountered in the benchmark’s run—resulting in an
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uncovered stranded block.

Although Agrawal’s technique was never the overall best when applied to a whole

program, the results for the Suffix table.init method show it can be the best on a

per-method basis.

5.1 SOURCES OF DDST COST

The performance of DDST Branch is complicated by two factors. First, individual DDST

instrumentation probes are more expensive to place and remove than static, compiler-

inserted probes. This is why DDST performs well on loop-intensive programs: It uses

the large number of instrumentation-free iterations to amortize the cost of a probe. For

methods or programs that do not have enough instrumentation-free executions, the

permanent static instrumentation ends up incurring less cost overall.

The second issue is that even in loop-intensive code such as the decompress method,

the solution to the stranded block problem requires some probes to remain despite the

coverage information recorded by these probes having already been determined. This

section will explore the impact of these factors in contributing to the cause of DDST’s

inconsistent performance.

5.1.1 Instrumentation Probes

The payload for DDST Branch is made up of more instructions than the Static Branch

payload because a DDST instrumentation probe has to place additional probes during

execution. Table 5.2 shows the x86 instructions that comprise the Static Branch payload.

There are 14 instructions that take up 40 bytes of space. Comparing it to the DDST

payload shown in Table 5.3, the DDST payload requires almost three times as many

instructions with a similar increase in space.

The major difference in the two payloads is the second loop in DDST that places

the coverage and anchor probes, labeled as placeSuccessorFastBreakpoints. Both
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Table 5.2: Size and code for a Static Branch probe.

Label Machine Code Offset

1 initializeFramePointer: mov ebp, dword ptr [esi + 140] 0
2 getPreviousHitBrkpt: mov eax, dword ptr [ebp - 8] 6
3 setPreviousHitBrkpt: mov dword ptr [ebp - 8], edx 9
4 markCounterAsHit: mov ecx, dword ptr [edx] 12
5 test ecx, ecx 14
6 jz return 16
7 add edx, 4 18
8 loop1: cmp ebx, dword ptr [edx] 21
9 jne next 23

10 mov dword ptr [edx + 4], 1 25
11 jmp return 32
12 next: add edx, 8 34
13 loop loop1 37
14 return: ret 39

this loop and the one that records coverage (markCounterAsHit) will execute for each

CFG successor, which was previously reported as 1.3 basic blocks with a variance of 2.0

blocks. With three times the number of instructions and twice as many loops, a reasonable

estimate would be that a DDST probe might have a dynamic instruction count around six

times that of Static and perhaps a similar increase in cost.

To test this, the probe costs for Static and DDST were collected on SPECjvm98. Table 5.4

shows Cstatic and Cdemand, the costs of a single Static probe and a DDST probe. The times

were computed from two pieces of information: the number of instrumentation probes

executed at runtime and the time spent executing them. To obtain the number of probes,

a modified version of Jazz inserted special counting instrumentation probes that recorded

the number of times each was hit and reported the values at the end of the run. The cost

of instrumentation was determined by finding the difference between two runs: the first

where the normal instrumentation probes were inserted and the second where planning

was done but no instrumentation was inserted.

The first two columns of Table 5.4 are the cost per probe calculated as described.

The ratio of how much more expensive a demand-driven probe is than a static probe

is in the next column, labeled ρ. On average across the benchmarks, a single DDST
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Table 5.3: Size and code for a regular DDST Branch probe.

Label Machine Code Offset

1 initializeFramePointer: mov ebp, dword ptr [esi + 140] 0
2 getPreviousHitBrkpt: mov eax, dword ptr [ebp - 8] 6
3 setPreviousHitBrkpt: mov dword ptr [ebp - 8], edx 9
4 markCounterAsHit: test eax, eax 12
5 jz removeFastBreakpoint 14
6 movzx ecx, byte ptr [eax + 9] 16
7 add eax, 12 20
8 test ecx, ecx 23
9 jz removeFastBreakpoint 25
10 loop1: mov ebx, dword ptr [edx] 27
11 cmp dword ptr [eax], ebx 29
12 jne next 31
13 mov ebx, dword ptr [eax + 8] 33
14 mov dword ptr [ebx], 1 36
15 jmp removeFastBreakpoint 42
16 next: add eax, 12 44
17 loop loop1 47
18 removeFastBreakpoint: mov eax, dword ptr [edx] 49
19 mov ecx, dword ptr [edx + 4] 51
20 mov dword ptr [eax], ecx 54
21 mov cl, byte ptr [edx + 8] 56
22 mov byte ptr [eax + 4], cl 59
23 placeSuccessorFastBreakpoints: movzx ecx, byte ptr [edx + 10] 62
24 add edx, 12 66
25 cmp ecx, 0 69
26 je return 72
27 loop2: mov eax, dword ptr [edx + 8] 74
28 cmp dword ptr [eax], 1 77
29 jge dontplace 80
30 mov eax, dword ptr [edx] 82
31 cmp byte ptr [eax], 0E9h 84
32 je existing jmp 87
33 mov byte ptr [eax], 0E9h 89
34 existing jmp: mov ebx, dword ptr [edx + 4] 92
35 cmp dword ptr [eax + 1], ebx 95
36 je dontplace 98
37 mov dword ptr [eax + 1], ebx 100
38 dontplace: add edx, 12 103
39 loop loop2 106
40 return: ret 108
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Table 5.4: Cost of an instrumentation probe for Static and DDST.

Cstatic Cdemand ρ

check -7µs -331ns 0.045
compress 12ns 223ns 17.5
jess 13ns 290ns 21.7
db 6ns 204ns 29.5
javac 23ns 350ns 15
mpegaudio 10ns 219ns 20.3
jack 15ns 345ns 23

Average 18.2

instrumentation probe for branch coverage is 18.2 times as expensive as an equivalent

static probe.

With check, the addition of instrumentation probes results in faster execution than the

planning-only baseline used to determine the probe cost due to GC effects. This yields a

speedup that is shown in Table 5.9 as a negative instrumentation probe cost. Since check

runs for such a short amount of time, GC overshadows the cost of instrumentation.

A DDST probe being 18.2 times as expensive as a Static probe is a greater difference

than can be explained just by the dynamic instruction count. Instead, consideration must

be given to the actions that a DDST probe performs: Namely, placing probes in the

instruction stream at runtime.

5.1.2 Architectural Impact

Inserting or removing a DDST probes during runtime falls under the category of self-

modifying code. Modern CPU architectures heavily cache both code and data to the point

where self-modifying code can result in a variety of performance penalties.

Figure 5.2 shows the results of using Hardware Performance Counters [34] to collect

the instruction cache (i-cache) miss rate on SPECjvm98 for DDST Branch and Static Branch.

The results are shown as a change relative to a baseline uninstrumented run.

DDST shows a consistent increase in i-cache misses, including an increase on compress

of over 66 times the baseline miss rate. Remarkably, compress is one of the programs
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Figure 5.2: Change in instruction cache miss rate for DDST and Static.

where DDST manages to perform better than Static, along with jess, db, and mpegaudio.

These four programs have the highest increase in i-cache misses. The misses are a result

of cache invalidations flushing the i-cache when a probe is inserted or removed.

Static also has an increase in i-cache misses over the baseline except in the case of

mpegaudio. This is probably due to the increased pressure in the i-cache from inserting

the trampolines used by Static inline into the instruction stream, resulting in growing the

code by four extra instructions per basic block.

For the three programs where Static outperforms DDST (check, javac, and jack), both

Static and DDST show similar increases in i-cache misses. This can be explained by

the actions of the DDST probe. The DDST probe was designed to avoid placing an

instrumentation probe when one is already at the target, eliminating unnecessary cache

invalidations. Instructions 31 and 35 from Table 5.3 perform this check. Thus, it is likely

that on these three programs that DDST probes are not being inserted or removed as

often as in the other programs. This would result from either a lack of code re-execution
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Figure 5.3: Change in branch misprediction rate for DDST and Static.

or from uncovered stranded blocks.

Other microarchitectural effects may result from the nature of DDST’s instrumentation.

Figure 5.3 shows the change in the branch misprediction rate on SPECjvm98. These results

show modest increases, and, once again, DDST is worse than Static. This is likely due to

Static’s payload having one less loop and fewer branch instructions (two versus seven in

DDST). The branches in the DDST payload are dependent on the number of predecessors,

the number of probes to place, the coverage recorded so far, and the presence of a probe

at a location already—factors that can vary greatly from probe to probe and even for a

single probe during program execution.

In addition to the code effects of instrumentation, both Static and DDST increase the

amount of data in a process’s working set with the test plans necessary to drive and record

coverage information. Figure 5.4 shows the change in the data TLB miss rate for both

Static Branch and DDST Branch. For x86, DTLB misses include speculative accesses [34],

and the interruption of a data processing loop, such as in compress and mpegaudio, to

perform instrumentation may be harming locality and the effectiveness of prefetching.
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Figure 5.4: Change in DTLB miss rate for DDST and Static.
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Table 5.5: Stranded blocks in SPECjvm98.

Regular Stranded

Total Stranded If-Then Stranded Count Coverage

check 90 34 56 12.5%
compress 34 16 18 50.0%
jess 198 57 141 27.7%
db 48 21 27 29.6%
javac 743 163 580 32.6%
mpegaudio 77 17 60 46.7%
jack 261 159 102 42.2%

There will also be DTLB effects from using self-modifying code. The write to a code

page will require fetching that page into the data cache, and a new entry in the DTLB

will be created, increasing pressure and potentially evicting other useful DTLB entries.

5.1.3 Stranded Blocks

While the previous sections have shown that DDST’s instrumentation probe, the insertion

and removal of probes, and the memory for the test plans all contribute to the cost of

DDST, the overhead is amplified by the stranded block problem. If a DDST probe can

be removed early in the execution of a method, its overhead will be amortized by the

instrumentation-free executions when Static would still be incurring cost.

When this tipping point between DDST and Static is not reached, it must be because

of one of two reasons:

1. The region under test is infrequently executed, or

2. Anchor probes remained due to an uncovered stranded block.

If the reason is the former, DDST will never be the best choice and Static should be

applied if this situation can be anticipated.

To determine the impact of the stranded block problem, statistics on how frequently it

occurs in SPECjvm98 are shown in Table 5.5. Take, for example, compress. There are a total

of 34 stranded blocks, of which 16 are handled with the special If-Then stranded block
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solution that mitigates some of the anchor probes necessary in the general stranded block

solution. Of the remaining 18 “regular” stranded blocks, only nine (50%) are covered

at runtime. This situation is the cause of the results shown in Figure 5.1, when the best

test technique was different for the similarly-structured compress and decompress

methods.

However, compress has the highest regular stranded block coverage at 50%, followed

closely by mpegaudio at 42.2%, and DDST performs best on these programs. The third

highest coverage is on jack, but Static has lower overhead than DDST, likely due to it

being a parser generator with many methods but little iteration or code reuse.

5.2 SELECTING A TEST TECHNIQUE

DDST probes are unlikely to get significantly cheaper or shorter-lived due to the stranded

block problem and, for some methods or programs, Static or Static Agrawal will be the

best test technique to use. This presents an opportunity to target the strong points of each

test technique and combine multiple techniques in a single program run. This should

result in a mix that is better than the uniform application of any one test. For example, a

method that has a stranded block that is never covered in a test run should be tested with

Static as it is unlikely to benefit from DDST.

Since the coverage of a test region depends on the input data, it is impossible in the

general case to perfectly predict a priori if a stranded block will be covered quickly or

even at all. The only way to find out for certain is to run the program on the input and

find out.

5.2.1 Average-driven Search

A direct approach to determine how to choose the best technique for each method in a

program is to run them all and find the best one.

Every method in the benchmark suite was run with the three test techniques individ-
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Figure 5.5: Average-driven search.

ually and the technique that performed best on the average of three runs was selected

for each method. The resulting best choices from this “average-driven search” were then

combined into a single test run. Figure 5.5 shows the observed overhead versus the

uninstrumented baseline. Also shown are the results from the uniform application of a

single test technique.

Average-driven search successfully finds a mix of test techniques that is the lowest

in overhead for compress, jess, db, and mpegaudio. The biggest improvement occurs for

compress, where the average-driven search discovers which stranded blocks are covered

early and which are not.

Surprisingly, Figure 5.5 shows several occasions where the search was not successful

in finding a better mix than the uniform application of a single method. Both javac and

jack show this phenomenon. This result can be explained partly as an interaction with

garbage collection (GC), as the precise time that GC is triggered affects how large the

heap grows and how frequently subsequent GCs occur. When instrumenting a single
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Table 5.6: Time required to perform average-driven search.

Time (hours)

check 0.3
compress 2.7
jess 25.1
db 2.0
javac 46.1
mpegaudio 9.4
jack 15.5

Total: 101.1

method, the temporary objects created are unlikely to cause enough pressure on the heap

to perturb GC the way a full testing run would. The imprecision of timing, rounding

error in the calculations, and microarchitectural interactions may also affect the results, as

these are two of the biggest benchmarks in terms of the number of methods.

While the workload of doing this search is embarrassingly parallel, it still involved

running 1783 methods nine times each (three runs of the three test techniques). Table 5.6

shows the cost of running the search in terms of computer-hours of work. While check

only required an 18 minute search, javac needed 46.1 computer-hours to run. The search

over the entire benchmark suite took 101.1 computer-hours in total.

It is clear from the time requirements that finding a good overall test configuration this

way is infeasible for reasonably-sized programs that are undergoing the typical testing

and development cycle. To make matters worse, after doing this search, the resulting

configuration is not even optimal. The results do, however, show that a hybrid approach

to branch coverage testing can result in better overall performance than a naı̈ve application

of one technique to an entire program.

5.2.2 Profile-driven Test Selection

Although average-driven search is slow and inaccurate, it still validated that a mix of

test techniques can outperform any single one. Discovering a good mix by an alternative
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Figure 5.6: Hybrid structural testing via profiling.

approach that is faster may actually be practical to use as part of the testing process.

The two key factors that prevent DDST from being the best are that a single DDST

instrumentation probe is more expensive than a static probe and that, in some instances,

stranded blocks or infrequent execution of code do not allow the additional probe cost to

be amortized away. With the costs of a single DDST and static instrumentation probe, a

decision of which test technique to use could be computed from the reduction in dynamic

probe executions resulting from DDST.

This is also a property that cannot be known a priori, but instead of running the

whole program on the full input as done with the average-driven search, the runtime

characteristics of a program can be discovered by profiling. Profiling runs the program

with a small test case and collects dynamic probe counts for the various instrumentation

techniques. The ideal is to do a small number of profile runs and then use the results to

guide future test technique decisions made on the same program, possibly even after its

code has been slightly changed.
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5.3 DESIGN OF A PROFILE-BASED TEST SELECTOR

Profile-driven Hybrid Structural Testing (HST) is based upon knowing three aspects of

the runtime properties of a region to test:

1. the number of dynamic probe executions saved using DDST or Agrawal,

2. the cost of planning, and

3. the cost of a single probe of each instrumentation type.

Figure 5.6 shows how to use profiling to determine the dynamic probe executions

saved with DDST. A small test case is generated and the program is instrumented using

Jazz with DDST. Additionally, a traditional profile of block frequency is collected, as this

corresponds to the number of static probes executed. While the figure shows this as two

separate runs, it is possible to combine them into a single execution of the program.

Static Agrawal Branch does not need its own execution run. The instrumentation

probes are the same as Static Branch; however, Agrawal’s algorithm simply places them

in fewer locations. With the full block profile from Static, the number of probe executions

that Static Agrawal will incur can be determined offline without a dedicated profile run.

The results of the two dynamic probe count profiles are fed into an HST Planner. The

HST Planner incorporates a model that describes the expected runtime costs associated

with testing. Using the profiles and the model, the planner then produces an HST Plan in

testspec, the test specification language that Jazz takes as input. The plan specifies which

test technique to use on each method as best determined by the HST Planner.

Figure 5.7 shows the overall framework for HST. Central to the testing process is the

application to be tested, run under a JVM supporting Jazz. Additionally, there is a test

suite of inputs that have been selected to exercise the application code. The presence of a

test suite provides an opportunity to amortize the cost of profiling and generating the

HST Plan since the same plan can be used for each test case in the test suite. Jazz’s test

driver interprets the testspec language of the HST Plan and applies the specified tests to

the application code as it runs.
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Figure 5.7: The overall framework for doing Hybrid Structural Testing.

5.3.1 Modeling Branch Coverage Testing

For profiling to choose the appropriate test technique, branch coverage testing’s costs

must be modeled accurately enough to choose among the three techniques implemented

in Jazz. The overhead of testing comes from two main sources. The first is from the cost of

executing an instrumentation probe to record the coverage information. The second is the

cost of determining where to place probes, i.e., planning. This allows for the construction

of a simple mathematical model to describe the cost of testing, Ctest:

Ctest = Cprobe × Nprobes + Cplan

where, for a given technique, Cprobe is the cost of a probe, Nprobes is the number of probes

hit during execution, and Cplan is the cost of planning.

Table 5.7 shows the models applied to three branch coverage techniques implemented

in Jazz: Static, Static Agrawal, and DDST. The first column represents the values of Cprobe,

the cost of a single probe. This value is dependent on several parameters. The runtime

cost of an instrumentation probe depends on the number of control-flow successors

and/or predecessors. This value is fairly small and low in variance in most structured
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Table 5.7: Models for Jazz’s three branch coverage techniques.

Cprobe Nprobes Cplan

Static Cstatic probe Profiled 0
Agrawal Cstatic probe α× Nstatic CAgrawal Plan
DDST Cdemand probe Profiled 0

programs. For SPECjvm98, the average number of successors per basic block is 1.3 with

a standard deviation of 2.0. This allows for a single value to be used for all programs.

Another aspect of probe cost is the implementation of a probe and the architectural effects

of that choice. Demand-driven probes are based upon self-modifying code and static

probes are inlined into the executable code, possibly increasing instruction cache pressure.

With these issues in mind, the probe cost can be experimentally determined.

The dynamic probe count for Static and DDST must also be experimentally determined.

However, there are two possibilities for finding the dynamic probe count under Static

Agrawal Branch. The first possibility is to run the Agrawal test planner and determine

where probes should be placed. A run of the resulting code is not necessary since Agrawal

simply uses a subset of Static’s probes. The results from Static can be filtered to include

only those instrumentation probes that Agrawal would keep.

While this is feasible and will give an exact answer for Agrawal, it increases the

amount of work that must be done in the HST Planner, which makes it more difficult to

amortize the cost. As shown in Table 5.1, the increase in runtime for Static Agrawal is

attributable to the cost of test planning since the Static instrumentation probes are used,

and will have the same or fewer dynamic executions.

Instead of doing the work of Agrawal’s algorithm in the HST Planner, the expected

reduction in dynamic probes is computed by scaling the dynamic probe count in Static

Branch by a factor α. This constant can also be experimentally determined.

While the HST Planner avoids the work of planning for Agrawal, test planning is still

a source of runtime delay, and thus it must be a component of the model. As shown in

Figures 4.9 and 4.10, the cost of planning for Static or DDST is not a significant source of
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1: if Nstatic > ρ× Ndemand then
2: do demand(m);
3: else if α× Nstatic × Cstatic > AgrawalPlannerCost(m) then
4: do agrawal(m);
5: else
6: do static(m);
7: end if

Algorithm 5.1: HST Planner

overhead and can be ignored. However, the overhead of Agrawal’s algorithm is significant

enough that it must be considered to accurately choose when the technique will be the

best to apply. Agrawal’s algorithm is quadratic in the number of edges in the CFG of the

test region, yielding the model:

CAgrawal Plan = k× Edges2 + c

where k is a constant representing the amount of work done for each edge and c is an

additional constant overhead.

5.3.2 The HST Planner

The HST Planner determines how best to instrument each method encountered in the

profiling run. It is shown in Algorithm 5.1. Line 1 determines when it is appropriate to

use DDST from the relative cost of a single demand probe to a static probe, ρ = Cdemand
Cstatic

. If

the savings are at least 1
ρ × Nstatic static probes, then the planner predicts that the method

m will perform best with DDST.

If DDST will not save enough dynamic probe executions to recoup the cost of the

more expensive probes (compared to static), the planner chooses between static and static

with Agrawal’s reduction algorithm. Line 3 uses the model of the cost of the Agrawal

planner and compares that to the anticipated reduction of dynamic probes via the factor α.
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If the cost of the additional planning can be recouped by the reduction of probes, then

the planner chooses Agrawal’s technique for m.

If both DDST and Agrawal are too costly, for example in a method that is invoked

only once or has a very complex CFG, the HST Planner chooses the Static technique.

5.3.3 Test Specification

The HST Planner constructs a test specification for each method encountered in the

execution of the profile run. However, because the profile run’s input is small, there

may be methods that a full run encounters that were not part of the profile. For these

methods, the plan contains a default rule that instruments unprofiled methods via the

static technique. Static is chosen for two reasons. First, it is the best method in the

majority of cases, and second, its planning cost is low.

Figure 5.8 shows an example test specification for compress. Each method encountered

in the profile of the program is listed with the test technique to perform. The final line

uses a wildcard to instrument any unseen methods using Static.

5.4 INSTANTIATING THE MODEL FOR JAZZ

The model has several parameters (shown in Table 5.8) that must be experimentally

determined to decide for a method what test technique to apply. The relative cost of

a DDST instrumentation probe versus a static probe is necessary to determine if the

reduction in dynamic probe count is enough to justify using the more expensive DDST

probe. Agrawal’s algorithm also allows for a reduction in dynamic probe count by

allowing for some coverage to be inferred rather than directly recorded. However, the

cost of Agrawal’s planner is high. To decide if Agrawal is the right choice, an estimate of

the reduction is necessary and an accurate model of planner cost must be made.
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spec.benchmarks._201_compress.Decompressor$De_Stack:is_empty:DEMAND_BRANCH
spec.benchmarks._201_compress.Input_Buffer:readbytes:DEMAND_BRANCH
spec.benchmarks._201_compress.Compressor$Hash_Table:clear:DEMAND_BRANCH
spec.benchmarks._201_compress.Compressor:cl_block:DEMAND_BRANCH
spec.benchmarks._201_compress.Harness:inst_main:STATIC_BRANCH
spec.benchmarks._201_compress.Input_Buffer:getbyte:DEMAND_BRANCH
spec.benchmarks._201_compress.Harness:fill_text_buffer:STATIC_BRANCH
spec.benchmarks._201_compress.Decompressor:<init>:STATIC_BRANCH
spec.benchmarks._201_compress.Compressor:<init>:STATIC_BRANCH
spec.benchmarks._201_compress.Compressor:output:DEMAND_BRANCH
spec.benchmarks._201_compress.Decompressor:decompress:STATIC_BRANCH
spec.benchmarks._201_compress.Decompressor:getcode:STATIC_BRANCH
spec.benchmarks._201_compress.Decompressor$Suffix_Table:init:DEMAND_BRANCH
spec.benchmarks._201_compress.Output_Buffer:writebytes:DEMAND_BRANCH
spec.benchmarks._201_compress.Code_Table:clear:DEMAND_BRANCH
spec.benchmarks._201_compress.Main:runBenchmark:STATIC_BRANCH
spec.benchmarks._201_compress.Compress:spec_select_action:STATIC_BRANCH
spec.benchmarks._201_compress.Harness:run_compress:STATIC_BRANCH
spec.benchmarks._201_compress.Compressor:compress:DEMAND_BRANCH
spec.benchmarks.**:=all:STATIC_BRANCH

Figure 5.8: Test specification for compress from a size 1 profile run.

Table 5.8: Parameters for the HST models.

Parameter Description Origin in the Model

α Reduction in dynamic probe count due
to Agrawal

Experimentally Determined
or Profiled

ρ Relative cost between Static and DDST
probe

Experimentally Determined

Cstatic Cost of a static probe Experimentally Determined

Cdemand Cost of a DDST probe Experimentally Determined

CAgrawal Planning Predicted cost of Agrawal Planning Modeled or Experimentally
Determined

Nstatic Number of Static probes executed at
runtime

Profiled

Ndemand Number of DDST probes executed at
runtime

Profiled
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Table 5.9: Costs incorporated into the HST model.

Static Probes Demand Probes Agrawal Probes α

check 67,310 60,290 56,887 15.5%
compress 1,034,903,676 48,482,793 994,151,120 3.9%
jess 253,190,572 11,435,239 187,395,337 26.0%
db 130,245,027 5,790,123 104,241,726 20.0%
javac 145,958,252 21,274,800 132,249,797 9.4%
mpegaudio 687,948,449 7,903,815 609,012,496 11.5%
jack 31,310,790 10,178,424 30,608,518 2.2%

Average 12.60%

5.4.1 Instrumentation Probe Cost

The cost of instrumentation probes was explored in Section 5.1.1. Table 5.4 showed the

average time necessary for a single probe in Static and DDST, as well as ρ, the relative

cost of a DDST probe to a Static one. The amount of time spent executing instrumentation

probes can be estimated from the number of probes hit times this cost. Table 5.9 shows the

number of Static, DDST, and Static Agrawal probes executed on SPECjvm98. Alternatively,

ρ can be used to determine if there have been enough dynamic probes saved by DDST to

choose it over Static.

5.4.2 Agrawal Probe Reduction & Planning Cost

The model also needs to predict the improvement in dynamic probes as a result of

applying Agrawal’s algorithm. The last column of Table 5.9 shows α, the average reduction

in dynamic probes via Agrawal’s algorithms. The reduction varies significantly, from

only 2.2% in jack to 26% in jess. On average, there is a 12.6% reduction.

Ideally, a model for computing α from a static property of a test region would be

incorporated into the HST Planner. However, α does not correlate well with the number

of nodes or edges in a test region, as is shown in Figure 5.9. To better see the trend, an

outlier corresponding to a method that had 600 edges was removed from the data prior

to generating the plot. Without a model to predict the value, the average, α = 12.6, is a
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Figure 5.9: α does not correlate well with edges or nodes.

reasonable value to use.

Any reduction in probes comes at the increased cost of planning due to the amount

of control-flow analysis that Agrawal’s algorithm requires. Since the Agrawal planner is

quadratic in the number of edges, a simple regression model can be created to predict the

cost of planning from the observed costs. To determine the cost of planning, the cost of a

baseline uninstrumented run was subtracted from a run of the program without inserting

instrumentation. The resulting time of planning was fit using a regression model in the

R software package [66]. The resulting formula is:

CAgrawal Plan = 134967× Edges2 + 12732371

The correlation is R2 = 0.9951 and the result is in nanoseconds. The data and regres-

sion line are shown in Figure 5.10. This equation forms the implementation of the

AgrawalPlannerCost method in the HST Planner shown in Algorithm 5.1.
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Figure 5.10: Regression curve for the cost of Agrawal planning.

5.5 EVALUATION

To determine the effectiveness of HST in improving the runtime performance of branch

testing, I implemented the HST Planner and used the resulting HST Plan to drive Jazz

to perform branch coverage testing on SPECjvm98. The experimental design for these

results is identical to the one presented in Section 4.3 for DDST.

5.5.1 Overhead

Figure 5.11 shows the performance of HST on SPECjvm98. These benchmarks have three

input sizes, 1, 10, and 100, with the largest being the default full run. To generate the HST

Plan, each benchmark was run with the counting instrumentation probes to collect the

number of dynamic probe executions for DDST and Static.

The HST Planner took this profile and used ρ = 18.2 for the relative cost of a DDST

probe to a Static one and α = 12.6 for the dynamic probe reduction from Agrawal. It

produced a plan for each method based on the results of the model.

Figure 5.11 compares two runs of HST to Static and DDST, as well as against the
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Figure 5.11: Results for a size 1 and size 10 profile run.

average-driven search. Uniform application of Agrawal is omitted since it never is the

best technique. The two runs of HST are profiled on the size 1 and the size 10 inputs

respectively, and the resulting HST Plan is run on the full size 100 input.

The most improvement from using HST can be seen in jess. This benchmark is an

expert system that solves logic problems using rule-based inference. The HST Planner

selects DDST for several methods that deal with rule lookup and filtering. These actions

are frequently executed and loop-intensive. However, the source code commonly contains

labeled break and continue statements that result in stranded blocks—where Static

performs best. The mix of techniques allows each method to get the best-suited test

technique.

In every benchmark except check and jack, HST is better than uniformly doing either

Static or DDST. The short runtime of check and sensitive GC interaction make it a poor

benchmark to judge HST on. The model does not account for GC effects. The result of

average-driven search being the same as Static shows that choosing Static uniformly is
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Table 5.10: Frequency of the test techniques chosen by HST.

Size 1 Size 10

DDST Static Agrawal Unseen DDST Static Agrawal Unseen

check 6 41 0 32 6 41 0 32
compress 10 9 0 23 10 9 0 23
jess 54 47 0 335 55 47 0 334
db 3 15 0 9 4 13 0 10
javac 30 125 0 587 175 190 0 377
mpegaudio 58 24 0 119 59 24 0 118
jack 87 58 0 121 97 48 0 121

best—any choice of DDST or Agrawal hurts overall performance. The result of HST on

jack is only slightly worse than the uniform application of Static.

HST even performs better than average-driven search in most cases, the exceptions

being check and compress. With compress, the overhead is only 2.2% over the average-driven

search results. Considering the amount of computational effort necessary to perform the

search, HST is a much better approach that gives results on par at worst, and frequently

better than average-driven search.

5.5.2 HST Plan

To achieve the results of the previous section, the HST Planner chose a mix of test

techniques to combine into a single test run. Table 5.10 shows a breakdown of those

choices. The generated plans from both the size 1 and size 10 runs are analyzed. For

the benchmarks check and compress, the plans are identical for both inputs. The biggest

change is in javac, where the number of unseen methods during the profile run nearly

halves. The remaining benchmarks have only a small variance between the two sizes.

The most noteworthy trend, however, is the lack of any choice of Agrawal’s technique.

As the results have shown, uniform application of Agrawal performs poorly due to the

increased cost of planning. This is an inherent drawback to using a small profile input to

do HST planning. Agrawal’s algorithm must be applied to the code of the full method,
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Table 5.11: Adding an individualized Agrawal reduction ratio.

Size 1 Size 10

DDST Static Agrawal Unseen DDST Static Agrawal Unseen

compress 10 8 1 23 10 7 2 23

but the smaller inputs make it unlikely to have a sufficient dynamic probe reduction to

recoup the cost of planning.

5.5.3 Agrawal Probe Reduction (α)

There are two hypotheses for why the HST Planner did not select Agrawal. One possibility

is that the Agrawal reduction, α = 12.6%, being the average across all methods in the

benchmark suite, was inappropriate to use for all methods or all programs. The other

factor is that the profile runs do not execute long enough for the reduction in dynamic

instrumentation probe count to amortize the cost of planning with Agrawal’s algorithm.

To test the impact of α on the test plans, a modified HST Planner was implemented

that took an additional profile as input. This profile contains the dynamic instrumentation

probe counts from Static Agrawal on a size 1 or size 10 profiling run, as was done for

the DDST and Static profiles. The modified HST Planner uses these results to compute a

per-method α, rather than using 12.6% uniformly.

The resulting test plans generated by the HST Planner are identical. In no case does

profiling an individual method to compute α lead to the planner selecting Agrawal for

that method.

This strongly suggests that the profile runs are just too short. To verify this, a run of

the HST Planner with α = 100 was performed. This value representsthe HST Planner

predicting that there will be no probes executed at runtime. The HST Planner will then

select Agrawal for any method where the cost of instrumentation with Static or DDST is

higher than the cost of Agrawal planning.

Running the HST Planner with α = 100, six of the seven benchmarks still do not
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Table 5.12: Results of using α = 100 on compress.

α Profile Overhead

12.6 Size 1 & Size 100 18.3%
100.0 Size 1 12.6%
100.0 Size 10 13.9%

change in the HST Plan for either the size 1 or the size 10 profile. The lone exception is

compress. The new HST Plan statistics are shown in Table 5.11. The size 1 profile adds

one use of Agrawal and the size 10 adds two uses. When the resulting HST Plan is run

on the full size 100 input, the overhead is reduced as shown in Table 5.12.

The four to five percent reduction in overhead shows that the introduction of Agrawal

into an HST Plan can considerably reduce the cost of branch coverage testing. However,

the cost of gathering the Agrawal profile as input to the HST Planner may outweigh any

benefit in practice.

Compared to the HST Plan for compress shown in Figure 5.8, the size 1 HST Plan

switches the Decompressor.decompress method from Static to Agrawal. The size 10

plan changes decompress as well and additionally switches Decompressor.getcode

from Static. The structure of decompress was described at the beginning of the chapter

as one of the three methods shown in Figure 5.1. It suits Agrawal’s technique perfectly: It

contains a stranded block that is in the hot path of the code and is never covered, which

is the situation where DDST performs poorly.

The getcode method is similar. It is called from the hot path of the decompression

loop to look up codewords out of the compressed file. It contains a check for end-of-file

(EOF) that is an If-Then stranded block that remains uncovered for every iteration until

EOF is encountered; too late for DDST to perform well. However, changing getcode

from Static to Agrawal causes a slight decrease in performance. This is unsurprising

because there is not actually a 100% reduction in instrumentation probes executed at

runtime.

Setting α = 100 and having performance improve for compress strongly suggests that
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Figure 5.12: Sensitivity of ρ.

the short profile runs are the reason the HST Planner never choosing Agrawal. The only

two methods selected are both part of the benchmark that has the highest iteration count

where the benefit of probe reduction can overcome the cost of Agrawal planning.

5.5.4 Probe Cost

When instantiating the model, ρ was calculated to be 18.2 by measuring the ratio on each

of the seven SPECjvm98 benchmarks and computing the average. To assess how good of

a choice this value was, I did a sensitivity study that varied the value of ρ from 0 to 50.

The results are shown in Figure 5.12. Note that the X-axis is not linearly scaled for values

less than one.

The value ρ = 0 represents a completely free DDST instrumentation probe and the

results correspond to running DDST on all methods as was shown in Table 5.1 and

Figure 5.5. Unity represents where the cost of a static probe and a demand-driven probe

are equal. This results in the HST Planner choosing whichever technique has the least
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Table 5.13: HST Planner cost in seconds.

Size 1 Size 10

Profile HST Planner Total Profile HST Planner Total

check 3.03 0.00 3.03 3.04 0.00 3.04
compress 5.86 0.00 5.86 6.80 0.00 6.80
jess 3.84 0.00 3.84 4.84 0.00 4.84
db 2.13 0.00 2.13 3.14 0.00 3.14
javac 6.18 0.00 6.18 9.46 0.00 9.46
mpegaudio 2.95 0.00 2.95 7.16 0.00 7.16
jack 5.27 0.00 5.27 7.03 0.00 7.03

instrumentation probes executed at runtime. DDST will never execute more probes than

Static as, in the worst case, the same basic blocks are instrumented. So any method where

even a single demand-driven probe is removed, the HST Planner chooses DDST for that

method. The same number of dynamic Static and DDST probe executions can result

from an instrumented method being executed exactly once or because the entire method

suffers from the stranded block problem with coverage never reaching 100%. The HST

Planner algorithm chooses Static over DDST in the case of a tie.

The values greater than one represent the situation where a demand-driven probe

is more expensive than a static probe. The trend stabilizes quickly for values greater

than about 10. Nearly any of these values would serve as an adequate choice for ρ.

The 18.2 value for ρ proves to be a good choice for the average relative cost of a DDST

instrumentation probe to a Static probe.

5.5.5 HST Planner Cost

Unfortunately, the improvement shown in Figure 5.11 does not come for free. For each new

HST Plan generated by the HST Planner, a profile containing the dynamic instrumentation

probe counts for DDST and Static (essentially a basic block profile in traditional profiling

situations) must be gathered. Although these profiles are collected on small input runs,

the cost of planning and special counting instrumentation still incurs overhead.

99



Table 5.14: Number of runs necessary to amortize HST planning cost.

Size 1 Size 10

DDST Static Agrawal DDST Static Agrawal

check 16 — 1 15 — 1
compress 1 1 1 1 1 1
jess 2 2 1 2 2 1
db 2 2 1 3 3 2
javac 1 17 1 1 77 1
mpegaudio 6 1 1 10 2 1
jack 2 — 1 2 — 1

Table 5.13 shows the cost of collecting the profiles on the size 1 and size 10 inputs.

For each of the two input sizes, the cost of planning is decomposed into two parts. For

the Profile column, a run of Jazz is timed that performs two operations: Each basic block

is instrumented to gather a frequency of execution and DDST is planned and executed.

The HST Planner column reports the time spent executing the HST Planner. There is

no measurable delay.

Finally, the Total column shows the full cost of planning, which incorporates the costs

of the other two columns. The time is reported in seconds. It ranges from 2.13 seconds

on a size 1 run of db up to 9.46 seconds for the size 10 run of javac.

The cost of HST Planning is done before a full testing run and contributes to the

overall time overhead for branch testing. For this work to pay off, the cost of planning

should result in a net speed up when testing over an entire test suite. Table 5.14 shows

the number of runs on similarly-sized test cases that would be necessary to completely

amortize the cost of planning.

Again, there are two sets of columns corresponding to the size 1 and size 10 profiles.

For each profile, Table 5.14 shows the number of runs of the full-sized (size 100) input

necessary to completely amortize the cost of HST Planning compared to naı̈vely running

each of the three individual test techniques. For example, using DDST on check requires

2.54 seconds whereas HST only needs 2.35 seconds, a savings of 0.19 seconds. However,
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Table 5.15: HST Planner with profiled α (cost in seconds).

Size 1 Size 10

Profile HST Planner Total Profile HST Planner Total

check 8.37 0.02 8.39 8.40 0.02 8.42
compress 7.38 0.01 7.39 8.30 0.01 8.31
jess 18.08 0.04 18.12 18.98 0.04 19.02
db 3.83 0.01 3.84 4.84 0.01 4.85
javac 37.34 0.10 37.44 51.18 0.17 51.35
mpegaudio 6.61 0.02 6.63 12.51 0.02 12.53
jack 62.99 0.06 63.05 64.56 0.07 64.63

profiling and the HST Planner took a total of 3.03 seconds to execute. Thus, HST needs⌈
3.03
0.19

⌉
= 16 runs to recoup the savings over just running DDST on all methods.

In four cases, HST did not improve on the uniform application of a single test

technique. These are indicated in the table with an em dash (—). In each case, the

HST Plan was unable to outperform the Static technique.

The number of runs necessary to amortize the cost of HST Planning ranged from 1

to 77, with 77 being a considerable outlier as the next highest value is only 17. For HST

to be beneficial, this number of runs must be a realistic value when compared to real

test suites. In a 2002 empirical study, Rothermel et al. explore the effectiveness of test

suite reduction on the Siemens programs with test suite sizes ranging from 1052–5542

test cases [58]. These test suites can be reduced, but too small of a suite may lose the

ability to detect faults. Practically, a test suite containing 77 test cases is reasonable to

detect bugs in any large or important program.

When Agrawal is added to the profile run, the cost of HST Planning increases, as is

shown in Table 5.15. The HST Planner now has a measurable overhead, but only takes a

fraction of a second. The significant increase is the cost of profiling, which takes up to

twelve times longer in the case of jack. The increase is a direct result of the additional

step that is required in the profiling phase: Agrawal’s technique must be run on each

method’s CFG and the result input into the HST Planner. No additional instrumentation
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is necessary as the resulting Agrawal plan is a subset of the Static instrumentation probe

locations, and the dynamic executions of those probes will be identical for both Agrawal

and Static.

The maximum number of full-sized runs to amortize the HST Planner cost rises to 101

for javac. If profiling α as part of the HST Planner yielded any benefit, this is still probably

a reasonable size for a test suite. However, the actual results show that there is no change

in the HST Plans, and so HST Planning with a profiled α should not be done.

5.6 SUMMARY & CONCLUSIONS

The higher cost of DDST instrumentation probe versus a Static one is a result of multiple

factors. DDST probes are larger in size and instruction count and do more work at

runtime to insert and remove probes. Modifying a stream of instructions resulted in

instruction cache and DTLB misses. The average probe in DDST is 18.2 times as costly as

the average Static one. This cost is compounded by the stranded block problem, where

the removal of probes is prevented.

The results show that no single test technique across multiple programs, or even

multiple methods in the same program, performs best overall. A reasonable solution to

this problem could match the strengths of each technique to the methods on which it

will perform best. Unfortunately, it is generally the case that attempting to determine

which technique to use a priori is impossible. Very similar methods may exhibit different

runtime behaviors depending upon their inputs and result in different techniques being

appropriate.

An exhaustive average-driven search showed that there frequently was a performance

improvement from mixing multiple test techniques into a single run. However, the search

time was prohibitively long and did not always outperform the uniform application of a

single test technique.

An alternative, Profile-driven Hybrid Structural Testing (HST), was proposed based

upon two premises: First, the test techniques can be modeled to a reasonable degree of
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accuracy and, second, that a profiling run on a small input can realistically be used to

predict the runtime behavior of a much larger test case. The models of the test techniques

captured the reduction in dynamic instrumentation probes executed and the relative cost

of the probes used for each technique. Additionally, the model incorporates the cost of

planning when significant, as in the Static Agrawal branch coverage technique.

The results of this profile run are combined with the instantiated models to form the

HST Planner, which produces a HST Plan. The SPECjvm98 benchmarks were profiled

and HST Plans were created. The full runs of each benchmark were then instrumented

using this plan. The results show that HST improves upon the naı̈ve application of a

single test technique an average of 48% versus Static and 56% versus DDST. The cost of

profiling is small and can be amortized quickly as part of a test suite.

The use of HST resulted in a mix of test techniques that performed better than or

on par with the average-driven search, but reduced the time spent determining that mix

from over 100 hours to only a few seconds.
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6.0 TEST SUITE-CENTRIC STRUCTURAL TESTING

The profile run for HST successfully allows the HST Planner to determine a priori

whether to apply Static Branch or Demand Branch to a test region based solely on the

dynamic instrumentation probe reduction. However, Static Agrawal was never chosen

due to the high cost of planning. This is evidenced by manipulating α, the percentage

reduction in dynamic probes that HST predicts. Even when α was set to 100%, meaning

that no probes are predicted to be executed at runtime, only two methods in compress

saved enough instrumentation probe executions to amortize the cost of Agrawal planning.

HST’s performance, even without Agrawal, was overall better than the uniform appli-

cation of any single test technique. However, the α = 100 results show that the addition

of Agrawal into the mix of techniques can improve testing performance significantly.

To choose Agrawal, the HST Planner must determine from the profile results that

sufficient dynamic probe executions are eliminated to amortize Agrawal’s planning costs.

One way to obtain this is to use a longer-running profile input, but that is contrary to

the goal of HST Planning to be quickly amortized. Alternatively, there may be a way to

reduce the cost of Agrawal planning sufficiently that the HST Planner could be justified

in choosing it.

Figure 6.1 shows the overhead that would result if Agrawal’s planning was free. The

obvious improvement over the planning-included Agrawal aside, this version of Agrawal

finally shows the effect of reducing the number of instrumentation probe locations. It

outperforms Static in every case. Additionally, it is the best technique in all cases except

for mpegaudio, where DDST performs best.

Clearly then, Agrawal with improved planing shows promise as an individual tech-

nique and a choice in HST. Unfortunately, the algorithm does not lend itself to any
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Figure 6.1: Overhead of Agrawal without the cost of planning.

significant improvement in asymptotic runtime. Instead, it may be possible to exploit the

inherent iteration in the test process as was done with HST.

Agrawal in HST suffers from an additional problem beyond the small profile size. The

other issue is that, while the input is scaled down, the planner does not get a reduced

version the CFG of the test region. The profile run executed the full program code.

Each test case, regardless of its size, is run on the same program code. It is only when

the program is modified and a new round of testing begins, such as regression testing,

that the code may be changed and require a new test plan. If during the first run of

the program—such as HST’s profile run or any test case from the suite—the results of

Agrawal’s algorithm were saved, subsequent program runs could reuse the plan without

having to compute them anew. A sufficiently-sized test suite should once more allow for

the cost of populating this test plan cache to be amortized.
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Figure 6.2: Cached test plans can be reused across the test cases in a suite.

6.1 TEST PLAN CACHING FOR STRUCTURAL TESTING

Figure 6.2 shows an overview of Jazz modified to support Test Plan Caching (TPC), the

saving and loading of test plans. A test planner is modified to support loading a test plan

from a file in addition to computing it at JIT compile-time. The saved test plans reside in

a test plan cache.

When a test region is about to be instrumented, the test planner examines the cache to

find if there is a saved plan for the given region. If there is not, the plan is computed and

saved into the cache. If an appropriate plan exists, it is loaded and the planner uses the

loaded plan to place instrumentation. The test planner must also allocate the appropriate

data structures to record coverage and drive the runtime behavior of the instrumentation

probes.

A “hit” in the test plan cache is possible even if the test region has been slightly

altered. Planning depends upon the structure of the CFG of the region, and the addition

or removal of statements that do not alter the control flow of a region will not result in a

different test plan (changes to the structure may lead to incorrect coverage being recorded

or inferred). This means that a test plan could be reused as long as the CFG is isomorphic

to the one on which the saved test plan was generated. However, graph isomorphism

is in NP [27] and recomputing plans for any changed method may be faster.
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6.2 IMPLEMENTING TEST PLAN CACHING IN JAZZ

Test plans in Jazz are represented by two Java data structures. First is a list of the seed

set. The second is a table that holds a counter for each edge to cover as well as an

identifier to determine which branch was taken at runtime. This table for Static Branch

and Static Branch Agrawal was shown in Figure 3.7. Each of these data structures in Jazz

supports Java’s object persistence library, referred to as serialization [64].

The first version of TPC was built for Static Agrawal using Java’s intrinsic serialization.

Agrawal was chosen because it presents the best opportunity for TPC to make a difference.

The test plan for the reduced set of edges to instrument was saved to the cache and support

was added to load saved plans on subsequent runs of Jazz, eliminating the need to rerun

the Agrawal planner.

This new version of Jazz was run on SPECjvm98 to evaluate its overhead. A prelimi-

nary run of all seven benchmarks on the full size 100 inputs was made to allow for the

cache to be populated with test plans. With the cache filled, the benchmarks were rerun

according to the experimental design detailed in Section 4.3.

The results are shown in Figure 6.3. In each case, TPC has considerably reduced the

cost of planning to where a cached Agrawal is competitive with the Static technique. In

four of the benchmarks, compress, jess, db, and mpegaudio, TPC outperforms Static. The

remaining three benchmarks have a large number of methods or a short running time.

Higher overhead in these benchmarks indicates that Java’s deserialization is expensive,

and comparison to the “free planning” Agrawal shows that there is significant room for

improvement.

6.2.1 Saving Test Plans with planspec

To avoid the overhead of using Java’s serialization, a custom language for expressing

saved test plans was developed called planspec. The planspec language is designed to

express the parts of a test plan sufficiently well to reconstruct the test plan, but must

avoid storing any runtime-dependent values such as addresses. A planspec plan consists
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Figure 6.3: Loading a saved plan for Agrawal using Java’s serialization.

of two parts. The first part saves the set of seed probes for the test region and the second

part encodes the steps necessary to recreate a test plan in memory.

Table 6.1 shows the commands of the planspec langauge. The SeedSet command

introduces an arbitrary-sized list of the locations that must be seeded. For Agrawal, the

seed set is the same as the location of all instrumentation probes necessary to record

coverage according to the algorithm. The Table command indicates the size of the test plan

table. The table will have probes number of rows. Each edge to be tested has an identifier

and a counter in which to record coverage at runtime. This identifier is the value that the

predecessor probe has placed in the previously hit block variable and uniquely identifies

the control flow edge taken to a given instrumentation probe.

The remaining two commands direct how to fill in the test plan table. The number of

predecessors of each basic block is set using the setNumPreds command. This also allows

the planspec loader to skip the appropriate space to accommodate the storage necessary

for the identifier and counter storage. The setPredAddr command sets the identifier field
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Table 6.1: Commands in planspec.

Command Parameters Description

SeedSet . . . Set of basic blocks that will be seeded with
probes.

Table probes edges Construct a table with probes rows and stor-
age for edges address and coverage counters.

setNumPreds row numPreds Define the size of row row to be numPreds.

setPredAddr row pred index Set Table[row][pred] to point to the address
of Table[index].

so that the control flow edge to the current probe can be determined at runtime.

An example of planspec for Compressor.compress from compress is shown in

Figure 6.4. There are 20 basic blocks to instrument, including the sentinel exit block

labeled as −2. These 20 blocks are connected by 15 edges. The method has an additional

16 edges that can be omitted from the planspec because Agrawal’s technique is able to

infer their coverage rather than needing to record them directly.

6.2.2 Evaluation

The loading of saved test plans using planspec (TPC-planspec) is compared to Java

serialization (TPC-serialization) and the original three branch coverage techniques in

Figure 6.5. TPC-planspec has lower overhead in all seven benchmarks compared to

TPC-serialization. However, in no case has TPC-planspec outperformed Static when

TPC-serialization did not. TPC is the best technique for jess and ties for best with DDST

in compress and db. However, once again there is no one technique that is consistently the

best across all of the programs.

In jack, javac, and check, TPC-planspec significantly reduces the cost of plan loading

over TPC-serialization. Since check runs so quickly, the difference is likely due to the

initialization cost of using Java’s serialization library. The other two programs have the

most edges and nodes in their CFG, and the resulting plans are large. The size of the
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SeedSet 280 136 276 227 179 131 269 28 118 258 163 22 158 61 197 149
146 192 -2 283
Table 20 15
setNumPreds 0 3
setNumPreds 1 0
setNumPreds 2 0
setNumPreds 3 1
setNumPreds 4 0
setNumPreds 5 0
setNumPreds 6 0
setNumPreds 7 0
setNumPreds 8 0
setNumPreds 9 0
setNumPreds 10 1
setNumPreds 11 1
setNumPreds 12 1
setNumPreds 13 2
setNumPreds 14 2
setNumPreds 15 3
setNumPreds 16 0
setNumPreds 17 0
setNumPreds 18 1
setNumPreds 19 0
setPredAddr 0 0 6
setPredAddr 0 1 9
setPredAddr 0 2 2
setPredAddr 3 0 14
setPredAddr 10 0 15
setPredAddr 11 0 7
setPredAddr 12 0 15
setPredAddr 13 0 4
setPredAddr 13 1 8
setPredAddr 14 0 5
setPredAddr 14 1 17
setPredAddr 15 0 17
setPredAddr 15 1 16
setPredAddr 15 2 1
setPredAddr 18 0 19

Figure 6.4: Saved planspec for Compressor.compress in compress.
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Figure 6.5: Loading a saved plan for Agrawal.

Table 6.2: Space necessary for planspec plans.

Plan Size

check 19.3 KB
compress 5.2 KB
jess 39.4 KB
db 7.1 KB
javac 143.2 KB
mpegaudio 19.4 KB
jack 63.3 KB

Total: 297.0 KB
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1: if Nstatic > ρ× Ndemand then
2: do demand(m);
3: else
4: do tpc agrawal(m);
5: end if

Algorithm 6.1: HST Planner with TPC Agrawal

saved planspec for each program is shown in Table 6.2. These results demonstrate that

planspec should be used over Java’s serialization.

Overall, the amount of space necessary for the plan cache is small. As was shown

in Figure 6.4, planspec is text-based and human-readable. If space is a concern, a more

compact representation could be used.

6.3 INCORPORATING TEST PLAN CACHING INTO HST

Agrawal was never chosen by the HST Planner due to its high cost and the short-lived

profiles. However, TPC reduced the cost of planning to be on par with Static, and so

caching Agrawal plans could allow for the test technique to be chosen in an HST Plan.

If TPC has truly made loading a saved Agrawal planspec as inexpensive as planning

Static, then a new model for Agrawal could be constructed where the cost of Agrawal

planning is zero as it was for Static and DDST. With no planning cost, the choice among

the three techniques comes down to dynamic probe executions. DDST has the more

expensive instrumentation probes, but Static and Agrawal share the same probe. Since

Agrawal’s algorithm finds a subset of edges in the test region, the number of dynamic

probe executions for Agrawal can never exceed the total from Static. It can only be the

same or less.

From this observation, it follows that the HST Planner should only choose between

DDST and Agrawal with TPC and Static should be eliminated. The modified HST Planner
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Figure 6.6: HST with Agrawal-TPC instead of Static for profiled methods.

incorporating TPC is shown in Algorithm 6.1. Line 1 still computes the tipping point

between the more expensive DDST probes and how many dynamic executions were saved.

If that balance falls in DDST’s favor, it is chosen. However, if the original HST Planner

would have chosen Static, TPC Agrawal is selected instead.

Static still retains a function in the generated HST Plan. For any method that is not

encountered in the profile run, the HST Plan picks Static over Agrawal due to the cost of

planning when no saved plan exists.

Figure 6.6 shows the result of this modified HST Planner. As with the α = 100

experiment, compress again benefited from the inclusion of Agrawal. However, in five of

the other six programs, performance degraded compared to the original HST Plan. For

mpegaudio, the results are mixed. For the size 1 input, the HST+TPC Plan is very slightly

better, but for size 10, the reverse is true.

Both compress and mpegaudio are loop-intensive programs and Agrawal’s reduction

can benefit a test region in a high trip count loop with an uncovered stranded block. The
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Figure 6.7: Regression line for the cost of loading an Agrawal plan in planspec.

other five programs are being delayed by TPC. Since the probes are the same cost and

there are fewer probe locations that translate into a reduced dynamic execution cost, this

overhead results from the loading of the test plan.

To address this, the cost of planning Agrawal needs to be brought back into the model

as the cost of loading the planspec for a method.

6.3.1 Modeling planspec Loading

To model the cost of TPC plan loading, a procedure is used similar to the one in Sec-

tion 5.4.2 that determined the cost model for Agrawal test planning. First, the test plan

cache was populated with the planspec entries necessary for a full run of the benchmarks.

The small amount of space necessary for the cache is reasonable enough for it to reside in

RAM, which gives better and more predictable performance than plans stored on disk.

Jazz with TPC loading was run on the seven benchmark programs and the amount

of time spent loading the planspec and creating the necessary runtime data structures

was recorded. The data was loaded into the R statistical programming environment
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1: if Nstatic > ρ× Ndemand then
2: do demand(m);
3: else if α× Nstatic × Cstatic > AgrawalTPCCost(m) then
4: do agrawal(m);
5: else
6: do static(m);
7: end if

Algorithm 6.2: HST+TPC Planner with modeled planspec loading.

Table 6.3: Plan for compress under HST+TPC modeled planspec with α = 12.6.

Size 1 Size 10

DDST Static Agrawal Unseen DDST Static Agrawal Unseen

compress 10 7 2 23 10 7 2 23

and regression was performed. The resulting scatterplot and regression line is shown in

Figure 6.7.

Unlike with planning, loading planspec is linear in the number of edges. The formula

for the model is:

CAgrawal TPC = 298324× Edges + 1338020

The correlation is only R2 = 0.05199 due to the large outliers. However, the apparent

quality of fit is sufficient, if a slight overestimate of the true cost in the majority of cases.

With the model, the HST Planner now uses Algorithm 6.2 in a similar fashion to the

original HST Planner.

6.3.2 Evaluation

The HST Planner with TPC-planspec and modeled cost of loading (HST+TPC+model)

was run and HST Plans were generated. The Agrawal reduction ratio, α, was set to the

average 12.6% value and the cost of loading a planspec plan was predicted according to
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Figure 6.8: Overhead using HST+TPC with planspec loading modeled.

the model described in the previous section. In six of the seven SPECjvm98 programs,

the HST+TPC+model plan was identical to the HST Plans detailed in Table 5.10 of

Section 5.5.2. Once again, the only exception was compress.

In compress, two methods were selected for Agrawal TPC-planspec instead of Static:

Decompressor.decompress and Decompressor.getcode. These were the two

methods chosen by the original HST Planner when α = 100.

Figure 6.8 shows the overhead when the resulting plans are executed on the full

(size 100) inputs. For compress, HST+TPC+model reduces overhead with the inclusion

of the two Agrawal-instrumented methods. The other methods are unchanged over the

results of the original HST.

6.3.2.1 Profiled α For TPC, a per-method profiled α can be obtained with no additional

overhead due to the profile runs performing Agrawal planning to pre-populate the test

plan cache.
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Table 6.4: Number of runs necessary to amortize HST+TPC+model+alpha planning.

Size 1 Size 10

DDST Static Agrawal DDST Static Agrawal

check 42 — 2 46 — 2
compress 1 1 1 2 1 1
jess 8 8 2 8 8 2
db 4 3 2 4 4 2
javac 4 377 1 6 518 2
mpegaudio 11 2 1 17 3 2
jack 16 — 2 17 — 2

The HST+TPC+model Planner was run with a profiled α and new plans were gener-

ated. Once again, a plan different from HST was generated only for compress. The only dif-

ference was that Decompressor.decompress was selected for Agrawal TPC-planspec.

The other method selected for Agrawal with α = 12.6, Decompressor.getcode, re-

verted to Static instrumentation.

The results from running the planner with a profiled α are shown in Figure 6.8 labeled

as HST+TPC+model+alpha. For compress, the profile run on the size 10 input is now the

best overall technique for branch coverage. The other benchmarks remain unchanged

over HST.

Saving the Agrawal plans increases the cost of the profiling phase. With only compress

showing a performance gain over the original HST, this extra cost of saving plans, plus

the mandatory run of the Agrawal planner, translates into more full-sized test case runs

necessary to amortize the cost of planning. The number of runs of the size 100 inputs

needed is shown in Table 6.4.

For six of the seven benchmarks, the number of executions remains reasonable. Any

test suite is likely to have sufficient test cases to cover the cost of profiling. However, on

javac, the improvement over Static is so slim that the number of runs has increased to 317

when a size 1 run is profiled and to 518 with size 10 input. This is a direct result of the

cost of saving the plans as javac has the most methods (742) by almost a factor of two over
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the next largest benchmark. Even using the RAM disk, the cost of file I/O in Java is high.

6.4 SUMMARY & CONCLUSIONS

This chapter sought to address two issues. First, could the inherent repetition in testing

an entire suite’s worth of test cases be exploited to improve testing performance, and

second, could Agrawal’s technique be made less expensive enough to be chosen as part

of an HST Plan.

A suite of test cases are all run on the same binary in a given testing run. Thus, any

planning done for a region on the first test case will still be valid on the last test case.

A test plan is dependent only on the structure of a method and thus can be cached for

subsequent uses after it is initially computed.

The most promising technique to apply Test Plan Caching (TPC) to is Agrawal as the

plans were by far the most expensive to compute. Two techniques for saving a test plan

were explored: Java’s serialization library and planspec, a new language for persisting test

plans. Experiments showed that Java’s deserialization was more expensive than loading a

planspec plan.

With planspec loading and saving implemented in Jazz, HST was revisited to attempt

to incorporate Agrawal. Since Agrawal’s algorithm will never result in more dynamic

probe executions that Static, and since they share the same probe, it was theorized that

Agrawal with TPC could simply replace Static for any method seen in the profile run

where DDST was predicted to be slower. Static would still be used on unseen methods

due to the high cost of planning at runtime for Agrawal. However, this modified HST

did not perform well. The cost of loading a planspec plan was still more expensive than

computing Static’s test plan.

A model for the cost of loading a planspec plan was developed and incorporated

back into HST as a replacement for the cost of Agrawal Planning. New HST Plans were

generated and only two methods in compress were chosen to be tested with Agrawal’s

technique. These methods were the same two selected by HST when α = 100 was tested.
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HST with TPC and modeled planspec loading results in a reduced runtime on compress

and the same overheads as HST in the other six benchmarks.

Since the profiling phase must now pre-populate the test plan cache with Agrawal

plans, the planner can profile individual method α values with no additional overhead.

This results in one less selection of Agrawal for compress but results in a slight improvement

over using α = 12.8. Accordingly, HST+TPC+model+alpha replaces the original HST as

the best technique for low-overhead branch testing.

With the cost of the profiling phase now including Agrawal and planspec saving, the

number of full-sized test cases necessary to amortize planning is increased. In six of the

seven benchmarks, the number of runs is small and any test suite is likely to contain

sufficient test cases. For javac, however, the improvement over Static is small and the

number of methods that must have plans saved is high. However, as was discussed in

Section 5.5.5, real-world test suites may easily contain more than enough test cases to

result in a net improvement.
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7.0 CONCLUSION AND FUTURE WORK

Software testing is a fundamental and useful part of the software development

process. Determining the adequacy of a set of test cases that comprise a test suite is

useful to understanding how thoroughly the cases exercise the code and expose bugs. A

common way of determining the quality of a test suite is by coverage. Coverage reports

for some structure such as a statement (node) or branch if it has been executed on a

particular run of a program.

Traditional tools for collecting coverage information depend upon compiler or load-

time insertion of instrumentation that remains throughout the entire execution of a

program, incurring unnecessary overhead after coverage has been recorded.

This dissertation presented novel frameworks and techniques that allow for more

efficient collection of branch and node coverage information. Jazz provided a framework

on which to build and research branch and node coverage techniques, including Demand-

driven Structural Testing (DDST), where transient instrumentation probes are inserted

and removed during execution. DDST was the best technique for node coverage testing,

being 19.7% faster than Static.

However, no single test technique is the best over all programs, or even all methods in

a program. To address this, Profile-driven Hybrid Structural Testing (HST) was developed

to match the best test technique to a particular method based upon a small profile run.

The combination of multiple test techniques into a single run reduced the overhead of

testing compared to a single test technique by an average of 48% versus Static and 56%

versus DDST. Planning the combination of techniques to use took only seconds compared

to over 100 computer-hours spent doing average-driven search.

HST never chose the use of Agrawal’s static probe minimization algorithm due to
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the high cost of planning. Inherent in the testing process is the repetition of running a

program on each test case in a test suite. This repetition tests the same code, and thus the

planning information, which only depends on the structure of the code, can be reused.

Test Plan Caching (TPC) exploits this repetition and saves test plans for re-executions of

the program. TPC enables Agrawal’s reduction to be beneficial for long running code

with uncovered stranded blocks such as in the compress benchmark.

In some cases, collecting the profile and pre-populating the test plan cache can require

a large test suite with many re-executions. However, HST and TPC both can achieve

enough of a reduction in collecting branch coverage to make them a useful part of the

testing repertoire.

7.1 THREATS TO VALIDITY

The techniques presented in this thesis serve as a blueprint for efficient branch and

node coverage testing that is generally applicable to a wide variety of architectures,

programming languages, and runtime environments. Jazz’s implementation specifically

targets a Java JVM with JIT compiler executing on an Intel x86 processor. The experiments

were run on a single machine type so that comparisons between techniques could be

legitimately made. However, the performance of Jazz and the test techniques of this thesis

could be affected by different choices of architecture, language, runtime environment,

and multithreaded applications.

Intel’s processors efficiently support self-modifying code and are designed to perform

well despite effects on the cache hierarchy. An early experiment on an AMD processor

found that it had a more naı̈ve cache management policy, and thus, a single DDST

instrumentation probe was more costly. If architectural details make a single DDST probe

more costly than the experiments in this dissertation determined, the tipping point for

choosing DDST over Static or Static Agrawal would change. However, the sensitivity

study presented in Section 5.5.4 shows that the precise value of ρ does not greatly affect

the runtime performance, provided that the model accounts for a DDST probe being at
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least twice as expensive as a Static one. This effect is due to the stranded block problem as

DDST probes will likely either be removed on the first execution or will never be removed.

As long as the architecture allows for self-modifying code, DDST will perform well on

methods with early coverage and few uncovered stranded blocks.

Programming languages other than Java may present certain control flow structures

that Java does not support, such as a computed gotos and their corresponding indirect

branches. However, Java has labeled break and continue statements as well as exception

handlers that allow complex control-flow structures. Nevertheless, a CFG like the one

shown in Figure 4.1 is unlikely to be produced by a Java compiler from Java source

code. There are other compilers for languages like Scala [51] that produce Java Bytecode

and it is possible to write a program in Java Bytecode directly with a tool such as the

Jasmine assembler [42]. Using Jasmine, a valid Java classfile was created with the CFG

of Figure 4.1 and the stranded block analysis of the DDST test planner was successfully

verified on it.

The choice of Java as the targeted language also comes with a runtime environment,

the JVM. With the runtime present, test planning cost is exposed to the user much

the same as with other runtime code transformations such as register allocation. A

traditionally-compiled language such as C can incorporate the cost of planning as part

of compilation, but with a runtime environment, a balance must be struck between the

work done in planning versus the resulting improvement of that effort. The caching of

test plans between runs is a compromise between the challenges of doing analysis that

is visible to the user and the offline, compiler-based approach while still being able to

perform instrumentation at the machine code level.

Finally, DDST and threading interact in a number of ways. The previously hit

block variable of branch coverage testing must be stored as a thread local variable.

Additionally, probe insertions and removals must be done atomically, without any other

thread executing the instruction stream at the point of insertion or removal. This implies

locking the instruction stream with synchronization primitives, resulting in a reduction in

parallelism. Shared payloads must be ensured to be reentrant, especially for the stranded

block payload with its complex state. Finally, the definition of coverage must be clarified.
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Is the coverage of a branch in one thread sufficient or should that branch be covered

in all applicable threads? This will impact if the probe location table is a global shared

resource or a thread-local data structure. Bringing the techniques of this dissertation to

multithreaded applications will require further consideration as part of future work.

7.2 SUMMARY OF CONTRIBUTIONS

This dissertation has presented a number of contributions to the challenges of efficient

branch and node coverage.

1. The first research contribution is a framework for structural testing. The framework

consists of two parts, a formalized notation that expresses the actions necessary

for structural testing, and Jazz, a software framework that supports the convenient

implementation and evaluation of various structural testing algorithms.

2. Jazz provides facilities for interfacing with a Java JIT-compiler and Virtual Machine,

adding instrumentation, managing memory, and performing control flow analyses.

I demonstrated the usefulness of Jazz by implementing a library of tests, including

implementations of the traditional static, compiler inserted instrumentation probes for

branch and node coverage. Additionally, Agrawal’s algorithm for inferring coverage

is implemented and applied to both branch and node coverage.

3. Jazz also supports a language, testspec, that allows for the specification of how and

where to test. This allows multiple test techniques to be combined into a single testing

run.

4. This dissertation details a novel approach for structural testing using demand-driven

instrumentation (DDST). DDST uses instrumentation probes built from fast break-

points, allowing runtime insertion and removal of instrumentation. Both branch and

node coverage are implemented using DDST.

For branch coverage, DDST places instrumentation probes in basic blocks to record

edges at runtime. This dissertation details the algorithms and data structures necessary

to plan where to insert probes as well as the actions they take at runtime. A formal
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definition of the stranded block problem, where instrumentation probes may be

removed too early is provided, as well as a general solution with an optimized special

case.

5. Unfortunately, DDST did not always outperform the traditional static instrumentation.

With no one technique uniformly the best across programs or methods, this disserta-

tion provides Profile-driven Hybrid Structural Testing (HST), where a small profile

input is run with DDST and Static instrumentation. The reduction in dynamic probe

counts is used to predict which technique to use.

A model predicting the costs and benefits of each test technique was developed and

instantiated for Static Branch, Static Agrawal Branch, and DDST Branch. The high

cost of planning in Agrawal’s technique required development of an additional cost

model predicting the time spent planning with his algorithm.

6. Finally, this dissertation presented a way to exploit the inherent repetition of the

software testing process as each test case is provided to the same program. Test Plan

Caching (TPC) allowed for the saving and loading of test plans to avoid recomputation

on future runs.

To quickly save and load plans, a new language, planspec, was developed. Saving

and loading planspec plans proved to be better than directly serializing the internal

data structures due to Java’s serialization library’s high cost.

7.3 FUTURE WORK

While this dissertation presents an end-to-end solution for the efficient development,

specification, and usage of structural test techniques, there still remains many new

directions to explore as future work.

For Jazz, future directions could include extending the test library to include data-

flow coverage criteria such as definition-use coverage, where coverage records which

definitions of a variable reached a use. These additional techniques would help extend

the flexibility and generality of the framework beyond the current control-flow coverage

124



techniques. Jazz could also be ported to other JVMs to assess the low-level interfaces it

proves.

A major avenue of research for DDST would be to discover an improved solution to

the general stranded block problem. One possible approach would be to break up the

general case into small “patterns” that have improved, specialized solutions, as was done

for if-then stranded blocks. Eliminating the need for the anchor probes to remain until a

stranded block is completely covered may allow for DDST to be a better general-purpose

test technique and to be utilized more frequently in HST.

Other avenues of probe reduction could be explored as well, especially using runtime

information as might be available in a JVM. For instance, Agrawal’s algorithm often

presents a set of nodes or edges where only one out of the set needs to be covered to infer

the rest. Currently, which of the members of the set actually gets the instrumentation

probe is chosen essentially at random. However, combined with a profiling run—such as

the one for HST or the online profiling done for adaptive optimization—instrumentation

probes could be placed in regard to the hotness of a node or edge, thereby moving

statically-inserted instrumentation out of the critical path.

For HST, there may be other ways to predict the dynamic probe reduction than by

doing a profile run. For instance, machine learning techniques could be used to predict

the likely behavior of a test region. Challenges here revolve around what constitutes the

appropriate feature set to describe and predict the runtime properties of the test region.

New directions for TPC could include extending planspec to describe additional test

plans, such as for DDST. Another possibility would be to dynamically determine whether

recomputing a plan or loading a saved one is faster. For small methods with a simple

CFG, recomputation might be faster than the I/O and parsing necessary to load a plan.
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APPENDIX

BRANCH COVERAGE EXAMPLE

This appendix shows an end-to-end use of Jazz to perform DDST Branch Coverage testing

on compress for the Compressor.compress method. First, testspec is used to define the

test to be run:

spec.benchmarks._201_compress.Compressor:compress:DEMAND_BRANCH

Next, Jikes RVM is run with the testspec input:

rvm -I:compress.testspec SpecApplication _201_compress

When the method is called for the first time, the JIT-compiler emits machine code

and Jazz takes over to do test planning and instrumentation. The test planner for DDST

Branch decides where to place probes. It identifies four stranded blocks, including one

that is an if-then stranded block. The CFG for compress is shown in Figure A1. Each

node in the CFG is labeled with its starting bytecode index. The three regular stranded

blocks are blocks 139, 187, and 270, and are shaded light blue. The if-then stranded block

is block 153 and is shaded yellow.

The test planner examines each of the 21 nodes and, for every node, adds an action to

place a probe in the node’s control-flow successors. The planner also allocates space for

the 31 edge counters to record coverage. For each of the three regular stranded blocks,

an additional counter is allocated to indicate the coverage of the stranded block. For

these stranded blocks, additional actions are added to replace the anchor probes in the

predecessors of the stranded block and all of the block’s CFG siblings.

126



�

��

�� ��

���

���

�����

���

���

���

���

��	

��� ���

���

���

��	���

��	

���

Figure A1: CFG of Compressor.compress.
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Results for spec.benchmarks._201_compress.Compressor.compress():
806f5b0: | 7082706a | ff 74 24 20 ff | 2 | 5 | X ||

708270bd | 207 | 806f518: 1 | 7082711e | 255 | 806f51c: 1 | 7082704f | 1e4 | 806f59c: 1 |
7082704f | 1e4 | 806f598: 1 | 70826f9b | 35b | 806f598: 1 |

806f5f8: | 70826fca | ff 74 24 18 ff | 2 | 6 | X ||
70826ff6 | 396 | 806f520: 1 | 70826fe6 | 3ba | 806f524: 1 | 7082704f | 1e4 | 806f59c: 1 |
7082704f | 1e4 | 806f598: 1 | 70826fc4 | 256 | 806f59c: 1 | 70826fa7 | 2eb | 806f59c: 1 |

806f64c: | 70826fc4 | 6a 01 ff 44 24 | 1 | 2 | X ||
70826fca | 237 | 806f528: 1 | 70826fa7 | 2eb | 806f59c: 1 |

806f670: | 7082704f | ff 34 24 ff ff | 2 | 4 | X ||
70826fca | 237 | 806f530: 1 | 7082706a | 17e | 806f52c: 1 | 7082706a | 17e | 806f59c: 1 |
70826fca | 237 | 806f598: 1 |

806f6ac: | 70826eb6 | 6a 08 ff 74 24 | 1 | 1 | X ||
7082715c | 109 | 806f534: 1 |

806f6c4: | 7082715c | ff 74 24 20 58 | 2 | 9 | X ||
70826ef6 | 44b | 806f538: 1 | 70827193 | 226 | 806f53c: 1 | 70827028 | 2b5 | 806f5a0: 0 |
708270bd | 207 | 806f5a0: 0 | 70826eb6 | 396 | 806f5a0: 0 | 70826f74 | 3e6 | 806f5a0: 0 |
7082714c | 15f | 806f5a0: 0 | 7082713a | 1ee | 806f5a0: 0 | 7082711e | 255 | 806f5a0: 0 |

806f73c: | 70826e97 | ff 74 24 1c ff | 2 | 2 | X ||
70826eb6 | 396 | 806f540: 1 | 70826e82 | 48d | 806f544: 0 |

806f760: | 70826fa7 | ff 74 24 08 ff | 2 | 4 | X ||
70826fca | 237 | 806f548: 1 | 70826fc4 | 256 | 806f54c: 1 | 70826fc4 | 256 | 806f59c: 1 |
70826f9b | 35b | 806f598: 1 |

806f79c: | 7082714c | ff 74 24 20 ff | 1 | 2 | X ||
7082715c | 109 | 806f550: 1 | 7082713a | 1ee | 806f5a0: 0 |

806f7c0: | 708270bd | ff 74 24 20 58 | 1 | 1 | X ||
7082715c | 109 | 806f554: 1 |

806f7d8: | 70827028 | ff 74 24 20 58 | 1 | 1 | X ||
7082715c | 109 | 806f558: 1 |

806f7f0: | 70826f9b | ff 34 24 58 ff | 2 | 3 | X ||
70826fa7 | 2eb | 806f560: 1 | 7082706a | 17e | 806f55c: 1 | 70826fa7 | 2eb | 806f598: 1 |

806f820: | 70826e82 | ff 44 24 04 01 | 1 | 1 | X ||
70826e97 | 3e7 | 806f564: 0 |

806f838: | 7082713a | ff 74 24 20 59 | 2 | 4 | X ||
7082714c | 15f | 806f56c: 1 | 7082715c | 109 | 806f568: 0 | 7082714c | 15f | 806f5a0: 0 |
7082711e | 255 | 806f5a0: 0 |

806f874: | 70826ef6 | ff 74 24 20 ff | 2 | 2 | X ||
70826f9b | 35b | 806f570: 1 |70826f74 | 3e6 | 806f574: 1 |

806f898: | 70826f74 | ff 74 24 20 58 | 1 | 1 | X ||
7082715c | 109 | 806f578: 1 |

806f8b0: | 7082711e | ff 74 24 20 59 | 2 | 3 | X ||
7082715c | 109 | 806f57c: 1 | 7082713a | 1ee | 806f580: 1 | 7082713a | 1ee | 806f5a0: 0 |

806f8e0: | 70826ff6 | ff 74 24 20 58 | 2 | 4 | X ||
7082704f | 1e4 | 806f584: 1 | 70827028 | 2b5 | 806f588: 1 | 70826fe6 | 3ba | 806f520: 1 |
70826fca | 237 | 806f520: 1 |

806f91c: | 70826fe6 | ff 74 24 18 ff | 1 | 1 | X ||
70826ff6 | 396 | 806f58c: 1 |

806f934: | 70827193 | ff 74 24 20 ff | 0 | 0 | X ||
806f940: | 70826e3f | 6a 00 ff 44 24 | 1 | 1 | X ||

70826e97 | 3e7 | 806f590: 1 |

Figure A2: Coverage output from Jazz for DDST Branch.
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Next, the actions and counters of the test plan are assembled into a PLT. A dump of

the PLT is shown in Figure A2. The first number for each row is the address in memory

of the PLT row. The next field is the address of the basic block corresponding to the

PLT row. This is the location where the instrumentation probe has been placed. The five

bytes that follow are the original machine instructions the probe overwrites and that will

need to be replaced at runtime to remove the probe. Next are two one-byte numbers

that represent the amount of actions for the probe to perform. The first is the number of

coverage probes to place. The second is the total number of probes to place, including the

anchor count. The “X” represents a single byte that pads the record for cache alignment.

For each of the probes to place—anchor and coverage—there are three entries. First

is the address of where the probe should be placed. Next, the offset of the corresponding

trampoline is stored so that the probe can be constructed at runtime. Finally, there is a

pointer to the coverage counter for that edge (in a coverage successor) or the stranded

block counter (for an anchor).

After the PLT is populated, assuming pre-seeding of the entire method, a fast break-

point is placed at all 21 basic blocks. Jazz transfers control back to the JIT-compiler and

the method is executed the first time. The program continues executing, collective cover-

age whenever compress is called. When the program terminates, Jazz is notified and

displays the coverage information exactly as is shown in Figure A2. For each successor in

the PLT, the coverage counter’s value is shown as 1 for covered or 0 for uncovered.

The coverage information is post-processed to remove the artificial edges that the

anchor probes have created. This leads to an annotated output as is shown in Figure A3.

The CFG has the original edges (shown in black) labeled with the coverage results.

Uncovered anchor “edges” are shown in red. Covered stranded blocks show their anchor

edges in green. Yellow edges indicate a covered edge that is part of an if-then stranded

block. Of the 31 true CFG edges, 28 are covered, resulting in 90.3% branch coverage on

the method.
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Figure A3: Results of DDST Branch Coverage on Compressor.compress.

130



BIBLIOGRAPHY

[1] The AspectJ Project [online]. Available from: http://www.eclipse.org/
aspectj/.

[2] Bytecode Engineering Library [online]. Available from: http://jakarta.apache.
org/bcel/.

[3] Clover [online]. Available from: http://www.cenqua.com/clover/.

[4] Cobertura [online]. Available from: http://cobertura.sourceforge.net/.

[5] Eclipse IDE [online]. Available from: http://www.eclipse.org/.

[6] EMMA [online]. Available from: http://emma.sourceforge.net/.

[7] JCover [online]. Available from: http://www.codework.com/JCover/.

[8] Jikes RVM [online]. Available from: http://jikesrvm.org/.

[9] Microsoft Phoenix Academic Program [online]. Available from: http://research.
microsoft.com/phoenix/.

[10] Pin [online]. Available from: http://www.pintool.org/.

[11] Standard performance evaluation corporation [online]. Available from: http:
//www.spec.org/jvm98.

[12] Hiralal Agrawal. Dominators, super blocks, and program coverage. In POPL ’94:
Proceedings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 25–34, New York, NY, USA, 1994. ACM. doi:http://doi.acm.
org/10.1145/174675.175935.

[13] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. Adaptive optimization
in the jalapeño jvm. In Conf. on Object Oriented Programming, Systems, Lang. and
Applications, 2000.

[14] Matthew Arnold and Barbara G. Ryder. A framework for reducing the cost of
instrumented code. In PLDI ’01: Proceedings of the ACM SIGPLAN 2001 conference on

131

http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/
http://www.cenqua.com/clover/
http://cobertura.sourceforge.net/
http://www.eclipse.org/
http://emma.sourceforge.net/
http://www.codework.com/JCover/
http://jikesrvm.org/
http://research.microsoft.com/phoenix/
http://research.microsoft.com/phoenix/
http://www.pintool.org/
http://www.spec.org/jvm98
http://www.spec.org/jvm98
http://dx.doi.org/http://doi.acm.org/10.1145/174675.175935
http://dx.doi.org/http://doi.acm.org/10.1145/174675.175935


Programming language design and implementation, pages 168–179, New York, NY, USA,
2001. ACM Press. Available from: http://doi.acm.org/10.1145/378795.
378832.

[15] M. Balcer, W. Hasling, and T. Ostrand. Automatic generation of test scripts from
formal test specifications. SIGSOFT Softw. Eng. Notes, 14(8):210–218, 1989. Available
from: http://doi.acm.org/10.1145/75309.75332.

[16] Thomas Ball. On the limit of control flow analysis for regression test selection. In
Proceedings of the 1998 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’98, pages 134–142, New York, NY, USA, 1998. ACM. Available from:
http://doi.acm.org/10.1145/271771.271802.

[17] Thomas Ball and James R. Larus. Optimally profiling and tracing programs.
ACM Trans. Program. Lang. Syst., 16(4):1319–1360, 1994. Available from: http:
//doi.acm.org/10.1145/183432.183527.

[18] Robert V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 1999.

[19] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind,
Vivek Sarkar, Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John
Whaley. The Jalapeño dynamic optimizing compiler for Java. In Proceedings of the
ACM 1999 conference on Java Grande, JAVA ’99, pages 129–141, New York, NY, USA,
1999. ACM. Available from: http://doi.acm.org/10.1145/304065.304113,
doi:http://doi.acm.org/10.1145/304065.304113.

[20] Kalyan-Ram Chilakamarri and Sebastian Elbaum. Reducing coverage collection
overhead with disposable instrumentation. In ISSRE ’04: Proceedings of the 15th
International Symposium on Software Reliability Engineering, pages 233–244, Washington,
DC, USA, 2004. IEEE Computer Society. Available from: http://dx.doi.org/
10.1109/ISSRE.2004.32.

[21] R. Chilakamarri and S. Elbaum. Leveraging disposable instrumentation to reduce
coverage collection overhead. Journal of Software Testing, Reliability, and Verification,
16(4):267–288, April 2006.

[22] B. R. Childers, M. L. Soffa, J. Beaver, L. Ber, K. Cammarata, T. Kane, J. Litman, and
J. Misurda. Softtest: A framework for software testing of Java programs. In Eclipse
Technology Exchange Workshop during the ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA’03), 2003.

[23] L.A. Clarke, A. Podgurski, D.J. Richardson, and S.J. Zeil. A formal evaluation
of data flow path selection criteria. Software Engineering, IEEE Transactions on,
15(11):1318–1332, November 1989.

132

http://doi.acm.org/10.1145/378795.378832
http://doi.acm.org/10.1145/378795.378832
http://doi.acm.org/10.1145/75309.75332
http://doi.acm.org/10.1145/271771.271802
http://doi.acm.org/10.1145/183432.183527
http://doi.acm.org/10.1145/183432.183527
http://doi.acm.org/10.1145/304065.304113
http://dx.doi.org/http://doi.acm.org/10.1145/304065.304113
http://dx.doi.org/10.1109/ISSRE.2004.32
http://dx.doi.org/10.1109/ISSRE.2004.32


[24] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming:
Introduction. Commun. ACM, 44(10):29–32, 2001. Available from: http://doi.
acm.org/10.1145/383845.383853.

[25] Daniel Frampton, Stephen M. Blackburn, Perry Cheng, Robin J. Garner, David
Grove, J. Eliot B. Moss, and Sergey I. Salishev. Demystifying magic: high-level low-
level programming. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, VEE ’09, pages 81–90, New York, NY,
USA, 2009. ACM. Available from: http://doi.acm.org/10.1145/1508293.
1508305.

[26] P.G. Frankl and E.J. Weyuker. An applicable family of data flow testing criteria.
IEEE Transactions on Software Engineering, 14(10):1483–1498, 1988. Available from:
http://doi.ieeecomputersociety.org/10.1109/32.6194.

[27] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[28] Matthew Geller. Test data as an aid in proving program correctness. In POPL ’76:
Proceedings of the 3rd ACM SIGACT-SIGPLAN symposium on Principles on programming
languages, pages 209–218, New York, NY, USA, 1976. ACM. Available from:
http://doi.acm.org/10.1145/800168.811554.

[29] Mechelle Gittens, Keri Romanufa, David Godwin, and Jason Racicot. All code
coverage is not created equal: a case study in prioritized code coverage. In CASCON
’06: Proceedings of the 2006 conference of the Center for Advanced Studies on Collaborative
research, page 11, New York, NY, USA, 2006. ACM Press. Available from: http:
//doi.acm.org/10.1145/1188966.1188981.

[30] James Hall. Jaguar recalls cars after cruise control fault [online].
2011. Available from: http://www.telegraph.co.uk/motoring/8841996/
Jaguar-recalls-cars-after-cruise-control-fault.html.

[31] Jeffrey K. Hollingsworth, Barton P. Miller, Marcelo Goncalves, Oscar Naim, Zhichen
Xu, and Ling Zheng. MDL: A language and compiler for dynamic program
instrumentation. In Conference on Parallel Architectures and Compilation Techniques
(PACT), November 1997. Available from: http://www.cs.umd.edu/˜hollings/
papers/mdl.pdf.

[32] IBM. Rational purifyplus [online]. Available from: http://www.ibm.com/
rational.

[33] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std
610.12-1990, page 1, 1990. doi:10.1109/IEEESTD.1990.101064.

[34] Intel. Intel R© 64 and IA-32 Architectures Software Developers Manual, volume 3B: System
Programming Guide, Part 2. 2011.

133

http://doi.acm.org/10.1145/383845.383853
http://doi.acm.org/10.1145/383845.383853
http://doi.acm.org/10.1145/1508293.1508305
http://doi.acm.org/10.1145/1508293.1508305
http://doi.ieeecomputersociety.org/10.1109/32.6194
http://doi.acm.org/10.1145/800168.811554
http://doi.acm.org/10.1145/1188966.1188981
http://doi.acm.org/10.1145/1188966.1188981
http://www.telegraph.co.uk/motoring/8841996/Jaguar-recalls-cars-after-cruise-control-fault.html
http://www.telegraph.co.uk/motoring/8841996/Jaguar-recalls-cars-after-cruise-control-fault.html
http://www.cs.umd.edu/~hollings/papers/mdl.pdf
http://www.cs.umd.edu/~hollings/papers/mdl.pdf
http://www.ibm.com/rational
http://www.ibm.com/rational
http://dx.doi.org/10.1109/IEEESTD.1990.101064


[35] Clara Jaramillo. Source level debugging techniques and tools for optimized code. PhD
thesis, University of Pittsburgh, 2000.

[36] J.A. Jones and M.J. Harrold. Test-suite reduction and prioritization for modified
condition/decision coverage. Software Engineering, IEEE Transactions on, 29(3):195–
209, March 2003. Available from: http://dx.doi.org/10.1109/TSE.2003.
1183927.

[37] Cem Kaner, Jack Falk, and Hung Quoc Hguyen. Testing Computer Software. Interna-
tional Thompson Computer Press, London, UK, 1993.

[38] Gregory M. Kapfhammer. The Computer Science and Engineering Handbook, chap-
ter Chapter 105: Software Testing. CRC Press, Boca Raton, FL, second edition,
2004. Available from: http://cs.allegheny.edu/˜gkapfham/research/
publish/software_testing_chapter.pdf.

[39] Gregory M. Kapfhammer. A Comprehensive Framework for Testing Database-Centric
Applications. PhD thesis, University of Pittsburgh, Pittsburgh, Pennsylvania, 2007.

[40] Peter B. Kessler. Fast breakpoints: design and implementation. In PLDI ’90:
Proceedings of the ACM SIGPLAN 1990 conference on Programming language design and
implementation, pages 78–84, New York, NY, USA, 1990. ACM Press. Available from:
http://doi.acm.org/10.1145/93542.93555.

[41] Naveen Kumar, Jonathan Misurda, Bruce R. Childers, and Mary Lou Soffa. Instru-
mentation in software dynamic translators for self-managed systems. In WOSS’04,
2004.

[42] Jon Meyer and Troy Downing. Java Virtual Machine. O’Reilly Media, 1997.

[43] C.C. Michael, G. Mcgraw, and M.A. Schatz. Generating software test data by
evolution. IEEE Transactions on Software Engineering, 27(12):1085–1110, 2001. Available
from: http://doi.ieeecomputersociety.org/10.1109/32.988709.

[44] Sun Microsystems. JavaTM platform debugger architecture [online]. 2004. Available
from: http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/.

[45] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The
paradyn parallel performance measurement tool. Computer, 28:37–46, November
1995. Available from: http://dx.doi.org/10.1109/2.471178.

[46] J. Misurda, J. Clause, J. Reed, B. R. Childers, and M. L. Soffa. Jazz: A tool for
demand-driven structural testing. In International Conference on Compiler Construction,
2005.

134

http://dx.doi.org/10.1109/TSE.2003.1183927
http://dx.doi.org/10.1109/TSE.2003.1183927
http://cs.allegheny.edu/~gkapfham/research/publish/software_testing_chapter.pdf
http://cs.allegheny.edu/~gkapfham/research/publish/software_testing_chapter.pdf
http://doi.acm.org/10.1145/93542.93555
http://doi.ieeecomputersociety.org/10.1109/32.988709
http://docs.oracle.com/javase/1.5.0/docs/guide/jpda/
http://dx.doi.org/10.1109/2.471178


[47] Jonathan Misurda, Bruce R. Childers, and Mary Lou Soffa. Jazz2: A flexible
and extensible framework for structural testing in a Java VM. In 9th International
Conference on the Principles and Practice of Programming in Java (PPPJ), August 2011.

[48] Jonathan Misurda, James A. Clause, Juliya L. Reed, Bruce R. Childers, and Mary Lou
Soffa. Demand-driven structural testing with dynamic instrumentation. In ICSE ’05:
Proceedings of the 27th International Conference on Software Engineering, pages 156–165,
2005. Available from: http://doi.acm.org/10.1145/1062455.1062496.

[49] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[50] National Institute of Standards and Technology. Software errors cost U.S. economy
$59.5 billion annually [online]. 2002. Available from: http://www.nist.gov/
director/planning/upload/report02-3.pdf.

[51] Martin Odersky. The Scala Language Specification Version 2.9. PROGRAMMING METH-
ODS LABORATORY, EPFL, 2011. Available from: http://www.scala-lang.
org/docu/files/ScalaReference.pdf.

[52] Jan K. Pachl. A notation for specifying test selection criteria. In Proceedings of the IFIP
WG6.1 Tenth International Symposium on Protocol Specification, Testing and Verification X,
pages 71–84, Amsterdam, The Netherlands, The Netherlands, 1990. North-Holland
Publishing Co.

[53] Christina Pavlopoulou and Michal Young. Residual test coverage monitoring. In
ICSE ’99: Proceedings of the 21st international conference on Software engineering, pages
277–284, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[54] Hridesh Rajan and Kevin Sullivan. Aspect language features for concern coverage
profiling. In Proceedings of the 4th international conference on Aspect-oriented software
development, AOSD ’05, pages 181–191, New York, NY, USA, 2005. ACM. Available
from: http://doi.acm.org/10.1145/1052898.1052914.

[55] Ian Rogers, Jisheng Zhao, and Ian Watson. Boot image layout for Jikes RVM.
In ICOOOLPS 2008: Third International Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems, 2008.

[56] G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques.
Software Engineering, IEEE Transactions on, 22(8):529–551, August 1996. Available
from: http://doi.acm.org/10.1109/32.536955.

[57] G. Rothermel, R.H. Untch, Chengyun Chu, and M.J. Harrold. Prioritizing test cases
for regression testing. Software Engineering, IEEE Transactions on, 27(10):929 –948,
October 2001. Available from: http://dx.doi.org/10.1109/32.962562.

135

http://doi.acm.org/10.1145/1062455.1062496
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.nist.gov/director/planning/upload/report02-3.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://doi.acm.org/10.1145/1052898.1052914
http://doi.acm.org/10.1109/32.536955
http://dx.doi.org/10.1109/32.962562


[58] Gregg Rothermel, Mary Jean Harrold, Jeffery von Ronne, and Christie Hong. Em-
pirical studies of test-suite reduction. Software Testing, Verification and Reliability,
12(4):219–249, 2002. Available from: http://dx.doi.org/10.1002/stvr.256,
doi:10.1002/stvr.256.

[59] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. Test
case prioritization: An empirical study. In Proceedings of the IEEE International
Conference on Software Maintenance, ICSM ’99, pages 179–, Washington, DC, USA,
1999. IEEE Computer Society. Available from: http://dx.doi.org/10.1109/
ICSM.1999.792604.

[60] Raul Santelices and Mary Jean Harrold. Efficiently monitoring data-flow test
coverage. In 22nd IEEE/ACM International Conference on Automated Software En-
gineering (ASE 2007), Atlanta, GA, November 2007. Available from: http:
//www.cc.gatech.edu/aristotle/pdffiles/fp205-santelices.pdf.

[61] Alex Shye, Matthew Iyer, Vijay Janapa Reddi, and Daniel A. Connors. Code coverage
testing using hardware performance monitoring support. In Proceedings of the sixth
international symposium on Automated analysis-driven debugging, AADEBUG’05, pages
159–163, New York, NY, USA, 2005. ACM. Available from: http://doi.acm.org/
10.1145/1085130.1085151.

[62] Mary Lou Soffa, Kristen R. Walcott, and Jason Mars. Exploiting hardware advances
for software testing and debugging: Nier track. In Proceeding of the 33rd international
conference on Software engineering, ICSE ’11, pages 888–891, New York, NY, USA, 2011.
ACM. Available from: http://doi.acm.org/10.1145/1985793.1985935.

[63] Phil Stocks and David Carrington. A framework for specification-based testing. IEEE
Trans. Softw. Eng., 22(11):777–793, 1996. Available from: http://dx.doi.org/10.
1109/32.553698.

[64] Sun Microsystems, Inc. JavaTM Object Serialization Specification. Sun Microsystems,
Inc., 1996–2001.

[65] Andrew S. Tanenbaum. In defense of program testing or correctness proofs
considered harmful. SIGPLAN Not., 11(5):64–68, 1976. Available from: http:
//doi.acm.org/10.1145/956003.956011.

[66] R Development Core Team. R: A language and environment for statistical computing,
reference index version 2.11.1. Vienna, Austria, 2005. Available from: http://www.
r-project.org/.

[67] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instrumentation for code
coverage testing. In ISSTA ’02: Proceedings of the 2002 ACM SIGSOFT international
symposium on Software testing and analysis, pages 86–96, New York, NY, USA, 2002.
ACM Press. Available from: http://doi.acm.org/10.1145/566172.566186.

136

http://dx.doi.org/10.1002/stvr.256
http://dx.doi.org/10.1002/stvr.256
http://dx.doi.org/10.1109/ICSM.1999.792604
http://dx.doi.org/10.1109/ICSM.1999.792604
http://www.cc.gatech.edu/aristotle/pdffiles/fp205-santelices.pdf
http://www.cc.gatech.edu/aristotle/pdffiles/fp205-santelices.pdf
http://doi.acm.org/10.1145/1085130.1085151
http://doi.acm.org/10.1145/1085130.1085151
http://doi.acm.org/10.1145/1985793.1985935
http://dx.doi.org/10.1109/32.553698
http://dx.doi.org/10.1109/32.553698
http://doi.acm.org/10.1145/956003.956011
http://doi.acm.org/10.1145/956003.956011
http://www.r-project.org/
http://www.r-project.org/
http://doi.acm.org/10.1145/566172.566186


[68] Albert Tran, Michael Smith, and James Miller. A hardware-assisted tool for fast, full
code coverage analysis. In Proceedings of the 2008 19th International Symposium on
Software Reliability Engineering, pages 321–322, Washington, DC, USA, 2008. IEEE
Computer Society. Available from: http://dl.acm.org/citation.cfm?id=
1474554.1475456.

[69] Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage
and adequacy. ACM Comput. Surv., 29(4):366–427, 1997. Available from: http:
//doi.acm.org/10.1145/267580.267590.

137

http://dl.acm.org/citation.cfm?id=1474554.1475456
http://dl.acm.org/citation.cfm?id=1474554.1475456
http://doi.acm.org/10.1145/267580.267590
http://doi.acm.org/10.1145/267580.267590

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	3.1. Interface for adding instrumentation in a method-oriented JIT environment.
	4.1. Properties of the SPECjvm98 benchmark suite.
	4.2. Total memory usage for each of the SPECjvm98 benchmarks.
	4.3. Change in the number of garbage collections due to testing with Jazz.
	5.1. No single test technique is consistently the best.
	5.2. Size and code for a Static Branch probe.
	5.3. Size and code for a regular DDST Branch probe.
	5.4. Cost of an instrumentation probe for Static and DDST.
	5.5. Stranded blocks in SPECjvm98.
	5.6. Time required to perform average-driven search.
	5.7. Models for Jazz's three branch coverage techniques.
	5.8. Parameters for the HST models.
	5.9. Costs incorporated into the HST model.
	5.10. Frequency of the test techniques chosen by HST.
	5.11. Adding an individualized Agrawal reduction ratio.
	5.12. Results of using alpha=100 on compress.
	5.13. HST Planner cost in seconds.
	5.14. Number of runs necessary to amortize HST planning cost.
	5.15. HST Planner with profiled alpha (cost in seconds).
	6.1. Commands in planspec.
	6.2. Space necessary for planspec plans.
	6.3. Plan for compress under HST+TPC modeled planspec with alpha = 12.6.
	6.4. Number of runs necessary to amortize HST+TPC+model+alpha planning.

	LIST OF FIGURES
	1.1. Static instrumentation is not removed after recording coverage.
	1.2. Agrawal's algorithm statically places fewer instrumentation probes.
	2.1. Partial subsumption hierarchy for adequacy criteria.
	3.1. The general framework of Jazz.
	3.2. Example test specification for the SPECjvm98 db benchmark.
	3.3. Static instrumentation in Jazz.
	3.4. The static node coverage test planner.
	3.5. Extending the Static Node planner to incorporate H. Agrawal's algorithm.
	3.6. Static payload for branch coverage testing.
	3.7. A row of the test plan for Static Branch as laid out in memory.
	4.1. The shaded basic block is a stranded block.
	4.2. The shaded basic block is also a stranded block.
	4.3. The shaded basic blocks are singleton blocks.
	4.4. Demand-driven instrumentation in Jazz.
	4.5. The base class for all demand-driven structural tests.
	4.6. Breakpoint implementation on x86.
	4.7. A reflexive basic block.
	4.8. Row in the PLT for DDST.
	4.9. Node planning overhead (light blue) and instrumentation (dark blue).
	4.10. Branch planning overhead (light blue) and instrumentation (dark blue).
	5.1. Three methods from compress.
	5.2. Change in instruction cache miss rate for DDST and Static.
	5.3. Change in branch misprediction rate for DDST and Static.
	5.4. Change in DTLB miss rate for DDST and Static.
	5.5. Average-driven search.
	5.6. Hybrid structural testing via profiling.
	5.7. The overall framework for doing Hybrid Structural Testing.
	5.8. Test specification for compress from a size 1 profile run.
	5.9. Alpha does not correlate well with edges or nodes.
	5.10. Regression curve for the cost of Agrawal planning.
	5.11. Results for a size 1 and size 10 profile run.
	5.12. Sensitivity of rho.
	6.1. Overhead of Agrawal without the cost of planning.
	6.2. Cached test plans can be reused across the test cases in a suite.
	6.3. Loading a saved plan for Agrawal using Java's serialization.
	6.4. Saved planspec for Compressor.compress in compress.
	6.5. Loading a saved plan for Agrawal.
	6.6. HST with Agrawal-TPC instead of Static for profiled methods.
	6.7. Regression line for the cost of loading an Agrawal plan in planspec.
	6.8. Overhead using HST+TPC with planspec loading modeled.
	A1. CFG of Compressor.compress.
	A2. Coverage output from Jazz for DDST Branch.
	A3. Results of DDST Branch Coverage on Compressor.compress.

	LIST OF ALGORITHMS
	4.1. The node coverage planner.
	4.2. First phase of the branch coverage planner.
	4.3. Second phase of the branch DDST planner.
	4.4. Handling a If-Then Stranded Block in Phase 1.
	4.5. Handling a If-Then Stranded Block in Phase 2.
	5.1. HST Planner
	6.1. HST Planner with TPC Agrawal
	6.2. HST+TPC Planner with modeled planspec loading.

	PREFACE
	1.0 INTRODUCTION
	1.1 SOFTWARE TESTING
	1.2 STRUCTURAL TESTING
	1.2.1 The Coverage Metrics

	1.3 THE CHALLENGES OF EFFICIENT STRUCTURAL TESTING
	1.4 RESEARCH OVERVIEW
	1.5 CONTRIBUTIONS
	1.6 ASSUMPTIONS & SCOPE
	1.7 ORGANIZATION

	2.0 BACKGROUND AND RELATED WORK
	2.1 SOFTWARE TESTING
	2.1.1 Structural Testing
	2.1.2 Uses of Structural Coverage Criteria

	2.2 RELATED WORK
	2.2.1 Coverage Tools
	2.2.2 Improving Coverage Testing Performance
	2.2.3 Instrumentation Techniques
	2.2.4 Test Specification


	3.0 A FRAMEWORK FOR NODE AND BRANCH COVERAGE
	3.1 FORMAL NOTATION FOR BRANCH AND NODE TESTING
	3.1.1 Static Node Coverage
	3.1.2 Static Branch Coverage
	3.1.3 Agrawal

	3.2 JAZZ OVERVIEW
	3.2.1 Support Services
	3.2.2 Extensible Test Library
	3.2.3 Test Specification

	3.3 JAZZ IMPLEMENTATION
	3.3.1 Implementing the Test Driver
	3.3.2 Instrumentation & Code Generation
	3.3.3 Memory allocation
	3.3.4 Implementing Test Specification
	3.3.5 JVM Support for Software Testing

	3.4 STATIC BRANCH AND NODE TESTING WITH JAZZ
	3.4.1 Static Node Testing
	3.4.2 Static Branch Testing

	3.5 SUMMARY & CONCLUSIONS

	4.0 DEMAND-DRIVEN STRUCTURAL TESTING
	4.1 PLANNING FOR DDST
	4.1.1 Planner Actions
	4.1.2 Node Coverage Planner
	4.1.3 Branch Coverage Planner
	4.1.3.1 Stranded Blocks
	4.1.3.2 Improving Stranded Block Performance

	4.1.4 Pre-seeding

	4.2 IMPLEMENTING DDST IN JAZZ
	4.2.1 Dynamic Instrumentation for the x86
	4.2.1.1 Short Blocks
	4.2.1.2 Reflexive Blocks

	4.2.2 Trampolines
	4.2.3 Payloads
	4.2.3.1 Node Coverage Payload
	4.2.3.2 Branch Coverage Regular Payload
	4.2.3.3 Singleton Payload
	4.2.3.4 Stranded Payload

	4.2.4 Probe Location Table

	4.3 EVALUATION
	4.3.1 Performance Overhead
	4.3.2 Memory overhead
	4.3.3 Impact on Garbage Collection

	4.4 SUMMARY & CONCLUSIONS

	5.0 PROFILE-DRIVEN HYBRID STRUCTURAL TESTING
	5.1 SOURCES OF DDST COST
	5.1.1 Instrumentation Probes
	5.1.2 Architectural Impact
	5.1.3 Stranded Blocks

	5.2 SELECTING A TEST TECHNIQUE
	5.2.1 Average-driven Search
	5.2.2 Profile-driven Test Selection

	5.3 DESIGN OF A PROFILE-BASED TEST SELECTOR
	5.3.1 Modeling Branch Coverage Testing
	5.3.2 The HST Planner
	5.3.3 Test Specification

	5.4 INSTANTIATING THE MODEL FOR JAZZ
	5.4.1 Instrumentation Probe Cost
	5.4.2 Agrawal Probe Reduction & Planning Cost

	5.5 EVALUATION
	5.5.1 Overhead
	5.5.2 HST Plan
	5.5.3 Agrawal Probe Reduction (alpha)
	5.5.4 Probe Cost
	5.5.5 HST Planner Cost

	5.6 SUMMARY & CONCLUSIONS

	6.0 TEST SUITE-CENTRIC STRUCTURAL TESTING
	6.1 TEST PLAN CACHING FOR STRUCTURAL TESTING
	6.2 IMPLEMENTING TEST PLAN CACHING IN JAZZ
	6.2.1 Saving Test Plans with planspec
	6.2.2 Evaluation

	6.3 INCORPORATING TEST PLAN CACHING INTO HST
	6.3.1 Modeling planspec Loading
	6.3.2 Evaluation
	6.3.2.1 Profiled alpha


	6.4 SUMMARY & CONCLUSIONS

	7.0 CONCLUSION AND FUTURE WORK
	7.1 THREATS TO VALIDITY
	7.2 SUMMARY OF CONTRIBUTIONS
	7.3 FUTURE WORK

	APPENDIX. BRANCH COVERAGE EXAMPLE
	BIBLIOGRAPHY

