Demand-Driven Structural Testing with Dynamic Instrumentation

Jonathan MisurdaT, James A. ClauseT, Juliya L. ReedT, Bruce R. ChildersT, and Mary Lou Soffat

TDepartment of Computer Science
University of Pittsburgh
Pittsburgh, Pennsylvania 15260
{jmisurda, clausej, juliya, childers}@cs.pitt.edu

Abstract

Producing reliable and robust software has become one
of the most important sofiware development concerns in
recent years. Testing is a process by which software
quality can be assured through the collection of infor-
mation about software. While testing can improve soft-
ware reliability, current tools typically are inflexible and
have high overheads, making it challenging to test large
software projects. In this paper, we describe a new scal-
able and flexible framework for testing programs with a
novel demand-driven approach based on execution
paths to implement testing coverage. This technique
uses dynamic instrumentation on the binary code that
can be inserted and removed on-the-fly to keep perfor-
mance and memory overheads low. We describe and
evaluate implementations of the framework for branch,
node and def-use testing of Java programs. Experimen-
tal results for branch testing show that our approach
has, on average, a 1.6 speed up over static instrumenta-
tion and also uses less memory.

1. Introduction

In the last several years, the importance of produc-
ing high quality and robust software has become para-
mount [13]. Testing is an important process to support
quality assurance by gathering information about the
behavior of the software being developed or modified. It
is, in general, extremely labor and resource intensive,
accounting for 50-60% of the total cost of software
development [15]. Given the importance of testing, it is
imperative that there are appropriate testing tools and
frameworks. First of all, in order to adequately test soft-
ware, a number of different testing techniques must be
performed. One class of testing techniques used exten-
sively is structural testing in which properties of the
software code are used to ensure a certain code cover-
age. Structural testing techniques include branch testing,
node testing, path testing, and def-use testing
[6,7,15,17].

Typically, a testing tool targets one type of struc-
tural test, and the software unit is the program, file or
particular methods. In order to apply various structural
testing techniques, different tools must be used. If a tool
for a particular type of structural testing is not available,
the tester would need to either implement it or not use

iDepartment of Computer Science
University of Virginia
Charlottesville, Virginia 22904
soffa@cs.virginia.edu

that testing technique. The tester would also be con-
strained by the region of code to be tested, as deter-
mined by the tool implementor. For example, it may not
be possible for the tester to focus on a particular region
of code, say a series of loops, complicated conditionals,
or particular variables if def-use testing is desired. The
user may want to have higher coverage on frequently
executed regions of code. Users may want to define
their own way of testing. For example, all branches
should be covered 10 times rather than once in all loops.

In structural testing, instrumentation is placed at
certain code points (probes). Whenever such a program
point is reached, code that performs the function for the
test (payload) is executed. The probes in def-use testing
are dictated by the definitions and uses of variables and
the payload is to mark that a definition or use in a def-
use pair has been covered. Thus for each type of struc-
tural testing, there is a testing “plan”. A test plan is a
“recipe” that describes where probes should be placed
and what should be done when a probe is reached. In
most tools, the instrumentation is placed in the binary
code before execution and remains in the code until exe-
cution terminates. This type of instrumentation can be
both time and space expensive. The instrumentation
causes code growth and thus instrumenting a complete
program may not be possible. Also, even though cover-
age may only require one instantiation of a code ele-
ment, the instrumentation stays in the code, causing
unnecessary time overhead. The instrumentation is not
shared by the testing tools, but requires new instrumen-
tation to be placed on separate runs and not combined,
causing inefficiencies.

In this paper, we describe a testing framework that
addresses both flexibility and scalability for structural
testing. Our approach enables testers to use different
testing strategies, including custom testing, in an effi-
cient and automatic way. The key ideas in our approach
are a test planner that generates a plan from a test speci-
fication and an instrumenter that (1) inserts instrumenta-
tion when needed in a demand driven fashion as the
program executes and (2) deletes the instrumentation
when no longer needed, according to the test plan. The
approach is path specific and uses the actual execution
paths of an application to drive the instrumentation and
testing. The granularity of the instrumentation is flexible

and includes statement level and structure level (e.g.,
loops, methods, program).

To ensure flexibility, we developed a specification
language from which a test plan can be automatically
generated by a test planner. The test specification
describes what tests to apply and under what conditions
to apply them. The specification language has both a
visual representation and textual form. The visual lan-
guage is expressed through a graphical user interface
(GUI). The GUI is also able to display test results and
present them to the user with a test analyzer, highlight-
ing relevant parts of the application with the test results.

We implemented the test framework—the GUI, test
planner, dynamic instrumenter, and test analyzer—and
incorporated them into the Eclipse integrated develop-
ment environment [5] and the IBM Jikes Java Research
Virtual Machine [2]. Our prototype tool, called Jazz, can
perform branch, node and def-use coverage testing over
multiple code regions in a Java program, as desired by
the tester. The tester can also easily add a new testing
technique using the GUI and planner. The prototype
demonstrates the feasibility and practicality of our
approach. Our results are very encouraging, with both
very low run-time overhead and memory usage.

This paper makes several contributions, including:

* A novel and low cost approach for instrument-
ing a program along an execution path to per-
form different types of tests;

* A new framework for automatically generating
structural software testing tools that use
dynamic instrumentation;

* A technique that enables dynamic insertion and
removal of test instrumentation on demand; and

* An implementation and experimental evaluation
of a tool that implements our approach for test-
ing Java programs.

In the next section we give an overview of our
framework including a user scenario. In Section 3, we
discuss the test planner and the dynamic instrumenter.
Section 4 describes particular test planners, and experi-
mental results are presented in Section 5. The paper con-
cludes with related work and a summary.

2. Framework Overview

Our test framework is designed to be scalable and
flexible, allowing the development of tools that can
implement structural tests, using a path-specific
approach. Figure 1 shows the major components in the
framework, including a fest specifier, a test planner, a
dynamic instrumenter, and a test analyzer. The frame-
work includes a language, testspec, for specifying a
software test process. The specification includes the rel-
evant parts of the program to be tested and the actions
needed in the testing process. Testers can either write a
specification in festspec or, better, use the GUI, which
automatically generates a specification in festspec. A
test planner consumes the testspec specification and

generates a fest plan for testing the program given the
specification (similar to a compiler). Using the gener-
ated plan, the dynamic instrumenter inserts probes into a
program at run-time to conduct the specified tests.
Finally, the framework has a test analyzer for reporting
results to the user. In this paper, we focus on the novel
aspects of the framework, which are the test planner and
dynamic instrumenter.

—% Test GUI
Test Specification

‘ Test Planner ‘

L]

Test Plan
Y

‘ Test Dynamic Instrumenter & Run-Time System ‘

L]

Test Results

—4 Test Analyzer and Result Reporter ‘

‘ (Program >

() Programcode (___) Generated output
[] standard [] Customized (new test)

Figure 1: Test Framework

2.1. Usage Scenario

In this section, we provide an example of using the
framework. Assume a tester, Tracy, wants to test a large
program using different testing strategies. Assume she
wants to first test the entire program using branch test-
ing. Using the GUI, Tracy specifies that branch testing
is to be applied to the entire program. Our framework
will automatically set up the correct instrumentation for
this testing strategy. Because the instrumentation is
dynamically inserted and deleted in a demand driven
fashion, branch testing can be performed on the entire
program. Tracy then decides to further test a selected set
of classes (a “test region”) using def-use testing with
high coverage. This is also carried out automatically by
our framework. Then Tracy uses the GUI to indicate that
a selected loop is to be tested using branch coverage but
defines the coverage to be 10 instances of the loop. She
also decides to test a function using def-use testing at
the same time. Our framework automatically places the
correct instrumentation to accomplish this. Lastly, Tracy
designs a unique form of a testing strategy that has not
been implemented. She uses the specification language
to define the testing strategy. Using this specification,
the planner generates plans to accomplish this, allowing
Tracy to then test the program using a new testing strat-
egy. This scenario indicates that our framework enables
testing that is both scalable because of the demand
driven instrumentation and flexible due to the planner.

Add Test

Start testing

Set test parameters

Branch Test Customization
a ! [

Select test threshold

Adeguacy of Test

Apply Seftings

iy Settings

t
Highlight Loops:
ey Setings

Figure 2: Graphical user interface for specifying software tests

An example of Tracy using the GUI is given in Fig-
ure 2. She is presented with the first window, Start test-
ing. In this case, she clicks on Add Test, and a new
window appears. She then sets parameters using the Set
test parameters window, and likewise sets the test
threshold and test region. Using the information from
the GUI, the planner generates the test plan which the
dynamic instrumenter uses to place the correct probes
and the payloads to carry out the specified test. More
detail about the GUI is available in [3]

2.2. Demand-Driven Instrumentation

A unique characteristic of our framework, and the
reason it is scalable, is the way that instrumentation is
inserted in the executing program. Rather than insert all
of the instrumentation before the program executes
(static), we insert the instrumentation during program
execution and only insert the instrumentation necessary.
Likewise, we dynamically delete instrumentation when
it is no longer needed. Thus, both insertion and deletion
are done in a demand-driven fashion. The demand is
guided by the paths that the program takes during exe-
cution. When an instrumentation point is reached, it is
responsible for documenting the coverage, inserting
other instrumentation, and deleting instrumentation.

Consider the control flow graph (CFG) of basic
blocks for a program segment in Figure 3(a) and assume
that branch testing is being performed. Before this code
segment executes, one instrumentation point is placed at
block 1 (either statically if the code segment is the initial
block or by another block when it executed). When the
probe in block 1 is reached, the payload is responsible
for inserting instrumentation in both blocks 2 and 3
since one of these blocks has to be on the executing
path. Assume block 2 is reached. The instrumentation at

(a) Shaded block
is stranded

(b) Shaded blocks
are singletons

Figure 3: Example control flow graphs

block 2 would insert instrumentation at blocks 4 and 5.
In addition, it would remove the instrumentation in
block 2 since it is no longer needed, as the edge between
1 and 2 is covered. When the execution traverses the
path from block 1 to block 3, then both the instrumenta-
tion at blocks 1 and 3 would be removed. Block 1 no
longer needs to be instrumented as there are no other
edges from block 1 that can be reached. Thus, the instru-
mentation is both inserted when needed and removed
when no longer needed. Experimental results indicate
less overhead in space because of fewer instrumentation
points at any one time than static instrumentation. It is
also less time expensive because instrumentation is only
hit when it is needed. In the next section, we discuss the
test planner and its generation of the test plan in detail.

3. Test Planner
The main function of the test planner is to deter-

mine where and how to test a code region. Using the
specification and the intermediate code for a test region,

the test planner determines the actions necessary to
carry out tests. These actions are the run-time activities
that collect coverage information and instrument the test
region. The actions form the basis for the test plan. In
the next sections, we discuss some of the test planner
challenges and implementation strategies.

3.1. Challenges

To generate a test plan, a planner needs to deter-
mine when to insert probes, where to instrument a test
code region, and what to do at a probe. There are three
cases the planner has to consider when deciding when to
insert and delete instrumentation. First, it must identify
which probes are seeds. Seeds are those probes which
are initially inserted in a test region. Second, it needs to
determine which probes are used for coverage and can
be inserted and removed on-demand along a path.
Finally, the planner has to determine the lifetime of a
probe and whether it must be re-inserted after being hit
by its “control flow successor” basic blocks.

The test planner also must identify the locations of
probes in a test region. These locations correspond to
seed, coverage, and control flow probes. Seed locations
are blocks where control enters a test region. Coverage
locations correspond to basic blocks that have coverage
probes. Finally, control flow locations are successors to
blocks that have coverage probes which need to be re-
inserted. Seed locations must be marked in a table to tell
a dynamic instrumenter where probes should be inserted
initially. Coverage and control flow locations also have
entries in a table to hold information needed by the
probes. Coverage locations usually have an entry in a
results table to hold coverage information.

The last task of the planner is to determine what
actions should take place at a probe. In some cases, dif-
ferent payloads or combinations of payloads may be
used at different probes and the planner needs to select
the appropriate payload.

3.2. Planner Actions

Actions in a test plan are implemented with a test
probe and payload. Probes can be inserted in a code
region at any basic block where test actions need to take
place. A test plan may have multiple payloads, which
can be invoked by different probes, and multiple probes
may be inserted at the same location to call different
payloads. The test plan uses a probe location table
(PLT) to encode probes and their locations. A PLT entry
has a probe type, a payload, and a list of probes to insert
(and in some cases, to remove). Additional fields can be
added to the PLT by the planner.

The test plan also has data storage, including global
memory that is persistent with program scope (i.e., there
is a single global storage area) and local storage with
method scope. Global storage is used to hold test results
for multiple testing runs (i.e., what has been covered)
and the local storage is used to hold temporary values

needed by a payload. Other storage scopes can also be
incorporated into a plan (e.g., thread or class scope).

GLOBALS PROBE LOCATION TABLE
hit type payload insert
1 1 | seed node 2,3
2 2 | cover node 4
3 3 | cover node 4
4 4 | cover | node
covered PLT

TEST PAYLOAD
node(Block current) begin
covered[current] < true
forall Block b in PLT.insert[current] do
if covered[b] = false then
insertProbe(b)
end if
end forall
removeProbe(current)
end

Figure 4: Example test plan for node coverage

As an example, consider node coverage, which
records the basic blocks that are executed in a test
region. Figure 3(b) shows an example test region and
Figure 4 shows a test plan for node coverage on this
region. The test plan has a global array, covered, that
records which blocks are executed. The PLT lists the
basic blocks to instrument and the probes in these
blocks call node () to update covered, insert probes in
successor blocks and remove the current probe.

Once the test plan is created, it is passed to the
dynamic instrumenter, which automatically inserts
probes at locations that are marked as seeds in the PLT.
For this example, an initial probe is inserted in block 1.
Now, consider what happens when 1 is hit: node () exe-
cutes, which inserts probes into successors blocks 2 and
3, marks 1 as covered, and removes block 1°s probe. If
block 2 executes next, then it is marked as covered, a
probe inserted in 4, and 2 probe removed. When control
exits, covered lists 1, 2, and 4 as covered.

The test planner automatically generates the PLT,
determines global and local storage, and links payloads
to probes. A test planner is implemented by a tool devel-
oper and the framework allows a developer to build a
library of planners, which can be selectively invoked. A
test planner can be developed to integrate different tests
into a single plan. To ease the burden of developing new
planners, the framework has several capabilities, includ-
ing a parser and intermediate representation for testspec,
and interfaces for inserting and removing probes in
binary code, managing test plan memory, and generating
test result reports.

From our experience, we have found that the frame-
work’s capabilities significantly ease the development
of a test planner. For example, our def-use planner took
two weeks to develop and debug by a graduate student
that had no previous experience with the framework.
The node planner took half day to develop and debug.

3.3. Dynamic Instrumenter

Dynamic instrumentation requires probes that can
be inserted and removed on the binary machine code.
The dynamic instrumenter provides an application pro-
grammer interface (API) that abstracts and hides
instruction and machine details about instrumentation. It
provides for the dynamic insertion and deletion of
probes and the management of global and local storage
in a test plan. This API allows for flexible instrumenta-
tion that can be specified in a variety of ways. The
instrumentation constructed with the API is also highly
scalable since only relevant portions of the program are
instrumented for only as long as needed.

The interfaces for insertion and removal of test
probes provides several capabilities. With the interface,
probes can be associated with particular basic blocks in
a test region. The interface hides and automatically han-
dles program instruction addresses, modification of the
binary instructions to insert/remove a probe, and the
insertion/removal of multiple probes at the same loca-
tion. The interface also provides for inserting seed
probes in a test region.

The management of global and local memory is
similarly abstracted. A test plan can allocate and deallo-
cate and access elements in the global storage with sim-
ple interfaces. The instrumenter will also automatically
allocate local memory on method entry and deallocate
on method exit. Other aspects such as handling multi-
threaded programs are similarly hidden from the test
plan and the developer of the test planner.

To implement test probes, the dynamic instrumenter
uses fast breakpoints [11]. A fast breakpoint replaces an
instruction in the target machine code with a jump to a
breakpoint handler. The breakpoint handler calls the test
payload and it executes the original instruction that was
replaced by the jump. The replaced instruction is exe-
cuted by copying it back to its original location and
transferring control to it after the payload executes.
Hence, these breakpoints are “transient” and similar to
the invisible breakpoints used by debuggers to transpar-
ently track program values and paths.

We use fast breakpoints because they have low
overhead and can be easily inserted and removed on
binary code. To insert a probe, the instrumenter allocates
memory for the breakpoint handler, replaces an instru-
mented instruction with a jump to the handler, generates
the handler code to call the payload and execute the
replaced instruction, and saves a copy of the replaced
instruction. When a probe is inserted at a location that
already has another probe, the call to the new payload is
appended to the breakpoint handler.

A consequence of transient breakpoints is probes do
not remain in a test region once executed. If a permanent
probe is needed, then the test plan has to re-insert the
probe. Re-insertion can be done by placing probes in the
successors to a block that needs a permanent probe. The

successor probes re-insert the original probe when exe-
cuted and remove themselves and their siblings. While
fast breakpoints can be implemented to make them per-
manent, variable length instruction sets, such as Intel’s
IA-32 (x86), complicate the implementation. Instead,
transient breakpoints simplify and increase the portabil-
ity of the instrumentation interfaces.

4. Test Planners

In this section, we first discuss using our frame-
work for branch testing and then briefly discuss node
and def-use testing.

4.1. Branch Coverage Planner

The branch coverage test planner instruments a
region to ensure that all edges can be marked as covered
when they are traversed. The planner generates a test
plan that instruments on-demand along an execution
path and removes instrumentation as soon as possible.
To generate the test plan, the planner has to determine
which blocks are seeds, when to insert and permanently
remove probes, and what payload to use at a probe.

For branch coverage, the seed blocks are the entry
points into a test region. These seed blocks insert instru-
mentation when control passes through an entry. Seeds
are identified as basic blocks that have one or more pre-
decessors outside of the test region.

A more difficult issue is how to record which edges
are executed, and when probes need to be inserted and
removed. To cover an edge, two probes are executed:
one in the edge’s source and one in the sink node. The
probe in the source records the beginning of an edge and
the probe in the sink marks the edge as covered. The dif-
ficulty is identifying what instrumentation to insert and
deleted when a block is hit.

In general, when a probe in a source node is exe-
cuted, it inserts a probe into its successors of uncovered
edges and removes itself. The successors are determined
by the planner and added to the PLT entry for a node. In
this way, as control flows through a test region, probes
are inserted and deleted to follow execution paths.
Although in many cases this strategy is sufficient, in
other cases a probe has to remain until a// edges from
itself to its successors are covered. As an example, con-
sider the CFG in Figure 3(a) and assume that block 1 is
a seed. The approach as described cannot mark some
edges as covered when the loop executes several itera-
tions and takes certain paths, such as:

(12346)>(1 >3—>5>6)>(1—>2>506)

In the first iteration, block 1 inserts probes in 2 and 3
and removes itself. The payload for the probe in 2 marks
the edge /—2 as covered and inserts probes in blocks 4
and 5. The probe in 2 is also removed. Similarly, 4 and 6
mark edges 2—4 and 4—6 as covered, insert probes in
successors, and remove themselves. At the end of the
first iteration, there are probes in 1, 3, and 5.

When the second iteration begins, block 1 is hit,
removes itself, and does not insert any probes: edge
12 is already covered and there is a probe in 3. Block
3 executes and marks edge /—3, but it does not insert a
probe in 5. When block 5 executes, it marks edge 3—5
and inserts a probe in block 6. Finally, when block 6
executes, it marks edge 5—6. However, it will not insert
a probe in block 1 because 6—1 was already covered by
the previous iteration. Hence, on the third iteration,
when control flows reaches 2—5, no instrumentation
has been inserted to capture that edge.

The problem is block 2 needs a probe to record it as
an edge source to block 5. Block 5 is stranded because
an edge to it cannot be covered. Stranded blocks occur
when a block has multiple predecessors and at least one
of those predecessors has multiple successors.

The planner identifies stranded blocks by inspect-
ing the CFG. If a block is stranded, then the probes in
the stranded block’s predecessors can not be removed
until all edges of the predecessor are covered. The plan-
ner ensures that these probes are permanent by marking
them in the test plan that they have to be re-inserted
until the stranded block is fully covered.

Another problem occurs for singleton blocks, as
shown in Figure 3(b). In this case, edge /—3 is not
marked as covered when path /—>2—4 is followed by
path / —-3—4. When execution reaches block 1 on path
1—>3—4, its entry edge is already covered and no instru-
mentation is inserted in block 1. That is, there will be no
probe in 1 to record the successor to block 3. Hence,
edge /—3 cannot be marked as covered.

To handle singleton basic blocks, the planner identi-
fies blocks with a single predecessor and inserts a probe
that encodes the edge. In the figure, when block 1 first
executes, it inserts a probe in block 3 that knows prede-
cessor is block 1. When path /—>3—>4 executes, the
probe at 3 is hit, records edge /—3 as covered, and
inserts a probe in block 4 to cover edge 3—4.

The algorithm for the branch coverage planner is
shown in Table 1. For brevity, we do not show the pay-
loads—their actions are as described in this section. The
planner creates a CFG for the test region on line 1. Next,
it iterates over basic blocks to determine whether they
are a seed, a singleton, stranded or a regular block. Ini-
tially, on lines 3-5, a block is treated as a regular block
that inserts probes in its successors blocks. Lines 7 and 8
check whether the block has any predecessors that are
not in the test region and sets the PLT field seed to true,
if so. When a block has a single predecessor and it is not
a seed, then it is a singleton, as shown on lines 10-13. In
this case, the singleton’s predecessor is recorded in a
table in global memory. At run-time, when the payload
singletonPayload () is invoked, it accesses the table
to get its predecessor. Finally, lines 15 to 18 check for
stranded basic blocks. The planner treats stranded
blocks as regular blocks (i.e., it uses the normal pay-

load), except its predecessor are added to the insertion
list to ensure they are re-inserted at run-time.

Line Pseudocode

1 CFG G « buildCFG(testRegion)

2 forall Block b in G.nodes do

3 PLT[b].insert « b.successors

4 PLT[b].payload « regularPayload
5 PLT[b].type « cover

6 // Check if block b is an entry block (a seed)
7 if b.predecessors « G.nodes then
8 PLT[b].type « seed

9 // Check if block b is a singleton
10 else if |b.predecessors| = 1 then
11

12

13

14

15

GLOBAL[sources][b] « b.predecessors
PLT[b].payload « singletonPayload
end if
// Check if block b is stranded
forall Block p in b.predecessors do

16 if [p.successors|>1 A |b.predecessors|>1 then
17 PLT[b].insert < PLT[b].insert U b.predecessors
18 end for

19 end for

Table 1: Branch coverage planner
4.2. Node Coverage Planner

The node coverage planner is the simplest of the
planners described in this paper. The planner iterates
over basic blocks in a test region, adding each block to
the PLT and marking each one as a seed. That is, a//
probes are inserted before the test region is executed.
The planner links a payload with each probe that records
coverage. When a probe is hit, the payload marks the
block covered and deletes itself on demand. In this way,
the deletion of probes is demand driven, but the inser-
tion of probes is not. In comparison to the node cover-
age approach in Section 3, this approach reduces
payload complexity.

4.3. Def-use Coverage Planner

The goal of def-use testing is to determine the cov-
erage among pairs of variable definitions and uses. The
def-use coverage planner inserts probes at definitions to
record when a variable is assigned a value. Probes are
also inserted at locations where variables are used.
These probes mark a def-use pair as covered by examin-
ing which definition was the most recently executed.

To instrument a test region for def-use, the planner
first determines all definitions in a region and inserts
seed probes at those definitions. When a definition is
hit, its payload inserts probes at all reachable uses.
Probes at definitions must remain in the test region until
all reachable uses are covered. These probes are needed
because they record which definition has been recently
executed. To keep a probe at a definition, the planner
generates a test plan that re-inserts the probe. The test
plan puts probes in control flow successors of blocks
with definitions, which re-insert the original probe and
remove themselves.

Probes at uses can be deleted immediately once
they are hit. When a probe for a use, say u;, of variable x
is inserted, there must have been a definition of x, called
d;, because the probe at u; is inserted by ;. Hence,
once the def-use pair (d;, u;) is covered, the probe at u;
can go away. If another definition, d,, of x also reaches
uj, then a new probe is inserted at u; by d,.

A challenge for the def-use planner is that a CFG
node can have many definitions and uses of different
variables. The node may even be a control flow succes-
sor to several nodes with definitions. The planner treats
all definitions, uses and control flow probes indepen-
dently, and in effect, inserts several probes in a block.
The effect of multiple probes is done by combining the
probes into one probe that invokes several payloads.

Line Pseudocode

1 CFG G « buildCFG(testRegion)

2 DUChains chains <« buildDUChains(G)

3 // Pass 1: Group definitions, uses, & successors
4 forall Chain c in chains do

5 Block defBlk « c.defBlock()
6
7
8
9

PLT[defBlk].type < seed // mark all defs as seeds
Block useBlk « c.useBlock()
PLT[useBIk].type < cover // mark all uses as cover
Variable v « c.variableName()
10 defBlk.recordDefs < defBlk.recordDefs U v
11 useBlk.recordUses <« useBlk.recordUses U v
12 defBlk.placeUses <« defBlk.placeUses U (useBIk, v)
13 forall Block b in defBlk.successors() do

14 defBlk.placeSucc « defBlk.placeSucc U b
15 b.placeDefs « b.placeDefs U (defBIk, v)
16 PLT[b].type « successor

17 end for

18 end for

19 // Pass 2: Build PLT and payloads

20 forall Block b in G do

21 Trampoline tramp «— new Trampoline()
22 forall Variable v in b.recordUses do

23 emitRecordUse(tramp, b, v)

24 forall Variable v in b.recordDefs do

25 emitRecordDef(tramp, b, v)

26 forall (Block b2, Variable v) in b.placeDefs do
27 emitPlaceDef(tramp, b2, v)

28 PLT[b].insert «- PLT[b].insert U b2

29 end for

30 forall (Block b2, Variable v) in b.placeUses do
31 emitPlaceUse(tramp, b2, v)

32 PLT[b].insert «- PLT[b].insert U b2

33 end for

34 if |b.placeSucc| > 0 then

35 emitPlaceSuccessors(tramp, b)

36 PLT[b].insert «— PLT[b].insert U b.placeSucc
37 end if

38 PLT[b].payload <« tramp

39 end for

Table 2: Def-use coverage planner

Table 2 shows the algorithm for the def-use planner
(payloads are not shown). The algorithm first constructs
the CFG and def-use chains for a test region (lines 1 and
2). Then, it proceeds in two passes. In the first pass, the

planner iterates over the def-use chains to process and
group definitions and uses in a basic block (lines 4-16).
Each definition is marked as a seed on line 6 and the
definitions and uses are grouped on lines 10-12. On line
10, the variable name for the definition in the current
chain is recorded in the defining block. Line 11 records
a use of the variable in the block that reads it. Because
probes need to be inserted at uses, a set of blocks and
variable names is maintained to track the locations
where those probes should be placed (line 12). Lines 13-
17 determine control flow successors for re-insertion of
probes at definitions.

Once the definitions, uses, and control flow succes-
sors are grouped, the second pass traverses the basic
blocks to construct the PLT and combine payloads (lines
19-39). The payloads are actually created for each pay-
load by generating code for a “trampoline” that has calls
to functions that perform actions at a probe.

To construct the trampoline, the algorithm emits
calls to functions that mark uses in a block as covered
(lines 22-23) and record definitions (lines 24-25). Next,
a call is emitted that re-inserts probes at definitions
when the current block is a control flow successor (lines
26-29). Calls are also emitted to functions that (1) insert
probes for variable uses (lines 30-33), and (2) insert
probes in control flow successors (lines 34-37). Finally,
on line 36, the generated trampoline is recorded in the
PLT as the payload. Although not shown, the algorithm
also handles definitions and uses of variables in the
same block.

5. Jazz: A Structural Testing Tool for Java

To investigate the efficiency and effectiveness of
demand driven structural testing, we implemented our
framework and built a tool with it, called Jazz. The tool
does branch, node, and def-use coverage and imple-
ments the full framework, including a GUI, test plan-
ners, dynamic instrumentation, and a test analyzer. Jazz
is incorporated in Eclipse [5] and Jikes for the Intel x86

[2].
5.1. Jikes RVM

To integrate the framework into Jikes, we had to
address how the test planner gets control, multi-thread-
ing, and the interaction of garbage collection (GC) and
instrumentation. The first issue was handled by adding a
callback to Jikes’ just-in-time compiler to invoke the
planner. The planner is called after the bytecode has
been translated into x86 instructions. At this point, a
method’s CFG, symbol table, and line number map are
available. Once a plan is generated, the dynamic instru-
menter inserts seed probes on the binary code.

Jazz supports multi-threading as found in Java pro-
grams. Because test information may be local to a
thread, it has to be saved and restored at a thread switch.
For example, when marking edges in branch coverage,
two successive probes pass information to indicate the

edge. If a thread switch happens in between the probes,
then this information needs to be saved. The test plan
indicates what information to switch by allocating it in
local memory. For branch coverage, the “previous hit
block” is a local and saved/restored at a context switch.

To switch the test plan’s local memory, our dynamic
instrumenter modifies a method’s activation frame to
include a hidden variable, called 1ocal pool, thatis a
pointer to a separate memory pool. Local information in
a test plan is kept in this buffer and referenced as offsets
from local pool. The memory pool is managed as an
activation stack: An activation is allocated and deallo-
cated in a method’s prologue and epilogue, and
local pool is set to the current activation. On a
thread switch, the RVM switches a thread’s stack, and
hence, local pool will be switched, causing the
memory pool to also be switched.

The concern with GC is where to allocate data and
code space for the instrumentation. If the storage is allo-
cated as part of the application context, then there may
be interactions with GC. In particular, it is difficult for
GC to track references involving binary-level instru-
mentation inserted without its knowledge. To avoid this
problem, the dynamic instrumenter allocates its own
memory from the operating system to hold instrumenta-
tion code and data. This memory buffer is not visible to
the RVM and avoids any interactions with GC.

5.2. Dynamic Instrumentation for the x86

The challenge for the x86, which has wvariable
length instructions, was how to implement fast break-
points. When implementing fast breakpoints there are
essentially two choices. The first choice is to execute the
original instruction as part of the breakpoint handler,
while the second choice copies the original instruction
back to its original location. In the second choice, when
the breakpoint handler completes, control is transferred
back to the original location to execute the instruction.

On the x86, copying the instrumented instruction
back to its original location works better than executing
the instruction in the handler. If the instrumented
instruction is executed in the handler, then instructions
have to be decoded to find instruction boundaries
because an entire instruction must be copied to the han-
dler. Indeed, in some cases, multiple instructions may
have to be copied and executed in the handler because
the breakpoint jump can span several instructions. The
breakpoints do not know anything about the instructions
where a breakpoint is inserted, which significantly sim-
plified their implementation. The trade-off is for a
breakpoint to remain, it must be re-inserted after the
original instruction is executed.

6. Experiments
Using SPECjvm98 benchmarks [18], we performed

experiments to measure Jazz’s performance and mem-
ory needs. The experiments were run on a lightly loaded

2.4 GHz Pentium IV with 1 GB of memory and RedHat
Linux 7.3. All results are averages over three program
runs. The test specification for the experiments covers
all loaded methods. For def-use testing, the specification
selects all variables and all def-use pairs. The test inputs
are the data sets provided in SPECjvm98.

6.1. Branch Coverage Testing

To investigate the efficiency of demand-driven test-
ing, we compared the performance and memory require-
ments of our technique to a traditional approach based
on static instrumentation. For branch testing, the cover-
age on the benchmarks was 38.9% to 58%. Both
approaches reported the same coverages.

Base Performance Memory
Program Time (slowdown) (kilobytes)

(Sec.) |[Demand| Static |[Demand| Static
compress 28.1 1.1 342 7.9 7.5
jess 21.5 1.19 1.71 50.2 60.3
db 44.7 0.98 1.12 9.7 8.9
javac 26.2 1.23 1.38 178.9 186.0
mpegaudio 25.4 1.01 2.2 247 29.5
mtrt 13.8 1.56 2.3 22.4 23.0
jack 17.8 1.16 1.16 73.4 78.0

Figure 5: Branch coverage overhead.

The performance and memory demands of the two
approaches are shown in Table 5. The second column is
the run time of the benchmark without instrumentation.
The third and fourth columns compare the slowdown of
demand-driven testing along a path (“Demand”) and
static instrumentation (“Static”). The slowdown is the
ratio of the run time with testing over the run time with-
out instrumentation. The fifth and sixth columns com-
pare the memory requirements of the two approaches.

The results for static instrumentation were gathered
from a tool that we implemented. This tool instruments
a program’s binary code before run time and does not
remove the instrumentation. It is similar to tools such as
Rational PurifyPlus [9], JCover [10], and Clover [4]. We
implemented our own tool to make it easier to compare
the performance and memory overheads of the demand-
driven and static instrumentation approaches on the
same framework and benchmarks. Both tools do the
same actions at a probe, except the tool with static
instrumentation does not insert or remove probes.

The memory results in Table 5 include the space for
local and global storage, the PLT, and the breakpoint
handler and payload code. Because the memory
demands change as probes are inserted and removed in
the demand-driven approach, the memory sizes are
maximums over a program run.

Performance. The slowdown over uninstrumented
code for the demand-driven approach varies from 0.98
on db to 1.56 on mtrt, with a 1.18 average slowdown.
The performance overhead is related to how quickly

branches are covered. The benchmarks with the best
performance, compress, db, and mpegaudio, have tight
loops that cover edges quickly. In other cases, such as
mtrt, many edges can be covered (50% for mtrt), but
some probes are not as removed quickly and incur over-
head. For example, a probe in m#rt stays 27 times longer
than a probe in mpegaudio. Programs with many try-
catch blocks, such as mtrt, can exhibit this behavior.

In comparison to branch testing with static instru-
mentation, the demand-driven technique is 1.01 to 3.11
times faster (average is 1.63). The ability to remove
probes is important to reducing overhead, particularly in
loops and when coverage converges quickly (i.e., the
same paths are taken). Indeed, probes in the dynamic
approach have a much higher cost (average 806 ns) than
the static probes (average 32 ns), which can be inlined
and do not modify instructions at run time. Yet, the abil-
ity to remove the probes far outweighs their higher cost.

Memory Requirements. Table 6 shows that the
demand-driven approach needs 7.9 to 178.9 (average
52.5) kilobytes of memory. The memory requirements
depend on two factors. First, the size of the result and
PLT tables is important. The table sizes are determined
by the number of basic blocks and how many probes are
inserted/removed in a block. Second, the requirements
depend on the total size of the breakpoint handlers,
which is determined by the maximum number of probes
that are active in the program at any one time. For exam-
ple, javac has 1,116 active probes, where each probe
needs 31 bytes and the memory footprint of the break-
point handlers is 34,596 bytes. compress, on the other
hand, has only 71 active probes, requiring 2,201 bytes.

As Table 5 shows, demand-driven testing usually
has smaller memory requirements than the static
approach. Although PLTs are larger with the dynamic
technique, there are many fewer active probes, resulting
in a smaller memory footprint. In fact, the ability to both
insert and remove probes on-demand keeps the number
of active probes low. For example, jack has 2,025 active
probes in the static technique and requires 78 KB of
memory, while with dynamic instrumentation, it has a
maximum of 473 active probes and 73 KB of memory.

From the results in this section, we conclude that
demand-driven branch coverage testing is effective in
both performance and memory demands. The technique
has much less performance overhead than an equivalent
approach with static instrumentation and its memory
needs are on par or better than the static technique.

6.2. Node and Def-Use Testing

To show the flexibility of our approach to support
other structural tests, we implemented test planners for
node and def-use coverage. For these tests, our tool
reported 75% to 90.6% node coverage and 66.9% to
90.5% def-use coverage. We also measured perfor-
mance and memory requirements, as shown in Table 6.

Performance. Node testing has a small performance
impact, with a maximum slowdown of 1.04 and an aver-
age of 1.03 (excluding mpegaudio). In this test, the
overhead is minimal because probes are removed on-
demand and executed only once. Similar to branch test-
ing, tight loops with large iteration counts quickly amor-
tize the cost of executing a probe only once. In
mpegaudio, performance is improved slightly because
the execution of probes positively affected machine
behavior, such as the instruction cache hit rate.

Def-use has slowdowns from 1.04 to 3.79, with an
average of 2.27. The slowdown depends on how quickly
probes for definitions can be removed. A probe at a def-
inition remains until a// reachable uses are covered. A
probe for a use, on the other hand, can be removed
immediately once it is hit. Hence, probes at definitions
cause most of the test overhead. The number of def-use
pairs is also a factor; it typically take longer to cover a
larger number of pairs. Finally def-use probes are more
expensive (1065 ns average cost vs. 780 ns for branch
coverage), which also contributes to the overhead.

Performance Memory

Program (slowdown) (kilobytes)

Node Def-Use Node Def-Use
compress 1.0 1.41 4.4 43
jess 1.04 3.79 34.1 258.9
db 1.0 1.04 5.0 77.2
javac 1.04 3.07 107.3 1332.7
mpegaudio 0.99 2.45 15.0 114.0
mtrt 1.03 2.05 12.5 90.4
jack 1.03 2.05 46.5 405.6

Figure 6: Node and def-use overhead.

Interestingly, def-use pairs can take a long time to
cover, even when nodes and branches are covered
quickly. Although jess has a 1.04 slowdown for node
testing and 1.19 for branch testing, it has a 3.79 slow-
down for def-use. This benchmark has a large number of
variables with many def-use pairs that are never cov-
ered, which causes probes to remain and incur overhead.
Indeed, jess executes 47 times more probes per second
of run-time than db, leading to a larger slowdown.

Memory Requirements. Node coverage has small
memory demands (4.4-107.3 KB, average 32.1 KB)
because its PLT is small. Def-use has larger memory
requirements, ranging from 43 to 1,332.2 KB (average
332 KB). Typically, def-use inserts and removes more
probes at a location than branch or node coverage, and
hence, the size of a PLT entry and breakpoint handler is
larger. It also takes longer for probes to be removed,
which results in more active probes (e.g., javac has
1,116 active probes in branch testing and 1,663 probes
in def-use testing) and higher memory demands.

As this section has demonstrated, our approach is
flexible and can accommodate several types of coverage

testing. The overheads are particularly encouraging for
such a general and flexible framework.

7. Related Work

There are a number of commercial tools that per-
form coverage testing on Java programs, including
JCover [10], Clover [4] and IBM's Rational PurifyPlus
[9]. Of these tools, only Clover does both branch cover-
age and statement coverage; none do def-use coverage.
Unlike our framework, these tools statically instrument
a program with probes that remain for the entire execu-
tion of the tested program. Our demand-driven approach
does not modify the program source code or class files.
Instead, it operates on binary code, enabling the use of
dynamic instrumentation. Our framework also avoids
unnecessary overhead due to static instrumentation by
removing instrumentation as soon as it is not needed.

Tikir and Hollingsworth [19] use a dynamic tech-
nique for node coverage with Dyninst [8]. As in Jazz,
the Dyninst tool dynamically inserts instrumentation on
method invocations for node coverage. Unlike our
approach however, instrumentation is only removed via
a garbage collection process. Instead of removing
instrumentation as soon as possible, a separate thread
periodically removes the instrumentation. However, this
instrumentation remains until collected, even when it is
not needed. In comparison to their coverage tool, Jazz
works well. They report slowdowns of 1.001 to 2.37
(average 1.36) for C programs, while Jazz’s slowdowns
are 0.99 to 1.04 (average 1.03) for Java programs.
Although it is difficult to directly compare these results,
the demand-driven technique has better performance
because instrumentation is inserted on paths and
removed immediately rather than periodically.

Path profiles can be used to compute code coverage
[1]. Path profiling transforms a CFG into a directed acy-
clic graph (DAG) and assigns values to the nodes so that
each unique path from the entry to the exit of the DAG
produces a unique sum. However, the instrumentation
needed path profiling cannot be removed. Because the
results presented in [1] do not include the overhead for
edge labeling, instrumentation insertion, or path regen-
eration, a performance comparison is difficult.

The concept of fast breakpoints was pioneered by
Kessler [11] but these breakpoints were not applied in a
general manner to dynamically instrument programs for
structural testing. Dynamic instrumentation systems like
PIN [16], Dyninst [8] and Paradyn [12] used a technique
similar to ours to instrument a program. Like our frame-
work, Dyninst is intended to be general, with a language
for specifying instrumentation [8]. However, their
instrumentation techniques were not designed to support
test development.

8. Summary
This paper addresses the need for scalable and flex-
ible testing tools by developing a framework where test

10

specifications are automatically converted to an imple-
mentation of the specifications. The framework is flexi-
ble in that both standard and custom structural tests can
be incorporated into tools created through the frame-
work. Different tests, code regions, code granularities,
and coverages can all be incorporated. The framework
also generates tools that are scalable because the instru-
mentation is dynamically inserted on demand as the pro-
gram executes. Instrumentation is also deleted at the
time it is no longer needed. Experimental results indi-
cate savings in both time and memory over statically
placing instrumentation before program execution.

References

[1] T. Ball and J. R. Larus, “Efficient path profiling”, Int’L
Symp. on Microarchitecture, 1996.

[2] M. Burke, J-D. Choi, S. Sink, et al., “The Jalapeno

dynamic optimizing compiler for Java”, ACM Java

Grande Conference, 1999.

B. Childers, M. L. Soffa, J. Beaver et al., “SoftTest: A

framework for software testing of Java programs”,

Eclipse Technology eXchange Workshop, 2003.

Clover, http://www.cenqua.com/clover/.

Eclipse Integrated Development Environment, http://

www.eclipse.org

P. G. Frankl and E. J. Weyuker, “An applicable family of

data flow testing criteria”, IEEE Trans. on Software Engi-

neering, 14(10), October 1988.

M. J. Harrold and M. L. Soffa, “Interprocedural data flow

testing”, Testing, Analysis and Verification Symp., 1989.

J. Hollingsworth, B. Miller, M. Goncalves, et al., “MDL.:

A language and compiler for dynamic program instru-

mentation”, Conf. on Parallel Architecture and Compila-

tion Techniques, 1997.

[9] IBM, Rational PurifyPlus, http://www.ibm.com/rational.

[10] JCover, http://www.codework.com/JCover/

[11] P. Kessler, “Fast breakpoints: Design and implementa-
tion”, ACM SIGPLAN Conf. on Programming Lan-
guages, Design and Implementation, 1990.

[12] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Holl-
ingsworth, et al., “The Paradyn parallel performance
measurement tools”, IEEE Computer, 11(28), 1995.

[13] L. Osterweil et al., “Strategic directions in software qual-
ity”, ACM Computing Surveys, Vol. 4, 1996.

[14] C. Pavlopoulou and M. Young, “Residual test coverage
monitoring”, Int’l. Conf. on Software Engineering, 1999.

[15] W. Perry, Effective Methods for Software Testing, John
Wiley & Sons, Inc., New York, New York, 1995.

[16] Pin, http://rogue.colorado.edu/Pin/

[17] S. Rapps and E. Weyuker, “Selecting software test data
using data flow information”, IEEE Trans. on Software
Engineering, 11(4):367-375, 1985.

[18] Standard Performance Evaluation Corporation, http://
www.spec.org/jvm98

[19] M. Tikir and J. Hollingsworth, “Efficient instrumentation
for code coverage testing”, Int’l. Symp. on Software Test-
ing and Analysis, 2002.

