
To appear in Proceedings of the Seventh International Conference on Parallel andDistributed Computing Systems, Las Vegas, NV, October 1994.Implementing Lock-Free QueuesJohn D. ValoisDepartment of Computer ScienceRensselaer Polytechnic InstituteTroy, NY 12180AbstractWe study practical techniques for implementing theFIFO queue abstract data type using lock-free datastructures, which synchronize the operations of con-current processes without the use of mutual exclusion.Two new algorithms based on linked lists and arraysare presented. We also propose a new solution to theABA problem associated with the Compare&Swapinstruction. The performance of our linked list algo-rithm is compared several other lock-free queue im-plementations, as well as more conventional lockingtechniques.1 IntroductionConcurrent access to a data structure shared amongseveral processes must be synchronized in order toavoid conicting updates. Conventionally this is doneusing mutual exclusion; processes modify the datastructure only inside a critical section of code, withinwhich the process is guaranteed exclusive access to thedata structure. Typically, on a multiprocessor, criticalsections are guarded with a spin-lock . We will refer toall methods using mutual exclusion as locking or lock-based methods.More recently, researchers have studied methods ofimplementing concurrent data structures which makeno use of mutual exclusion. In an asynchronous envi-ronment such lock-free data structures can have sev-eral advantages. In particular, slow or stopped pro-cesses do not prevent other processes from accessingthe data structure.The FIFO queue is an important abstract datatype, lying at the heart of operating system implemen-tation. Queues are also useful in implementing paral-lel versions of many algorithms, such as quicksort and

branch-and-bound, and are generally useful as a meansof distributing work to a number of processes [14].Many authors have proposed algorithms for lock-freequeues in the literature [6, 8, 11, 12, 16, 18, 19, 20].In the remainder of this paper we examine prac-tical implementations of lock-free FIFO queues. Sec-tion 2 introduces some essential concepts related tolock-free data structures. Sections 3 surveys previouswork and presents a new algorithm for lock-free queuesusing a linked list data structure, and Section 4 dis-cusses how to handle the ABA problem that can oc-cur with these types of algorithms. Section 5 surveysalgorithms based on arrays, and presents our secondnew algorithm. Section 6 reports some preliminary ex-perimental results comparing our algorithms to othertechniques.2 BackgroundOur goal is to design a concurrent queue that sup-ports the normalEnqueue and Dequeue operations.In a concurrent data structure, individual processesexecute single operations sequentially; however, oper-ations by di�erent processes may be in progress simul-taneously. The di�ers from a parallel data structure,in which processes cooperate to perform one or moreoperations together simultaneously, and a sequentialdata structure which can only be accessed by a singleprocess.There are two useful properties that a lock-free datastructure may have. The non-blocking property guar-antees that at least one process executing an operationwill complete within a �nite number of steps, while thewait-free property guarantees that every process willcomplete its operation in a �nite number of steps. Anon-blocking data structure has the property, men-1

tioned in the introduction, that the data structureis always accessible despite processes that may slowdown or halt during an operation. A wait-free datastructure further ensures that no process will starve.Note that a lock-based data structure cannot have ei-ther property, since a process inside the critical sectioncan delay all operations inde�nitely.Other authors have used the terms lock-free andnon-blocking as synonymous, but we �nd it useful todistinguish between algorithms that do not requiremutual exclusion and those that actually provide thenon-blocking property. Several of the algorithms wewill discuss in this paper fall into the former category.We use linearizability [7] as the correctness condi-tion for our data structures. Linearizability impliesthat each operation appears to take place instanta-neously at some point in time, and that the relativeorder of non-concurrent operations is preserved. Inother words, for operations that are not concurrent,the data structure behaves exactly like its sequentialcounterpart. Concurrent operations can take place inany relative sequential order.Universal constructions exist for constructing lock-free data structures from sequential functional algo-rithms [4, 15], or concurrent lock-based algorithms [17,21]. In general, for a simple data structure like aqueue, these methods have far more overhead thanthe algorithms we will be considering.We will assume that the target architecture sup-ports common atomic read-modify-write primitives,such as Fetch&Add (FAA) and Compare&Swap(CSW). FAA atomically reads the value in a mem-ory location, adds another value to it, and writes theresult back into the memory location, returning theoriginal value. CSW takes three values: a memorylocation, an old value, and new value. If the currentvalue of the memory location is equal to the old value,then the new value is written to the memory loca-tion. Thus, CSW atomically writes a new value intoa memory location only if we know its current con-tents. CSW returns a condition code indicating if itis successful or not.We use the following notation in our pseudo-code: ifp is a pointer, then p^ represents the object pointed to,and p :̂�eld refers to a �eld in the object. We assumethat memory allocation and reclamation are provided;memory management is discussed further in Section 4.3 Linked List ImplementationsIn this section we review several proposed algo-rithms for lock-free queues that are based on a linked

list data structure, and we propose a new algorithm.The data structure in all of these algorithms is com-posed of records, each containing two �elds: next, apointer to the next record in the list, and value, thedata value stored in the record. Two global pointers,head and tail, point to records on the list; these point-ers are used to quickly �nd the correct record whendequeuing and enqueuing, respectively.All of these algorithms, with the exception of thealgorithm of Massalin and Pu described in section 3.3,can be implemented using the CSW atomic primitive.3.1 Non-Linearizable MethodsThe use of CSW to implement queues shared bymultiple processors is mentioned in [18], where its orig-inal use is attributed to the early 1970s. A brief men-tion of this method is also in [8].The method works as follows: For a Dequeue op-eration, CSW is used to advance the head pointer for-ward one node in the linked list; the node originallypointed at is now dequeued. For an Enqueue oper-ation, CSW is used to make the tail pointer point atthe new node being enqueued; the new node is thenlinked onto the end of the list.The author omits a discussion of how to handleempty queues; this is not a trivial task, since with anempty queue, concurrent Enqueue and Dequeue op-erations can conict. These algorithms can also resultin non-linearizable behavior.In particular, it is possible for a process performingaDequeue operation to think that the queue is emptywhen it is not if an enqueuing process is slow in linkingthe new node onto the end of the list. Furthermore,if the process halts completely, the list structure isbroken and cannot be repaired, since the only haltedprocess has any knowledge of what link needs to bemade.3.2 Blocking MethodsMellor-Crummey [12] and Stone [19] present ver-sions of the above basic algorithm which �x theseaws. In order to ensure that the queue is linearizable,however, these two algorithms detect when a slow en-queuing process has not yet linked its node to the list,and simply wait. Thus, while they do not employ anymutual exclusion, neither of these two algorithms hasthe non-blocking property.3.3 Non-blocking MethodsPrakash et al . [16] present a queue that is both lin-earizable and non-blocking. Their approach is to take2

a snapshot of the current state of the queue; by us-ing this information, a process is able to complete theoperation of any stalled process that may be blockingit. In order to accomplish this, during an Enqueueoperation, this algorithm �rst uses CSW to link thenew node onto the list, and then uses a second CSWto update tail. (This second CSW is not retried if itfails.) This keeps all of the information necessary foranother process to complete the Enqueue operation(by updating tail) globally accessible.A disadvantage of this algorithm is that because ofthe need to take the snapshot of the queue, enqueuingand dequeuing processes, which would not normallyinterfere with each other, can experience contention.Massalin and Pu have developed lock-free queue al-gorithms as part of a lock-free multiprocessor operat-ing system [11]. Their algorithms rely on a powerfulvariant of Compare&Swap that allows two arbitrarywords to be modi�ed atomically, found on the Mo-torola 65030 processor; we do not consider their algo-rithms in this paper.3.4 A New Lock-Free QueueWe now describe a new lock-free queue algorithm.Pseudo-code for this algorithm appears in Figure 1.Enqueue(x)q new recordq :̂value xq :̂next NULLrepeatp tailsucc Compare&Swap(p :̂next, NULL, q)if succ 6= TRUECompare&Swap(tail; p; p :̂next)until succ = TRUECompare&Swap(tail; p; q)endDequeue()repeatp headif p :̂next = NULLerror queue emptyuntil Compare&Swap(head ; p; p :̂next)return p :̂next :̂valueendFigure 1: Enqueue and Dequeue operations.Like the algorithm of Prakash et al ., for Enqueue

operations our algorithm �rst links the new node tothe end of the list, and then updates the tail pointer.Our Dequeue operation is slightly di�erent, however.Rather than having head point to the node currentlyat the front of the queue, it points at the last nodethat was dequeued. (Thus, the node at the head ofthe queue is the node immediately following the onepointed at by head.)This dummy node at the front of the list ensuresthat both head and tail always point at a node on thelinked list, thus avoiding problems that occur whenthe queue is empty or contains only a single item. Thistechnique also eliminates contention between enqueu-ing and dequeuing processes even when there is onlya single item in the queue.We no longer need the snapshot of Prakash et al .'salgorithm, since the only intermediate state that thequeue can be in is if the tail pointer has not been up-dated. A process performing an Enqueue operationwill discover this when its �rst CSW returns unsuc-cessfully, and it can then attempt to update tail itself.Figure 2 shows a queue implemented as describedin this section. Notice that a process is in the midstof enqueuing item C, and that the tail pointer has notyet been updated.
A B C

Head TailFigure 2: Queue in a linked list.There a several strategies we can use when retry-ing operations. In the code above, we employ a strictpolicy regarding the positioning of the tail pointer; italways points to the last node on the list or the oneimmediately preceding it. This is accomplished by thesecond CSW instruction, which attempts to updatethe tail pointer if the process fails to enqueue its ownnode.An alternative policy is to treat the tail as onlya \hint" to the location of the last node on the list,pointing to a node that is fairly close to but possi-bly not exactly at the end of the list. Figure 3 givespseudo-code implementing this policy.The following theorem shows that the maximumdistance from the end of the list that the tail pointercan stray is limited by the number of concurrent En-queue operations.3

Enqueue(x)q new recordq :̂value xq :̂next NULLp tailoldp prepeatwhile p :̂next 6= NULLp p :̂nextuntil Compare&Swap(p :̂next, NULL, q)Compare&Swap(tail; oldp; q)endFigure 3: Enqueue using alternative policy.Theorem 1 If p concurrent processes are performingqueue operations, tail points to a node at most 2p� 1node from the end of the list.Proof: We need only consider processes performingEnqueue operations. Consider the last operation thatsucceeded in setting the tail pointer. At most p � 1other operations could have completed Enqueue op-erations, adding nodes to the end of the list, but failedto update tail due to a conict with the �rst process.There are also at most p concurrent Enqueue opera-tions that have inserted a node onto the list but notyet attempted to change the tail pointer.Yet a third alternative exists. Experiments withimplementations of the above two policies indicatedthat the second policy resulted in enqueuing processesspending the majority of their time traversing thelinked list, and using the �rst policy resulted in unduecontention from the second CSW instruction. (Intu-itively, the second CSW instruction was superuous,since most of the time when a process fails to link anitem onto the end of the list, the process that wassuccessful will have already updated tail.)These observations lead to a third policy, in whichprocesses never update the tail pointer unless theyhave just successfully linked a new item onto thelist. (This is simply the code in Figure 1 with theif � � � Compare&Swap(� � �) deleted). Our experi-ments have shown this policy to result in the fastestcode under conditions in which processes do not stallor stop.Unfortunately, this change has the side e�ect of de-stroying the non-blocking property, since if a stoppedenqueuing process fails to update the tail pointer nofurther enqueues can succeed. However, the non-blocking property can be restored by implementing

a hybrid of the second and third policies; if the tailpointer is not updated, after a few tries an enqueuingprocess can simply search for the end of the list andupdate tail itself.4 The ABA ProblemIn the algorithms discussed in the last section,CSW is used in the following way: a pointer in thedata structure is read, some computation is done todetermine how to change the data structure, and thenCSW is used to write a new value to the pointer onlyif it has not changed in the interim. A subtle prob-lem can arise due to the fact that the CSW instruc-tion does not really ensure that the pointer has notchanged, but only that it has a certain value. If thepointer has changed, but by coincidence has the samevalue that it did when we originally read it, then theCSW instruction will succeed when it should fail.To see how this problem can occur with our lock-free queue algorithm, consider a process that is at-tempting to dequeue an item. This process will readthe value of head, determine the address of the secondnode on the linked list (by following the next of the�rst node), and then use CSW to make head point atthe second node. If head has changed (due to otherprocesses completing Dequeue operations), then theCSW instruction should fail. However, suppose thatthe block of memory making up the �rst node on thelist is \recycled" and reused as a new node which isenqueued (after our process has already read the headpointer, but before it has tried the CSW). If this nodehappens to work its way up to the front of the list, thenwhen our process performs its CSW, it will succeed,most likely corrupting the linked list structure.This problem is known as the ABA problem [9]. Theconventional solution to this problem has been to makeuse of a variant of CSW that operates on two adja-cent words of memory at a time; one word is used tohold the pointer, and the other word is used to holda tag that is incremented every time the pointer ischanged. In this way, even if the pointer changes andthen changes back to its original value, the tag willhave changed and the CSW operation will not suc-ceed.4.1 The Safe Read ProtocolThe preceding solution, in addition to requiring astronger version of CSW, only makes it unlikely thatthe ABA problem will occur. In this section we pro-pose an alternative solution that does not require a4

double word version of CSW and which guaranteesthat the ABA problem will not occur.We observe that when we are using CSW to ma-nipulate pointers, the root cause of the ABA problemcan be attributed to nodes being recycled and reusedwhile some processes are still looking at them. Thus,we view the ABA problem as one of memory manage-ment. To solve it, we keep track of when it is safeto recycle a node by assigning each node a referencecount, and not reusing a node until its reference counthas gone to zero.It is necessary to ensure that a process, when follow-ing a pointer in the data structure, atomically readsthe pointer and increments the reference count of thepointed-at node. We call this operation a safe read .Pseudo-code for this operation is given in Figure 4.A corresponding Release operation is used to decre-SafeRead(q)loop:p q :̂nextif p = NULL thenreturn pFetch&Add(p :̂refct; 1)if p = q :̂next thenreturn pelseRelease(p)goto loopend Figure 4: SafeRead operation.ment the reference count when a process is done withthe pointer. If the count becomes zero, the memoryblock can be recycled.The SafeRead and Release operations are partof presumed to be supported by the underlying mem-ory management library, which would also provide theusual Alloc and Free operations. Further detailson how to implement such a library providing lock-free versions of these four operations can be found inthe author's PhD thesis [22].5 Array ImplementationsIt is common to implement sequential queues us-ing a \circular array" data structure. This type ofdata structure has the advantage of lower overheadover linked list structures, since there is no need fornext pointers, and it is unnecessary to allocate anddeallocate memory on every operation.

Herlihy and Wing [7] present an array based queuethat is non-blocking and linearizable, but which re-quires an array of in�nite length. Wing and Gong [23]propose a modi�cation to this algorithm removing theneed for an in�nite array; however, for both algorithmsthe running time of the Dequeue operation degradesas more Enqueue operations are done. An algorithmproposed by Treiber [20] also su�ers from poor perfor-mance.Gottlieb et al . [3] present an algorithm that is e�-cient, but which blocks under certain conditions. Al-though the probability of blocking occurring can bemade smaller by increasing the size of the array used,it is not a true non-blocking algorithm.5.1 A New AlgorithmWe present a new algorithm for a lock-free queuebased on an array. The algorithm is both non-blockingand linearizable. Our approach di�ers from previousalgorithms in that it uses the CSW instruction, ratherthan the FAA instruction. The algorithms in the pre-vious section all use FAA to allocate a position in thearray when enqueuing.The array is set up as a standard circular array. Inaddition to the data values the user wishes to storein the queue, there are three special values: HEAD,TAIL, and EMPTY. Initially, every location in thearray is set to EMPTY, with the exception of twoadjacent locations which are set to HEAD and TAIL.This represents the empty queue.The algorithm works as follows. To enqueue thevalue x, a process �nds the (unique) location con-taining the special TAIL value. The double-word1Compare&Swap operation is then used to changethe two adjacent locations from hTAIL;EMPTY i tohx; TAILi. Note that if the location adjacent to theone containing TAIL is not EMPTY, then the queueis full and the operation aborts.The Dequeue operation works in a similar manner,by using the CSW operation to change two adjacentlocations from hHEAD; xi to hEMPTY;HEADi, re-turning the value x (provided of course that x was notTAIL, in which case the queue was empty).In order to quickly �nd the locations in the arraycontaining the values HEAD and TAIL, we keep twocounts; the number of Enqueue and the number ofDequeue operations, modulo the size of the array.The counts are incremented (using FAA) whenever aprocess completes an operation, and can be used todetermine the location of the HEAD or TAIL values1The standard version of CSW could also be used, providedthe data values to be stored were half-words.5

to within p, where p is the number of concurrent pro-cesses. Note that keeping the indices of the ends ofthe queue in variables using CSW would not work,due to the ABA problem, and since we cannot pre-vent indices from being reused, the safe read protocolcannot be applied.Figure 5 shows the same queue as in Figure 2, onlyimplemented as described in this section. Again, no-tice that a process is in the midst of enqueuing itemC, and that the tail count variable has not yet beenincremented.
CBA

10 2 3 4 5 6

Head count = 1

Tail count = 4

EMPTY EMPTYHEAD TAILFigure 5: Queue in a circular array.This technique can also be used to provide lock-free stack and deque (double ended queue) abstractdata types. However, it does have a subtle problem:on real machines, memory operations must be aligned.Our algorithm requires an unaligned CSW for everyother operation, and thus would be infeasible on a realmachine.6 Experimental ResultsIt is di�cult to characterize the performance ofthese types of concurrent algorithms, since their run-ning time depends on the number of concurrent pro-cesses. For the algorithms in this paper, a sequenceof operations will take time proportional to the prod-uct of the number of operations and the number ofconcurrent processes.Theorem 2 A sequence of n queue operations willtake O(np) time.Proof: The following proof can be generalized to anyof the algorithms in this paper. Note that in the casethat there is no contention from other processes, anoperation will complete in constant time. Contentioncauses processes to do more work due to two things:looking for the proper place in the data structure toperform the operation (e.g., traversing nodes to �ndthe end of the linked list), and retrying failed CSWoperations.

Note that from Theorem 1, the time to �nd the endof the linked list from the tail pointer is at most O(p).For the array implementation, the enqueue and de-queue operation counters will also be within O(p) oftheir \correct" value, since at most p processes willhave performed an operation but not incremented thecounter.New items may be added to the linked list (or thearray) while an operation is in progress. The work totraverse over these items will total O(np), since eachoperation can cause at most p � 1 concurrent opera-tions to have to traverse its item.Finally, by a similar argument, the total work toretry failed CSW operations is O(np) as well. Thebound follows.This bound reects the worst-case behavior. Inorder to better compare the performance of the dif-ferent lock-free algorithms discussed in this paper, aswell as equivalent lock-based algorithms, we have im-plemented several of them using the Proteus parallelarchitecture simulator [2]. All numerical results arequoted in \cycles" as simulated by Proteus.To asses the performance of these algorithms, wemeasured two quantities: the sequential latency ofeach operation (i.e., the time for an operation tobe performed with no contention from other pro-cesses), and the latency of each operation under vary-ing amounts of contention from concurrent operations.Contention was modeled by assuming an in�nite num-ber of processors which performed queue operationswith interarrival times following an exponential distri-bution.In addition to the lock-free data structures de-scribed in Section 3, we also implemented a concurrentqueue using mutual exclusion. We tested the follow-ing lockingmechanisms: simple test-and-set locks, testand test-and-set locks, and the ticket locks and queuelocks of Mellor-Crummey and Scott [13].In order to measure only the algorithm perfor-mance, we did not implement the safe read protocol inour tests; we avoid the ABA problem by not reusingnodes on the linked list. In addition, to remove theoverhead of memory allocation from our results, weuse a pre-allocated bu�er of nodes for the tests.Some method of managing contention between pro-cesses is necessary, typically by \backing o�" after afailed CSW or lock acquisition. This type of backo�can be very sensitive to tuning parameters; however,for these initial experiments, we used the same back-o� algorithm (a simple exponential backo�) for all al-gorithms, with the exception of the ticket and queue6

locks. Ticket locks use a proportional backo� proce-dure, while queue locks do not require any backo�.6.1 Latency Under ContentionFigure 6 graphs the average latency of the En-queue operation. These results represent the meanover 1000 operations, at varying levels of contention(as measured by the average interarrival time of oper-ations). Figure 7 shows the same results for the De-queue operation.
0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

A
vg

. C
yc

le
s

Interarrival time

Enqueue operation

"Valois"
"Queue_lock"

"TATAS"
"Prakash"

"Stone"
"TAS"

"Ticket_lock"

Figure 6: Average latency for Enqueue operation.
0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600 700 800 900 1000

A
vg

. C
yc

le
s

Interarrival time

Dequeue operation

"Valois"
"Queue_lock"

"TATAS"
"Prakash"

"Stone"
"TAS"

"Ticket_lock"

Figure 7: Average latency for Dequeue operation.Our preliminary results indicate that lock-freequeues are competitive with data structures using mu-tual exclusion. The algorithm presented in this paperis not only e�cient, but is non-blocking and provideslinearizable behavior, making it promising for practi-cal applications.

Algorithm Enqueue DequeueStone 77 85Valois 81 73test & test-and-set 129 94test-and-set 136 100Prakash et al . 145 146ticket lock 158 122Queue lock 228 197Table 1: Sequential latency of queue operations.6.2 Sequential LatencyTable 1 contains the results of the sequential latencytests.The algorithmof Stone and the algorithmpresentedin this paper are the two fastest. This can be at-tributed to their simplicity; for the sequential case,when there is no contention, the algorithms executeonly a few instructions.7 SummaryWe have presented two new data structures and al-gorithms for implementing a concurrent queue whichis non-blocking and linearizable. We have also pro-posed a new solution to the ABA problem. Initialexperiments comparing our �rst algorithm to otheralternatives, including data structures using mutualexclusion, indicate that it is practical.7.1 Future ResearchFurther experiments are needed to determine theperformance of these algorithms under varying condi-tions. For example, the lock-free approach is attrac-tive if processes can su�er slow-downs inside of theircritical section; experiments are needed to determineunder what conditions lock-free data structures out-perform their lock-based counterparts.In this paper we have focused on the queue ab-stract data type; other data types could bene�t fromlock-free methods as well. Other researchers have pre-sented lock-free algorithms for a variety of problems,including disjoint-sets [1], garbage collection [5], prior-ity queues [10], and a multiprocessor operating systemkernel [11]. We are currently investigating implemen-tations of other lock-free data structures such as linkedlists and binary search trees [22].7

The universal constructions mentioned in Section 2can provide lock-free data structures with the wait-free property. While this is a desirable property, itgenerally requires providing a higher level of coordi-nation among the processes, and introduces a largeoverhead. We believe a better approach is to ensurefairness through scheduling and backo� policy. Morework is needed in determining how best to do this.The array-based implementation presented in Sec-tion 5 is not feasible on real machines due to alignmentproblems. However, the algorithm is far more e�cientthat other solutions using arrays. Is there an algo-rithm that is both realistic and e�cient ?Lock-free data structures provide an alternativemethod of synchronization which can have advantagesover spin-locking. Research is needed to determinethe extent of these advantages, and how they can beexploited in applications.References[1] R. Anderson and H. Woll. Wait-free parallel algo-rithms for the union-�nd problem. In Proceedingsof the 23rd ACM Symposium on Theory of Com-putation, pages 370{380, 1991.[2] E. Brewer, C. Dellarocas, A. Colbrook, andW. Weihl. Proteus: A high-performanceparallel-architecture simulator. In Proceedingsof the 1992 ACM SIGMETRICS and PERFOR-MANCE '92 Conference, June 1992.[3] A. Gottlieb, B. Lubachevsky, and L. Rudolph.Basic techniques for the e�cient coordination ofvery large numbers of cooperating sequential pro-cessors. ACM Transactions on Programming Lan-guages and Systems, 5(2):164{189, April 1983.[4] M. Herlihy. A methodology for implementinghighly concurrent data structures. In SecondACM SIGPLAN Symposium on Principles andPractice of Parallel Programming, pages 197{206,1990.[5] M. Herlihy and J. Moss. Lock-free garbage collec-tion for multiprocessors. In Proceedings of the 3rdAnnual ACM Symposium on Parallel Algorithmsand Architectures, pages 229{236, July 1991.[6] M. Herlihy and J. Wing. Axioms for concurrentobjects. In 14th ACM Symposium on Principlesof Programming Languages, pages 13{26, 1987.

[7] M. Herlihy and J. Wing. Linearizability: A cor-rectness condition for concurrent objects. ACMTransactions on Programming Languages andSystems, 12(3):463{492, July 1990.[8] K. Hwang and F. Briggs. Computer Architectureand Parallel Processing, pages 559{562. McGraw-Hill, 1985.[9] IBM T.J. Watson Research Center. System/370Principles of Operation, 1983.[10] A. Israeli and L. Rappoport. E�cient wait-freeimplementation of a concurrent priority queue. InProceedings of the 1993 Workshop on DistributedAlgorithms, pages 1{16, 1993.[11] H. Massalin and C. Pu. A lock-free multiproces-sor OS kernel. Technical Report CUCS{005{91,Columbia University, New York, NY, 1991.[12] J. Mellor-Crummey. Concurrent queues: Practi-cal fetch-and-� algorithms. Technical Report 229,University of Rochester, November 1987.[13] J. Mellor-Crummey and M. Scott. Algorithms forscalable synchronization on shared-memory mul-tiprocessors. ACM Transactions On ComputerSystems, 9:21{65, February 1991.[14] Peter Moller-Nielsen and Jorgen Staunstrup.Problem-heap: A paradigm for multiprocessor al-gorithms. Parallel Computing, 4:63{74, 1987.[15] S. Plotkin. Sticky bits and universality of con-sensus. In Proceedings 8th ACM Symposium onPrinciples of Distributed Computing, pages 159{175, August 1989.[16] S. Prakash, Y. Lee, and T. Johnson. Anon-blocking algorithm for shared queues usingcompare-and-swap. In Proccedings 1991 Inter-national Conference on Parallel Processing, vol-ume 2, pages 68{75, 1991.[17] S. Prakash, Y. Lee, and T. Johnson. Non-blockingalgorithms for concurrent data structures. Tech-nical Report TR91{002, University of Florida,1991.[18] R. Sites. Operating systems and computer archi-tecture. In H. Stone, editor, Introduction to Com-puter Architecture, chapter 12, pages 594{604.Science Research Associates, 2nd edition, 1980.[19] J. Stone. A simple and correct shared-queue algo-rithm using Compare-and-Swap. In Proceedingsof Supercomputing '90, pages 495{504, 1990.8

[20] R. K. Treiber. Systems programming: Copingwith parallelism. Technical Report RJ 5118, IBMAlmaden Research Center, April 1986.[21] J. Turek. Resilient Computation in the Presenceof Slowdowns. PhD thesis, New York University,1991.[22] J. Valois. PhD thesis, Rensselaer Polytechnic In-stitute, Troy, NY, in preparation.[23] J. Wing and C. Gong. A library of concurrentobjects and their proofs of correctness. TechnicalReport CMU{CS{90{151, Carnegie Mellon Uni-versity, 1990.

9

