
Varbench: an Experimental Framework to Measure and
Characterize Performance Variability

Brian Kocoloski
Department of Computer Science & Engineering

Washington University in St. Louis
brian.kocoloski@wustl.edu

John Lange
Department of Computer Science

University of Pittsburgh
jacklange@cs.pitt.edu

ABSTRACT
Performance variability is a major problem for extreme scale paral-
lel computing applications that rely on bulk synchronization and
collective communication. While this problem is most prominent in
the context of exascale systems, it is increasingly impacting other
communities such as machine learning and graph analytics. In this
paper, we present an experimental performance analysis framework
called varbench that is designed to precisely measure the preva-
lence of performance variability in a system, as well as to support
workload characterization with respect to how and when a work-
load generates variability. We demonstrate several of varbench’s
capabilities as they pertain to exascale-class systems, including its
utility for discovering architectural trends, for performing cross-
architectural comparisons, and for understanding key statistical
properties of performance distributions that have implications for
how system software should be designed to mitigate variability.

CCS CONCEPTS
•General and reference→Measurement;Performance; •Com-
puter systems organization→ Multicore architectures;
ACM Reference Format:
Brian Kocoloski and John Lange. 2018. Varbench: an Experimental Frame-
work to Measure and Characterize Performance Variability. In ICPP 2018:
47th International Conference on Parallel Processing, August 13–16, 2018, Eu-
gene, OR, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3225058.3225125

1 INTRODUCTION
Bulk Synchronous Parallelism (BSP) still dominates the application
sets targeted by exascale system architectures. BSP applications ex-
ecute in “lockstep,” alternating between concurrent distributed com-
putation and collective synchronization across the system. While
BSP has long been the primary parallel programming model used in
the High Performance Computing (HPC) community, recent years
have seen increasing adoption of BSP in other communities as well,
such as large scale graph processing [23] and machine learning [2].
It is thus likely that problems addressed in exascale systems will be
relevant to other environments beyond those targeting HPC.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP 2018, August 13–16, 2018, Eugene, OR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6510-9/18/08. . . $15.00
https://doi.org/10.1145/3225058.3225125

One of the main challenges faced by BSP workloads is perfor-
mance variability. When different parallel tasks require different
amounts of time between global synchronization phases, workload
imbalance arises, and runtime and energy efficiency are determined
by the “worst” performing processors or tasks in the machine. De-
spite the fact that variability is a well-known problem in the HPC
community, with a plethora of different sources of variability iden-
tified at the application [3], system software [17], and hardware
levels [9, 10], it remains a major issue. As an example, in a set of
NERSC Petascale machines, up to 75% of the aggregate process-
ing time across all processors can be spent “waiting” for global
communication and synchronization [15].

While variability has long been a challenge for HPC systems,
there are indications it will be harder to manage in the future. With
the focus at exascale shifting towards designing more energy ef-
ficient machines, the manner in which HPC systems will be built,
programmed and utilized could change in substantial ways that
will likely cause more variability. At the hardware level, many-core
node architectures are becomingmore complex, heterogeneous, and
interconnected than ever, with hundreds to thousands of cores per
node, deep memory hierarchies, more heterogeneous processing
elements, and complex on-chip interconnect topologies. At the ap-
plication level, workloads are becoming more data driven [19] with
workflows [6] that have a strong dependence on I/O performance
in addition to computation and network based communication.
Finally, at the broader system level, it is likely that systems will
not be solely batch-scheduled entities serving one user at a time,
but rather will schedule workflows from multiple users at a time
that more appropriately reflect the data-driven nature of future
applications, as well as to more efficiently utilize energy.

The problem we address in this paper is that there is currently
no common performance evaluation framework with which to
measure the presence of variability on a system. While many tech-
niques offer solutions to specific problems in specific applications,
it is hard to generalize solutions because it is hard to determine
how variability compares across hardware, workloads, and system
configurations. This paper addresses this issue by introducing the
varbench framework. Varbench is a modular, extensible, experimen-
tal performance analysis framework that allows users to measure
the extent to which performance variability arises on a given plat-
form. Varbench utilizes a BSP-style computation/synchronization
model to facilitate the execution, in parallel, of a user-configurable,
iterative computational kernel across each processor in the system,
and performs global synchronization between successive iterations
in order to measure variability across periods of parallel execution.

Varbench brings two main capabilities to users. First, it pro-
vides a common performance evaluation framework to measure

https://doi.org/10.1145/3225058.3225125
https://doi.org/10.1145/3225058.3225125
https://doi.org/10.1145/3225058.3225125

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Brian Kocoloski and John Lange

variability across different architectures, or with a different con-
figuration of system resources within an architecture (e.g., use of
hyperthreads, TurboBoost, power cap levels, etc.). In comparison
to mini-applications that project performance and/or scalability for
real world applications, varbench is designed to focus solely on vari-
ability. Secondly, varbench provides fine-grained measurements of
variability that are useful beyond determining whether one system
has “more” or “less” variability than another. These measurements
allow users to, for example, determine whether variability mani-
fests as infrequent but extreme outliers, frequent but less extreme
outliers, or other statistical profiles. Such distinctions are impor-
tant because they suggest whether a given mitigating approach –
such as predicting future variability based on past observations –
is appropriate or not for a system.

In this paper we demonstrate varbench’s utility by performing
a detailed experimental analysis of low-level hardware variability.
We summarize several of our findings, including that hardware per-
formance is increasingly temporally variable, as opposed to simply
spatially variable as assumed in several HPC middlewares/runtimes
that adapt to performance imbalance. We also find that variability
continues to increase both spatially and temporally in more recent
version of common server architectures. Finally, we demonstrate
how varbench can shed light on the impact of tunable system crite-
ria, such as power capping mechanisms. To summarize, the primary
contributions of this paper are:

(1) We identify concise, expressive statistical criteria that reflect
key characteristics of variability in BSP-style workloads.

(2) We present a new performance evaluation framework, var-
bench, that provides a common set of low level workloads
and has an easily extensible designwithwhich to incorporate
new workloads. Varbench provides precise measurements
to characterize spatial and temporal variability.

(3) We perform case studies using varbench to illustrate its util-
ity. Our evaluation shows (i) the prevalence of temporal
variability in hardware performance, (ii) the exacerbating
impacts of heterogeneous resources on spatial variability,
and (iii) the influence of tunable system parameters in the
case of node-level power caps.

2 RELATEDWORK
Performance variability is a well-studied issue in the HPC commu-
nity, with many different sources identified at different levels of the
system stack. Applications themselves can be sources, as it can be a
challenge to evenly balance workload across all tasks [3]. The oper-
ating system can generate variability through untimely preemption
or interrupt handling, resulting in OS interference or “noise” [17].
At the broader cluster/system level, variability arises from from net-
work congestion [24], heterogeneity [28] or workload contention
from nearby jobs [4]. Variability also arises from hardware, either
due to manufacturing variation [9], contention for architectural
resources [10] or even intrinsically due to non-uniform resource
performance in heterogeneous systems [5]. Finally, variability arises
from I/O subsystems [21].

Due to the many diverse sources of variability, there have been
several different proposals and techniques to mitigate it. Task-
based runtimes [13, 14] attempt to load balance in response to

Hardware or
Software Induced External Induced

Spatially
Variant

Application-level
Imbalance [3]

Process Variation [9]
Network Heterogeneity [28]
Many-Core Architectures [5]

Temporally
Variant

Resource
Contention [4]

Network Congestion [24]
Power Heterogeneity [27]

OS noise [17] Intrinsic HW Variability [10]
IO Variability [21]

Table 1: A Taxonomy of Variability Characteristics with
Sources Expected in Exascale Systems

application-induced imbalance. Lightweight operating systems [11,
26] eliminate unnecessary system services from commodity OSes
and thus reduce OS-level interference. Other approaches model
specific sources of variability and apply techniques such as speed
scaling [16, 31, 33] to optimize program behavior in its presence.
Though there has been much work to address specific issues, there
has not been much convergence towards a single or small set of
techniques, and it is still an open question as to which of these tech-
niques should be the prevalent strategy in the future. With exascale
computing further driving significant changes in how machines
will be programmed and utilized, including via techniques such as
power capping [27] and in situ co-scheduling of applications [20],
assumptions underlying existing approaches may be changing, so
it is even less clear what the correct strategies are moving forward.

We believe that by characterizing performance variability, it will
be possible to better understand how differentmitigating techniques
relate to each other, and to project whether or not a technique may
be able to address a particular class of variability in the future. Ta-
ble 1 illustrates one of the key criteria that distinguishes sources of
variability from each other, which is the extent to which imbalance
varies only spatially across tasks, meaning some are consistently
higher/lower performing than others, versus the extent to which
performance varies temporally within the same task over time. As
the table shows, it is possible to categorize many sources of variabil-
ity on today’s machines with this characteristic. One example of
why this is valuable is that, if variability on a new platform exhibits
some characteristics that place it in one quadrant of the table, it indi-
cates that some mitigating techniques will be unlikely to address it.
For example, lightweight kernels, which are designed to eliminate
rare temporal outliers resulting from transient OS interruptions, are
unlikely to address sources that exhibit similar behavior to those
on the top half of the table.

2.1 Beyond BSP
While the high-level performance implications of variability are
well understood for HPC workloads, we note that variability is
an issue for applications outside of HPC. Many applications value
consistency from a computer system as much as, if not more than,
maximal but inconsistent performance. This is true for applications
in distributed cloud and data-center environments, particularly for
latency sensitive and/or real-time applications, where inconsisten-
cies make it challenging to provide guaranteed levels of service [18].

Varbench: Characterizing Performance Variability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

While we leverage BSP-style workloads to measure and character-
ize variability, we note the benefits provided by characterization
are not limited to only BSP applications.

3 A CASE FOR CHARACTERIZATION
We claim that there is significant value in characterizing perfor-
mance variability on a particular system. In this section, we moti-
vate why characterizing variability is important, and why charac-
terization can be a useful tool for researchers designing hardware
and software for exascale machines. Sections 4 and 5 will then in-
troduce the workloads our framework, varbench, provides as well
as the statistical methods we use to perform characterizations.

3.1 Identifying Trends and Revisiting
Assumptions

Having a common framework to measure variability will be useful
for identifying trends and tracking the progression of key work-
loads over time in different environments. In this paper we discuss
several trends we have identified with this approach, including
that (1) hardware performance can be highly temporal in nature,
varying over the lifetime of a workload, particularly when stressing
shared architectural resources; (2) newer generations of architec-
tures generally exhibit more variability than past generations when
executing the same workload; and (3) that heterogeneous resources
tend to further exacerbate the issue. In addition, we have found that
previously identified issues such as chronically “slow” nodes do
exist in some cases, but that they are workload dependent and more
likely to occur for workloads that exhibit high temporal variability.
These results are discussed in Section 6.

3.2 Considering Candidate Solutions
Mitigating performance variability has long been a primary goal
of HPC system software environments, both by identifying and
removing sources that can be eliminated [26] as well as by adapting
application behaviors to account for it. In the latter case, several
parallel runtimes have incorporated mechanisms that either bal-
ance load [13, 14] based on emergent imbalances or apply energy
optimization techniques such as speed scaling [31, 33] in order to
save energy on the faster processors that are likely to be idle as
they wait for the slower ones to catch up.

In the application space, assumptions are oftenmade tomaximize
the possible energy or performance gain. For example, Adagio [31]
reduces energy consumption by monitoring each recurring MPI
collective call in a program, and during runtime observes perfor-
mance imbalance at these collectives. The system assumes that
past imbalances are predictive of the future state of the system,
and so configures non-uniform CPU frequencies across different
processors to balance execution based on the predicted imbalances.
Similar assumptions are made in parallel runtime systems such as
Charm++ [14], which periodically observes workload imbalance to
migrate tasks across a distributed system based on the assumption
that whatever generated the imbalance will persist in the future.

While these approaches are able to address load imbalances re-
sulting from consistent behaviors, as we observe in this work, they
are not appropriate solutions for all forms of performance variabil-
ity. These and other systems are primarily designed to measure

application induced workload imbalance that results from intrinsic
challenges in balancing application workloads [3], which tend to
naturally drift into unbalanced states. However, when variability
arises from forces external to the application, such as the operating
system [17], or intrinsically from the hardware itself, it is less clear
that imbalances observed in the past will provide predictability
for future iterations. A key benefit of characterizing variability is
that distinctions such as the presence of temporal variability can
be concisely quantified, and thus it can be determined whether or
not a particular technique is likely to be successful at mitigating
variability on a new architecture or platform.

3.3 Understanding Architectural Differences
The exascale-driven emphasis on power and energy efficiency has
led to interest in more energy efficient architectures, including
those based on ARM [29], and SPARC [25]. While HPC systems
have been predominantly composed of x86 processors for the past
two decades [1], there are several factors converging to threaten
its dominance, including the advent of heterogeneous computing
combined with more energy efficient processors. Previous work
has shown that some processors generate more variability than
others [34]; it is important to further understand how to character-
ize variability on these architectures, and whether or not different
processors lead to different performance profiles.

In addition to ISA diversity, on-chip resource heterogeneity is
increasingly being adopted in large scale HPC systems, with archi-
tectures such as Intel Xeon Phi [32] now deployed on a significant
fraction of the Top500 [1], including 4 of the current top 10 systems.
As systems increasingly incorporate heterogeneous processors such
as GPUs and FPGAs, multiple memory technologies [12], and more
complex interconnects (PCIe, QPI/EPYC, NVLink, etc.) to move data
between components, it is likely that workloads exercising these
resources will experience more variability than the same workloads
leveraging more homogeneous legacy architectures with simpler
and more direct access modalities. While we do note focus on cross-
ISA differences in this paper, we characterize hardware variability
in both Xeon Phi and Xeon server architectures.

3.4 Determining Impact of Configurations
The push towards exascale computing has been sufficiently chal-
lenging to drive innovations across many layers of the system stack.
One of the primary reasons has been the need for better energy
efficiency compared to recent generations of HPC systems. To this
end, a significant focus has been placed on solutions that limit
power consumption. Some techniques throttle resources such as
CPU frequency at opportune times [31, 33], usually in response
to observed workload imbalance. Other techniques incorporate
power budgets for applications [27] and enforce them via node-
level tuning mechanisms, such as Intel’s RAPL [8]. Beyond directly
controlling power consumption, others have proposed ways to im-
prove energy efficiency by more intelligently scheduling workloads
to share resources and limit data movement, e.g., by co-running
components of a job in situ [20] on the same nodes.

Characterizing performance variability across multiple system
configurations will allow the analysis of the impact of these op-
tions on program behavior. We note that such comparisons are not

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Brian Kocoloski and John Lange

only useful for understanding whether a particular configuration
increases or decreases variability, but also whether other statistical
characteristics – such as the prevalence of temporal variability –
change as a result of the configuration. Because it is computation-
ally expensive to perform large scale application runs, we believe
characterizing variability at small scale to project large scale impact
is a key capability of our framework.

4 VARBENCH
In this section we introduce a new performance analysis frame-
work, varbench. Varbench’s design was guided by three high level
goals: (1) to provide a set of computational kernels to measure
performance variability on a platform, and to be easily extensi-
ble to incorporate new kernels as required by users; (2) to collect
precise measurements of variability as needed to perform detailed
characterization - e.g., to characterize spatial as well as temporal
variability; and (3) to provide a common set of performance mea-
surements with which to compare the prevalence of variability
across different workloads and platforms. We will first discuss the
core methodology used to design and implement varbench, and
then illustrate the computational kernels currently provided and
used for the analysis in this paper.

4.1 Methodology
Varbench is designed to behave in a similar manner to Bulk Synchro-
nous Parallel (BSP) applications; that is, each workload alternates
between (i) concurrent computation across all parallel processes and
(ii) global synchronization operations. In general, during concur-
rent computational periods, each processor in the system performs
the same set of operations on a different piece of data, and thus
there are no synchronization or message passing operations in be-
tween global synchronization points, except for workloads that are
designed to measure variability of message passing.

Varbench applications have three logical components: kernels,
instances, and iterations. A kernel is the singular workload running
during the course of the application. Section 4.2 will discuss the
kernels used for this evaluation. An instance can be thought of as
a “rank" in traditional MPI terminology. We thus define concepts
such as spatial and temporal variability based on the degree to
which performance varies across instances (spatial) at a single
point in time, or within the same instance over time (temporal).
Finally, iterations are recurring invocations of a kernel across all
instances in the machine. Each iteration performs the exact same set
of operations as every other iteration. As discussed above, within
an iteration there is no cross-instance communication, and there
are no cross-instance synchronization methods.1 Iterations thus
allow us to study the manifestation of temporal variability.

4.2 Kernels
A varbench kernel is the singular workload running on the machine.
Our vision is that each kernel in the framework will stress a particu-
lar component of an HPC platform. These components may take the
form of specific architectural resources (e.g., the last level cache),
or more broadly represent important workload requirements (e.g.,

1Or, more precisely, there are no explicit communications or synchronizations. The
underlying architecture may impose them implicitly (e.g., cache coherence operations)

Line 0 Line 1 Line 2

Instance 0 Instance 1 Instance 2

« « « «

Figure 1: The Cache False Sharing kernel

message passing over an interconnect, local I/O, etc.). We envision
that users can contribute workload(s) to the framework that reflect
the characteristics of the application(s) they care about, and thus
gain the characterization benefits of the framework.

In this paper we chose to focus specifically on a set of kernels that
stress low level architectural resources. As discussed previously,
architectural diversity is growing in HPC machines, both as a result
of resource heterogeneity as well as the focus on power and energy
efficiency. Our analysis is thus to be understood as an illustration
of how varbench can measure and characterize a specific type of
variability, that which is intrinsically hardware induced, and to
demonstrate interesting lessons learned from that analysis, rather
than a comprehensive analysis of all forms of variability.

Each of the kernels we designed stresses a different low level ar-
chitectural feature.We focus our attention on last level caches (LLC),
memory subsystems, and on-chip interconnect networks, as these
are the resources most commonly shared by threads on modern ar-
chitectures and thus illustrate key differences across architectures.
We now describe the five kernels used for our evaluation.

Cache False Sharing is designed to determine the impact of cache
coherence traffic required to share cache lines among instances. At
a high-level, this kernel measures the impact of frequent coherence
traffic across inter-processor interconnects. The kernel is illustrated
in Figure 1. One instance allocates an array that fits entirely in the
LLC, and every other instance maps this array into its address space.
For each cache line that stores the array’s contents, every instance
“owns" a particular byte with that line. For each byte that it owns,
an instance walks through the array and, with equal probability,
either reads or writes a value from/to that particular byte.

Cache Capacity is designed to measure the impact of parallel
memory requests bringing data from different cores into the LLC.
There is no sharing of cache lines between instances. Instead, each
instance allocates its own private array such that the sum of all
array sizes is equal to two times the LLC capacity. Then, each
instance iterates through its array and alternates between reading
and writing each consecutive byte to generate parallel traffic to the
memory system via capacity misses.

RandomAccess is designed similarly to the RandomAccess bench-
mark from the HPCC suite [22]. In our system, each instance exe-
cutes its own private version of theHPCCRandomAccess algorithm
with no explicit sharing of data. This kernel is a common indicator
of scalability for HPC workloads.

Stream is designed similarly to the STREAM benchmark from the
HPCC suite, a benchmark that measures sustainable memory band-
width in an architecture [22]. As in the case of Random Access, each
instance executes its own private version of Stream without explicit

Varbench: Characterizing Performance Variability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

RV Statistic Interpretation
2 < |RV(S)| < 4 Mesokurtic, with single mode
0 < |RV(S)| < 2 Platykurtic, with broad/multiple modes

RV(S) > 4 Leptokurtic, with “slow" outliers
RV(S) < −4 Leptokurtic, with “fast" outliers

Table 2: Interpreting the RV statistic of a sample

sharing of data. This kernel is designed to measure the impact of
contention for memory controllers among many processors.

Dgemm is designed to measure the performance of matrix-matrix
multiplication, a common HPC workload. Dgemm is also provided
by the HPCC suite, and as in the Random Access and Stream cases,
our implementation consists of private Dgemm executions in each
instance with no explicit sharing. This kernel is designed to be a
more realistic HPC workload which stresses resources in several
resources and subsystems.

5 STATISTICAL METHODOLOGY
This section describes the statistical methodology that supports
characterization of variability. A major focus of our methodology
is to distinguish between spatial and temporal variability in a ker-
nel. While both classes of variability are damaging to application
performance and energy efficiency, the implications that each has
for system software and applications on exascale systems are very
different. For example, workloads that generate spatial variabil-
ity – different processors have difference performance – but for
which performance within a processor is consistent over time can,
in principle, be statically characterized and mitigated in a more
straightforward fashion than kernels that generate greater tempo-
ral variability. This section will describe our statistical formulations
for these classes of variability.

5.1 Quantifying Variability
Our approach is to understand performance measurements as sam-
ples drawn from an underlying probability distribution. Depending
on the class of variability in question, the sample is selected in
different ways. When analyzing temporal variability, we select one
sample per instance that consists of performance measurements
for that instance across all iterations. To analyze spatial variability,
we select one sample per iteration that consists of performance
measurements during that iteration across all instances.

With data organized in this manner, we consider the problem of
characterizing distributions to provide answers to our questions. In
order to quantify the shape of a distribution, we utilize the moments
of the distribution, namely the skewness and kurtosis, to create a
single metric with which to reason about the shape of a sample.
We call this metric the Resource Variability (RV) statistic, and
define it in Equation 1:

RV(S) =

{
−1 ∗ Kurtosis(S), if Skewness(S) < 0
Kurtosis(S), if Skewness(S) ≥ 0

}
(1)

Kurtosis is a measure of tail extremity, and thus indicates the
degree to which sample variance is driven by the presence of out-
liers [35]. A sample with “large" kurtosis has infrequent but extreme
outliers, while a sample with “small" kurtosis does not produce such
outliers. “Large" and “small" are defined in the context of the normal

distribution which has kurtosis of 3. Samples with kurtosis less than,
greater than, or equal to 3 are called platykurtic, leptokurtic, and
mesokurtic, respectively. Skewness, on the other hand, is a measure
of the (a)symmetry of a distribution, and can be used to determine
whether the left hand side tail (shorter runtime) is longer, shorter,
or similar in length to the right hand tail (longer runtime).

With this understanding, Table 2 demonstrates how to interpret
the RV statistic. Samples with 2 < |RV(S)| < 4 have similar tail
extremity to the normal distribution; this does not mean the sam-
ples are normally distributed, but rather that they have a normal
distribution of extreme outliers. Samples with 0 < |RV(S)| < 2
have few outliers, while those with |RV(S)| > 4 have infrequent
but extreme outliers. We note that these interpretations do not
represent specific inflection points in a rigid mathematical sense,
but rather are simple guidelines for interpreting the statistic.

This metric is valuable because it gives a simple way to shape a
relevant sample in order to answer the questions we are interested
in. For example, to determine the extent to which “slow" temporal
outliers exist in a system - that is, individual instances that have
rare slow iterations - we can examine RV ratings for all instances in
a run and look for those with values greater than 4. We can also
use the statistic to determine the prevalence of slow processors by
calculating the RV stat over an iteration rather than an instance.

5.2 Selecting Representative Data Samples
Finally, when selecting samples to study spatial variability, there is
the challenge of selecting data from a single iteration of the kernel.
Because we do not want to capture temporal effects in this sample,
we cannot simply select all data across all processors and iterations.
To select a single iteration to analyze, we formulate the notion of
the most representative iteration, which in a statistical sense is the
iteration whose performance distribution is closest (has the least
distance) from the remaining unselected iterations.

To select this iteration, we calculate the Kolmogorov-Smirnov
statistic [7] for each iteration in the kernel, and then perform pair-
wise invocations of the Kolmogorov-Smirnov test to determine
whether or not a pair of iterations varies at the 95% confidence
interval. To select the most representative iteration, we select the it-
eration that varies from the fewest number of remaining iterations.

6 PERFORMANCE ANALYSIS
The primary goal of our analysis is to demonstrate that our ap-
proach to characterizing variability can produce interesting insights
and provides some of the benefits discussed in Section 3. To this
end, we performed experimental analyses in several different ar-
chitectures and system configurations. In each case, we provide
statistical characterizations and describe how the results give use-
ful information for hardware, system software, and applications
developers on future platforms. We note that these experiments are
not designed to be an exhaustive list of our framework’s capabili-
ties, but to demonstrate some examples of how it can be used and
lessons we learned in the process.

Our first set of experiments were designed to study the preva-
lence of variability across different generations of Intel Xeon server
architectures. These experiments, discussed in Section 6.1, lead to
two interesting observations. The first is that cross-core spatial

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Brian Kocoloski and John Lange

Sandy Bridge Ivy Bridge Haswell Broadwell

0.0

10.0

20.0

30.0

40.0

50.0

60.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(a) Cache Capacity

0.0

5.0

10.0

15.0

20.0

25.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(b) Cache False Sharing

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(c) Random Access

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(d) Stream

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(e) Dgemm

Figure 2: Spatial Variability of Hardware Resource Performance in Different Xeon Architectures

Processor Node Year
Codename Characteristics Released

Intel
“Sandy Bridge"

Dual socket; 6 cores (12 HT) @ 2.2 GHz
12 GB RAM per socket 2009

32 KB L1(i+d), 256 KB L2, 15 MB shared L3

Intel
“Ivy Bridge"

Dual socket; 6 cores (12 HT) @ 2.1 GHz
16 GB RAM per socket 2013

32 KB L1(i+d), 256 KB L2, 15 MB shared L3

Intel
“Haswell"

Dual socket; 12 cores (24 HT) @ 2.3 GHz
64 GB RAM per socket 2013

32 KB L1(i+d), 256 KB L2, 30 MB shared L3

Intel
“Broadwell"

Dual socket; 18 cores (36 HT) @ 2.1 GHz
64 GB RAM per socket 2015

32 KB L1(i+d), 256 KB L2, 45 MB shared L3

Table 3: Characteristics of Xeon Server Architectures

variability has generally become more pronounced in newer, more
recent architectures. The second is that in many cases hardware
performance is temporally variant, meaning that past optimiza-
tions based on static characterizations of processor variation are
not likely to mitigate this class of variability. Our second set of
experiments were designed in a similar fashion to understand how
these findings relate to many-core heterogeneous architectures.
These experiments, presented in Section 6.2, illustrate that spatial
variability is even more pronounced than in homogeneous archi-
tectures, and again that for some classes of workloads performance
can vary greatly over the lifetime of an application.

Finally, our last set of experiments were designed to demonstrate
the usefulness of characterization for studying the impact of tunable
system configurations. As discussed, at exascale we expect a larger
set of possible configuration options, and in general uncertainty re-
garding how to best administer the platform to meet global system
objectives. In this section, we focus on one example in the form of
power capping, showing that different configurations can greatly
influence the prevalence and shape of variability, and thus the scala-
bility of the system environment. Our analysis echoes some results
found previously [30], but further demonstrates non-determinism
in the power capping mechanism itself, a finding enabled by our
detailed characterization of temporal resource variability.

6.1 Variability In Different Xeon Generations
Our first set of experiments was designed to demonstrate the preva-
lence of variability on a set of recent Xeon server architectures.
For these experiments we executed each varbench kernel across
the four processor architectures listed in Table 3. Each kernel was
executed for a period of 100 iterations using 16 instances. Each
instance was pinned to a specific hardware thread on the system,

with both hyperthreads of each core utilized by a separate instance.
In all architectures, 8 instances are executed on each of the two
sockets on the machine, and TurboBoost is disabled to limit the
impact of frequency throttling.

We first analyze the presence of spatial variability across each
instance. Figure 2 illustrates spatial variability for each kernel and
architecture, showing performance during the most representa-
tive iteration (see Section 5.2) from each experiment. Each figure
plots the runtime degradation as a percentage for each instance
compared to the “fastest” instance on the machine. For cache in-
tensive and random access workloads, spatial variability is most
pronounced in the most recent architecture we tested (“Broadwell”).
For both cache-intensive kernels, variability is significantly greater
(30% and 15%, respectively) than the worst performing instances
on any other architecture. Furthermore, in both cases there is a
noticeable drop in performance for about half of the instances on
the machine. In the Cache Capacity kernel, this indicates a lack of
consistency in LLC eviction operations, while in the Cache False
Sharing case this reflects variability in the QPI layer which forwards
cache coherence traffic between sockets. Random Access exhibits
similar degradation, showing that half of the instances experience
about 6% degradation compared to the faster instances. Degrada-
tion is similar across all architectures for Dgemm, which does not
stress shared architectural resources outside of the core to the same
degree as the other kernels, indicating that spatial variability is
largely a function of parallel access to shared resources.

On the other hand, Figure 3 illustrates temporal variability on
these architectures by plotting each instance’s performance range
(max minus min runtime) normalized to its mean across all itera-
tions of the kernel. First, this figure again shows that more recent
architectures2 tend to exhibit much greater temporal variability
than their earlier counterparts. This is true for all kernels, with
Stream the only case of similar performance across all workloads.
To further understand the nature of temporal variability on these
workloads, Figure 4 plots the resource variance (RV, see Section 5.1)
statistic for each instance against its range, showing the three ker-
nels that exhibited the greatest propensity for temporal variability.
Each architecture is represented with a different point type, while
colors reflect different ranges of the RV statistic according to the
interpretations in Table 2: green: − 100 < RV < −4; maroon: − 4 ≤

RV ≥ 4; red: 4 < RV < 100. This illustration is designed to indicate

2“Haswell” and “Broadwell” are similar processor models, with the latter mainly a
die-shrink of the former

Varbench: Characterizing Performance Variability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

Sandy Bridge Ivy Bridge Haswell Broadwell

0.0

5.0

10.0

15.0

20.0

25.0

30.0

 0 2 4 6 8 10 12 14

R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(a) Cache Capacity

0.0
5.0

10.0
15.0
20.0
25.0
30.0
35.0

 0 2 4 6 8 10 12 14

R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(b) Cache False Sharing

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

 0 2 4 6 8 10 12 14

R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(c) Random Access

0.0

1.0

2.0

3.0

4.0

5.0

6.0

 0 2 4 6 8 10 12 14

R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(d) Stream

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

 0 2 4 6 8 10 12 14

R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(e) Dgemm

Figure 3: Temporal Variability of Hardware Resource Performance in Different Xeon Architectures

Sandy Bridge Ivy Bridge Haswell Broadwell

 0

 5

 10

 15

 20

 25

 30

-100 -50

R
an

g
e

(a
s

%
 o

f
M

ea
n

)

-4 -2 0 2 4

Temporal RV Statistic

50 100

(a) Cache Capacity

 0

 5

 10

 15

 20

 25

 30

 35

-100 -50

R
an

g
e

(a
s

%
 o

f
M

ea
n

)

-4 -2 0 2 4

Temporal RV Statistic

50 100

(b) Cache False Sharing

 0

 2

 4

 6

 8

 10

 12

 14

-100 -50

R
an

g
e

(a
s

%
 o

f
M

ea
n

)

-4 -2 0 2 4

Temporal RV Statistic

50 100

(c) Dgemm

Figure 4: Distribution of the Temporal RV Statistic in Different Xeon Architectures

whether large instance ranges are a result of rare or transient “out-
liers” that extend the performance range, or whether performance
is more broadly distributed across the range.

There are two general takeaways from Figure 4. The first is that
Dgemm is the only kernel where large instance ranges can be at-
tributed to “slow” outliers. Interestingly, this kernel shows that two
instances actually exhibit “fast” outliers with occasional iterations
that execute more quickly than most. In combination with the pres-
ence of “slow” outliers this indicates some instances are usually,
but not always, given preferential access to some resource that is
critical to the workload. In neither of the cache intensive kernels
did either process exhibit slow outliers. These results strongly sug-
gest that, when sharing resources of the architecture, variability
does not generate “slow” outliers in a fashion similar to, e.g., OS
interference, but rather has a more consistent impact on the perfor-
mance of an instance that can probably not be eliminated by the
system software. The second key result of this figure is that the
Sandy Bridge and Ivy Bridge architectures generated only modest
amounts of temporal variability in these workloads. While this
is not an exhaustive set of kernels, this result does indicate that
temporal variability may be a fairly recent development that has
not been as big of an issue on past systems.

Finally, in order to understand the implications of small scale
variability on actual performance, we measured the runtime of
each of these kernels on the same Broadwell architecture using a
512-node cluster located at Sandia National Laboratories. Figure 5
demonstrates the results. As the Figure shows, the kernels that
exhibit the worst performance at scale are those that experienced
the highest degree of temporal variability on a single node (Cache
Capacity and Dgemm; note that high temporal variability was only
found for Cache False Sharing on Haswell). This indicates that high

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1 2 4 8 16 32 64 128 256 512

R
u

n
ti

m
e

v
s.

 S
in

g
le

 N
o

d
e

(O
v

er
h

ea
d

)

Number of Nodes

Cache False Sharing
Cache Capacity
Random Access

Stream
Dgemm

Figure 5: Scalability of Computational Kernels

temporal variability is a better indicator, for these workloads, of
scalability than spatial variability. This illustrates that our frame-
work is able to provide an indication of performance scaling via
precise single node variability characterization.

6.2 Variability in Different KNL Configurations
Our next set of experiments demonstrate the prevalence of hard-
ware induced variability on a heterogeneous many-core architec-
ture, the Intel Xeon Phi [32]. We are interested in understanding the
nature of both spatial and temporal variability on this architecture,
particularly as they compare to the more homogeneous dual-socket
architectures studied in the previous section. However, in addition
to understanding how variability evolves when moving to a many-
core architecture, this section also sheds light on how different
configurations of the systems resources, including configuration of

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Brian Kocoloski and John Lange

KNL Alpha KNL Delta KNL Foxtrot

0.0

50.0

100.0

150.0

200.0

250.0

300.0

 0 10 20 30 40 50 60R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(a) Cache Capacity

0.0

10.0

20.0

30.0

40.0

50.0

60.0

 0 10 20 30 40 50 60R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(b) Cache False Sharing

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0 10 20 30 40 50 60R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(c) Random Access

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

 0 10 20 30 40 50 60R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(d) Stream

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0 10 20 30 40 50 60R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(e) Dgemm

Figure 6: Spatial Variability of Performance in Different KNL Configurations Using 64 Instances (2 per Tile)

KNL Alpha KNL Delta KNL Foxtrot

0.0

50.0

100.0

150.0

200.0

250.0

300.0

 0 50 100 150 200 250R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(a) Cache Capacity

0.0

5.0

10.0

15.0

20.0

25.0

30.0

 0 50 100 150 200 250R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(b) Cache False Sharing

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0 50 100 150 200 250R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(c) Random Access

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

 0 50 100 150 200 250R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(d) Stream

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

 0 50 100 150 200 250R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(e) Dgemm

Figure 7: Spatial Variability of Performance in Different KNL Configurations Using 256 Instances (8 per Tile)

Instances # Tiles # Cores / Tile # Threads / Core
64 32 2 1
256 32 2 4

Table 4: Mapping of Instances to the KNL Architecture

Alias Clustering Mode MCDRAM Configuration
“KNL Alpha" Quadrant Mode Flat (Only uses DDR4)
“KNL Delta" Quadrant Mode 100% Cache
“KNL Foxtrot" Sub NUMA Clustering (SNC=4) 100% Cache

Table 5: KNL Configurations Analyzed

the MCDRAM memory, as well as different strategies for mapping
instances to the architecture’s hardware threads, impact variability.

Tables 4 and 5 show the configurations we evaluated.3 As in
the previous experiments, we first analyze the spatial variability
exhibited by the architecture. Figure 6 shows the results when with
64 instances on the architecture, using 64 different cores and only
1 SMT thread per core as shown in Table 4, again plotting the most
representative iteration from each kernel and demonstrating the
runtime degradation experienced by all instances compared to the
fastest instance. In comparison to the Xeon results (Figure 2), all
kernels exhibit a greater degree of spatial variability in the worst
case, but the cache sensitive kernels in particular demonstrate very
significant degradation, ranging from only a few percent in some
instances to over 40% in Cache False Sharing, and over 200% in
Cache Capacity on the slowest instance. While Random Access,
Stream, and Dgemm all exhibit some spatial variability, the cache
sensitive kernels exhibit much more. This evidence indicates that

3In this section, we do not have “KNL Alpha" results for Cache Capacity, as the
MCDRAM memory is not configured as cache and thus the LLC is actually the per-tile
L2 cache, making a direct comparison with “Delta" and ‘Foxtrot" challenging. In all
KNL configurations, we obtain Cache False Sharing results by configuring the kernel
to use the per-core L2 caches, rather than the MCDRAM cache.

KNL Alpha KNL Delta KNL Foxtrot

 0

 5

 10

 15

 20

 25

 30

-100 -50

R
an

g
e

(a
s

%
 o

f
M

ea
n

)

-4 -2 0 2 4

Temporal RV Statistic

50 100

(a) Cache Capacity

 0

 5

 10

 15

 20

 25

 30

-100 -50

R
an

g
e

(a
s

%
 o

f
M

ea
n

)

-4 -2 0 2 4

Temporal RV Statistic

50 100

(b) Cache False Sharing

Figure 8: Distribution of the Temporal RV Statistic in the
Cache Sensitive Kernels in Different KNL Configurations

coherence traffic and routing of memory requests across the KNL
2d-mesh interconnect is a major source of variability.

Figure 7 illustrates the spatial variability results in the config-
uration where, instead of only using 1 SMT thread per core, all
4 SMT threads are utilized and 256 instances in total execute in
parallel on the architecture. The most interesting result from this
figure, in comparison to the 64 instance experiments, is that spatial
variability actually trends at about the same level, and in some cases
reduces. This behavior is most pronounced in both of the “KNL
Alpha” and “KNL Delta” configurations in the Cache False Sharing
kernel. This result is consistent with the conclusion that coherence
traffic across the distributed cross-tile architecture is the primary
driver of variability, as the more dense packing of the architecture
likely creates tile-local resource contention that, to a degree, masks
the impact of variability on the interconnect.

Finally, Figure 8 illustrates the distribution of the per instance
temporal resource variance statistic in the 64 instance (2 per tile)
KNL experiments. For space reasons, this figure only illustrates the

Varbench: Characterizing Performance Variability ICPP 2018, August 13–16, 2018, Eugene, OR, USA

35 W 50 W 65 W 80 W 95 W

0.0

5.0

10.0

15.0

20.0

25.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(a) Cache Capacity

0.0

5.0

10.0

15.0

20.0

25.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(b) Cache False Sharing

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(c) Random Access

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(d) Stream

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0 2 4 6 8 10 12 14R
u
n
ti

m
e
 (

%
 O

v
e
rh

e
a
d
)

Instance

(e) Dgemm

Figure 9: Spatial Variability of Hardware Resource Performance as a Function of Different RAPL Power Caps

35 W 50 W 65 W 80 W 95 W

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

 0 2 4 6 8 10 12 14R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(a) Cache Capacity

5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0

 0 2 4 6 8 10 12 14R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(b) Cache False Sharing

0.0

5.0

10.0

15.0

20.0

25.0

30.0

 0 2 4 6 8 10 12 14R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(c) Random Access

0.0
200.0
400.0
600.0
800.0

1000.0
1200.0
1400.0
1600.0

 0 2 4 6 8 10 12 14R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(d) Stream

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

 0 2 4 6 8 10 12 14R
an

g
e

(a
s

%
 o

f
M

ea
n
)

Instance

(e) Dgemm

Figure 10: Temporal Variability of Hardware Resource Performance as a Function of Different RAPL Power Caps

distribution for the cache sensitive kernels, which exhibited the
highest temporal variance of all five kernels. As in the Xeon dual-
socket experiments, we again see that temporal variability is almost
never characterized as being driven by slow outliers, which suggests
the variability is a result of intrinsic hardware characteristics and
not transient software effects. However, in comparison to the large
increase of spatial variability compared to the Xeon platforms,
the degree of temporal variability is more modest, particularly in
the Cache Capacity example, where no instance’s performance
varies by more than 30%, but for which the difference between the
fastest and slowest ranks is nearly 300%. This is consistent with our
finding that, in comparison to the Xeon architectures, heterogeneity
primarily exacerbates spatial variability.

6.3 Impact of Power Capping
Our last set of experiments were performed to demonstrate an addi-
tional benefit of characterization beyond performing architectural
comparisons and understanding trends, which is to understand
how different tunable system criteria impact variability and influ-
ence the scalability of the platform. In this section, we provide one
example of this by studying the impact of power capping via the
Intel RAPL [8] interface. Rather than provide cross-architectural
comparisons, we study the prevalence of variability under different
power caps and highlight the key differences as they pertain to the
likely scalability of the system.

These experiments were performed on the Intel “Ivy Bridge” ar-
chitecture shown in Table 3.We ran each computational kernel with
differing package level power caps of 95, 80, 65, 50, and 35 W. First
considering spatial variability, as shown in Figure 9, for all kernels
there is no significant difference between the 95 W and 80 W power
caps. However, the 65 W cap leads to a larger degree of variability
in the Cache False Sharing kernel, while in all kernels but Dgemm

the 50 and 35 W power caps exhibit more pronounced variability.
This result reflects the fact that manufacturing variation, which
without power caps is generally imperceptible from a performance
standpoint but which causes different levels of power consumption
across processors, becomes inverted under a power cap, with each
processor performing differently at the same power level.

However, by also focusing on temporal variability, we are able to
understand an additional result that has different implications for
scalability and potential mitigation than simply spatial variation.
As Figure 10 shows, in all cases where there is significant spatial
variability there is also significant temporal variability. In fact, under
the 35 and 50W power caps, performance within a specific instance
actually varies more over time than performance across processors.
This demonstrates the interesting fact that non-determinism within
the RAPL logic actually creates more variability than the cross-core
processor variation that generates spatial imbalance.

6.4 Lessons Learned
As discussed at the beginning of our evaluation, the purpose of
these experiments was to demonstrate that characterization pro-
vides interesting insights and to enable architectural comparisons,
help identify trends, and in general provide a common framework
with which to evaluate tunable system criteria that can provide
indications of large scale system behavior without requiring large
scale performance results. We conclude with our primary findings:

(1) Due to the presence of intrinsically shared resources such as
caches, buses, and on chip interconnects, architectures often
generate variability even for singular workloads, without
interference from co-running applications.

(2) Heterogeneity creates more pronounced “hot spots” that
exacerbate cross-core spatial variability. Temporal variability
is not exacerbated to the same degree as spatial variability.

ICPP 2018, August 13–16, 2018, Eugene, OR, USA Brian Kocoloski and John Lange

(3) In all kernels except for Dgemm, temporal performance vari-
ability is not characterized as having “slow outliers.” While
we cannot fully preclude the OS as a source of overhead, it
is unlikely that software creates this variability.

(4) Power capping can have subtle but important implications
for scalability. While runtime may not vary drastically from,
e.g., 50 W to 65 W, the former executes much more variably.

7 CONCLUSION
Variability is a major challenge for large scale HPC systems due the
prevalence of BSP applications. In this paper, we argued that char-
acterizing variability can provide numerous benefits for hardware
and software design on future machines. To this end, we designed
and implemented the varbench experimental performance analysis
framework. We demonstrated several of varbench’s capabilities, in-
cluding its utility for quantifying architectural trends and enabling
cross-architectural comparisons. Finally, by studying key statistical
properties of performance distributions, we showed how varbench
sheds light on the impact of system parameters such as power caps.

REFERENCES
[1] 2018. Top500: The List. https://www.top500.org. (2018). Online, Accessed:

2018-01-24.
[2] Martin Abadi et al. 2016. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Distributed Systems. In Proc. of 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’16).

[3] Michael Adams, Phillip Colella, Dan Graves, Hans Johansen, N.D Keen, Terry
Ligocki, Dan Martin, Peter McCorquodale, D. Modiano, and Peter Schwartz. 2013.
Chombo Software Package for AMR Applications - Design Document.

[4] Abhinav Bhatele, Kathryn Mohror, Steven Langer, and Katherine Isaacs. 2013.
There Goes the Neighborhood: Performance Degradation due to Nearby Jobs. In
Proc. of the 25th Annual IEEE/ACM International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’13).

[5] Sudheer Chunduri, Kevin Harms, Scott Parker, Vitali Morozov, Samuel Oshin,
Naveen Cherukuri, and Kalyan Kumaran. 2017. Run-to-run Variability on Xeon
Phi based Cray XC Systems. In Proc. of the 29th Annual IEEE/ACM International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’17).

[6] Rafael da Silva, Rosa Filgueira, Ilia Pietri, Ming Jiang, Rizos Sakellariou, and
Ewa Deelman. 2017. A Characterization of Workflow Management Systems
for Extreme-scale Applications. Future Generation Computer Systems 75 (2017),
228–238.

[7] Donald Darling. 1957. The Kolmogorov-Smirnov, Cramer-von Mises Tests. The
Annals of Mathematical Statistics 28, 4 (1957), 823 – 838.

[8] Howard David, Eugene Gorbatov, Ulf Hanebutte, Rahul Knanna, and Christian Le.
2010. RAPL: Memory Power Estimation and Capping. In Proc. of the ACM/IEEE
International Symposium on Low-Power Electronics and Design (ISLPED ’10).

[9] Saurabh Dighe, Sriram Vangal, Paolo Aseron, Shasi Kumar, Tiju Jacob, Keith
Bowman, Jason Howard, James Tschanz, Vasantha Erraguntla, Nitin Borkar,
Vivek De, and Shekhar Borkar. 2011. Within-Die Variation-Aware Dynamic-
Voltage-Frequency-Scaling With Optimal Core Allocation and Thread Hopping
for the 80-Core TeraFLOPS Processor. IEEE Journal of Solid-State Circuits 46, 1
(2011), 184–193.

[10] Kristof Du Bois, Stijn Eyerman, Jennifer Sartor, and Lieven Eeckhout. 2013. Criti-
cality Stacks: Identifying Critical Threads in Parallel Programs using Synchro-
nization Behavior. In Proc. of the 40th International Symposium on Computer
Architecture (ISCA ’13).

[11] Mark Giampapa, Thomas Gooding, Todd Inglett, and Robert Wisniewski. 2010.
Experiences with a Lightweight Supercomputer Kernel: Lessons Learned from
Blue Gene’s CNK. In Proc. of the 23rd ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’10).

[12] Joe Jeddeloh and Brent Keeth. 2012. Hybrid Memory Cube: New DRAM Archi-
tecture Increases Density and Performance. In Proc. of the 2012 Symposium on
VLSI Technology (VLSIT ’12).

[13] Hartmut Kaiser, Maciej Brodowicz, and Thomas Sterling. 2009. ParalleX: An
Advanced Parallel Execution Model for Scaling-Impaired Applications. In Proc.
of the International Conference on Parallel Processing Workshops (ICPPW ’09).

[14] Laxmikant Kale and Gengbin Zheng. 2009. Advanced Computational Infras-
tructures for Parallel and Distributed Applications. Wiley, Charm++ and AMPI:
Adaptive Runtime Strategies via Migratable Objects.

[15] Brian Kocoloski, Leonardo Piga, Wei Huang, Indrani Paul, and John Lange. 2016.
A Case for Criticality Models in Exascale Systems. In Proc. of the 18th IEEE
International Conference on Cluster Computing (CLUSTER ’16).

[16] Wim Lavrijsen, Costin Iancu, Wibe de Jong, Xin Chen, and Karsten Schwan. 2016.
Exploiting Variability for Energy Optimization in Parallel Programs. In Proc. of
the Eleventh European Conference on Computer Systems (EuroSys ’16).

[17] Edgar Leon, Ian Karlin, and AdamMoody. 2016. System Noise Revisited: Enabling
Application Scalability and Reproducibility with SMT. In Proc. of the 30th IEEE
International Parallel and Distributed Processing Symposium (IPDPS ’16).

[18] Jacob Leverich and Christos Kozyrakis. 2014. Reconciling High Server Utilization
and Sub-millisecond Quality-of-Service. In Proc. of the 9th European Conference
on Computer System (EuroSys ’14).

[19] Chee Liew, Malcolm Atkinson, Michelle Galea, Tan Ang, Paul Martin, and Jano
Van Hemert. 2017. Scientific Workflows: Moving Across Paradigms. Comput.
Surveys 49, 4 (2017).

[20] Jiaqi Liu and Gagan Agrawal. 2017. Supporting Fault-Tolerance in Presence
of In-Situ Analytics. In Proc. of the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid ’17).

[21] Jay Lofstead, Fang Zheng, Qing Liu, Scott Klasky, Ron Oldfield, Todd Korden-
brock, Karsten Schwan, and Matthew Wolf. 2010. Managing Variability in the IO
Performance of Petascale Storage Systems. In Proc. of the 22nd Annual IEEE/ACM
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’10).

[22] Piotr Luszczek, Jack Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,
Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Takahashi. 2005.
Introduction to the HPCChallenge Benchmark Suite. Technical Report. University
of Tennessee.

[23] Grzegorz Malewicz, Matthew Austern, Aart Bik, James Denhert, Ilan Horn, Naty
Leiser, and Grzegorz Czajkowski. 2010. Pregel: a System for Large-Scale Graph
Processing. In Proc. of the 2010 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’10).

[24] Maxime Martinasso and Jean-Francois Mehaut. 2-11. A Contention-Aware Perfor-
mance Model for HPC-Based Networks: A Case Study of the Infiniband Network.
Lecture Notes in Computer Science 6852 (2-11), 91–102.

[25] Hiroyuki Miyazaki, Yoshihiro Kusano, Naoki Shinjou, Fumiyoshi Shoji, Mitsuo
Yokokawa, and Tadashi Watanabe. 2012. Overview of the K computer System.
Scitech 48, 3 (2012), 255–265.

[26] Jiannan Ouyang, Brian Kocoloski, John Lange, and Kevin Pedretti. 2015. Achiev-
ing Performance Isolation with Lightweight Co-kernels. In Proc. of the 24th
International Symposium on High-Performance Parallel and Distributed Computing
(HPDC ’15).

[27] Tapasya Patki, David Lowenthal, Anjana Sasidharan, Matthias Maiterth, Barry L.
Rountree, Martin Schulz, and Bronis de Supinski. 2015. Practical Resource Man-
agement in Power-Constrained, High Performance Computing. In Proc. of the
24th International ACM Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’15).

[28] Bogdan Prisacari, German Rodriguez, Philip Hiedelberger, Dong Chen, Cyriel
Minkenberg, and Torsten Hoefler. 2014. Efficient Task Placement and Routing
of Nearest Neighbor Exchanges in Dragonfly Networks. In Proc. of 23rd ACM
International Symposium on High Performance Parallel and Distributed Computing
(HPDC ’14).

[29] Nikola Rajovic, Paul Carpenter, Isaac Gelado, Nikola Puzovic, Alex Ramirez, and
Mateo Valero. 2013. Supercomputing with Commodity CPUs: Are Mobile SoCs
Ready for HPC?. In Proc. of the 26th ACM/IEEE International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’13).

[30] Barry Rountree, Dong Ahn, Bronis de Supinski, David Lowenthal, and Martin
Schulz. 2012. Beyond DVFS: A First Look at Performance Under a Hardware-
Enforced Power Bound. In Proc. of the IEEE 26th International Parallel and Dis-
tributed Processing Symposium Workshops & PhD Forum (IPDPSW ’12).

[31] Barry Rountree, David Lowenthal, Bronis de Supinski, Martin Schulz, Vincent
Freeh, and T. Bletsch. 2009. Adagio: Making DVS Practical for Complex HPC
Applications. In Proc. of the 23rd ACM International Conference on Supercomputing
(ICS ’09).

[32] Avinash Sodani. 2015. Knight’s Landing KNL: 2nd Generation Intel Xeon Phi
Processor. In Proc. of the IEEE Symposium on High Performance Chips (HC27).

[33] Akshay Venkatesh, Abhinav Vishnu, Khaled Hamidouche, Nathan Tallent,
Dhabaleswar Panda, Darren Kerbyson, and Adolfy Hoisie. 2015. A Case for
Application-oblivious Energy-efficient MPI Runtime. In Proc. of the 27th Annual
IEEE/ACM International Conference for High Performance Computing, Networking,
Storage and Analysis (SC ’15).

[34] Hannes Weisbach, Balazs Gerofi, Brian Kocoloski, Hermann Härtig, and Yutaka
Ishikawa. 2018. Hardware Performance Variation: A Comparative Study using
Lightweight Kernels. In Proc. of the International Conference, ISC High Performance
(ISC HPC ’18).

[35] Peter Westfall. 2014. Kurtosis as Peakedness, 1905 - 2014. R.I.P. The American
Statistician 68, 3 (2014), 191–195.

https://www.top500.org

	Abstract
	1 Introduction
	2 Related Work
	2.1 Beyond BSP

	3 A Case for Characterization
	3.1 Identifying Trends and Revisiting Assumptions
	3.2 Considering Candidate Solutions
	3.3 Understanding Architectural Differences
	3.4 Determining Impact of Configurations

	4 Varbench
	4.1 Methodology
	4.2 Kernels

	5 Statistical Methodology
	5.1 Quantifying Variability
	5.2 Selecting Representative Data Samples

	6 Performance Analysis
	6.1 Variability In Different Xeon Generations
	6.2 Variability in Different KNL Configurations
	6.3 Impact of Power Capping
	6.4 Lessons Learned

	7 Conclusion
	References

